QUIDDPRO USER s GUIDE
VERSION 3.8

GEORGEF. VIAMONTES

HECTORJ. GARCIA
|GORL. MARKOV
JOHN P. HAYES

UPDATED ONJUNE 21, 2011

THE UNIVERSITY OF MICHIGAN

QuiIDDProis a fast, scalable, and easy-to-use computatittraface for generic quantum circuit
simulation. It supports state vectors, density matriced,ralated operations using the Quantum In-
formation Decision Diagram (QuIDD) data structure [1, 2, 8pftware packages including Matlab,
Octave, QCSim [5], and libquantum [6], have also been ussihalate quantum circuits. However,
unlike these packages, QuIDDPro does not always suffer fhenexponential blow-up in size of the
matrices required to simulate quantum circuits. As a resaudthave found that QuIDDPro is much
faster and uses much less memory as compared to other geinaulation methods for some useful
circuits with much more than 10 qubits [1, 2, 4].

VERSIONHISTORY (SEEAPPENDICESA AND B FOR DETAILS)
e VERSION 1.0 - ANUARY 27, 2004

e VERSION1.1 - MARCH 29, 2004

e VERSION1.2 - DECEMBER 12, 2004

e VERSIONZ2.0 - JuLy 27, 2005

e VERSION2.1 - AugusT 17, 2005

e VERSION2.1.1 - OCTOBER 25, 2005

e VERSION2.1.2 - DECEMBER 2, 2005

e VERSION2.1.3 - FEBRUARY 24, 2006
e VERSION2.1.4 - FEBRUARY 27, 2006
e VERSION2.1.5 - SEPTEMBER 15, 2006
e VERSION3.0B - OCTOBER 16, 2006

e VERSION3.13 - OCTOBER31, 2006

e VERSION3.1 - MARCH 8, 2007

e VERSION3.53 - JuLy 10, 2010

e VERSION3.8 - JUNE 21, 2011

GEORGEF. VIAMONTES, HECTORJ. GARCIA, IGOR L. MARKOV, JOHN P. HAYES
QUANTUM CIRCUITS GROUP

DEPARTMENT OFELECTRICAL ENGINEERING AND COMPUTER SCIENCE
UNIVERSITY OF MICHIGAN

{gviamont, hjgarcia, imarkov, jhayb@®eecs.umich.edu

COPYRIGHT (© 2004 - 2010 GORGEF. VIAMONTES, HECTORJ. GARCIA,
IGORL. MARKOV, JOHN P. HAYES, AND
THE REGENTS OF THEUNIVERSITY OF MICHIGAN. ALL RIGHTS RESERVED

Contents

8

9

Overview

Running the Simulator

Functions and Code in Multiple Files

Dirac Notation and String Manipulation

Checking Equivalence up to Global and Relative Phase
Compiling Quantum Circuits from QuIiDDPro Scripts
Improved Simulation of Quantum Circuits

Language Reference

Ongoing Work

Appendix A: New Features in version 3.8

Appendix B: New Features in version 3.5

Appendix C: New Features in version 3.1

Appendix C: Notes on Performance Analysis

References

M MichiganEnginetg

11

11

12

26

27

27

27

28

28

1 Overview

The goal of the QuIDDPro simulator is to provide a fast, dolglaand easy-to-use quantum-mechanical
simulator for applications such as quantum computationcamimunication. This documentation and
examples distributed with the simulator provide enougbnmiation for any user to get started. QuiDD-
Pro uses an input language similar to Matlab. It supportsidematrices, state vectors, and related
operations using a recently developed data structuredcieQuantum Information Decision Diagram
(QuIiDD) [1, 2, 4]. Version 3.1 introduces a number of newtieas including functions which efficiently
compute the equivalence of states and operators up to glodalelative phase, string data types, Dirac
notation, and bit operations (see Sections 4 and 5 for a neieeledd discussion of the new features).
Versions 12 and later are up to 60 times faster than the older versibriiste Appendix B for perfor-
mance results).

Software packages, including Matlab, Octave (a free GNUWage that is very similar to Matlab),
and others [5, 6, 7], have been used to simulate quantumitsimad communication. Unlike exist-
ing packages, QuIDDPro does not always suffer from the expiial blow-up in size of the matrices
required to simulate quantum circuits. As a result, we haumd that QuIDDPro is much faster and
uses much less memory as compared to other generic sinaujatd, 4] for many useful circuits with
10 qubits or more. For example, QuIDDPro can simulate a nahgdgenerated 100-qubit stabilizer
circuit with 10000 gates in approximately nine minutes aad & peak memory usage oft¥1B. How-
ever, other circuits, including instances of Shor’'s nunfhetoring algorithm, still require a substantial
amount of computational resources.

The remainder of this documentation is organized as follo@sction 2 explains how to run the
simulator and provides examples. Section 3 describes hanetie user-defined functions and import
code from multiple files. Section 4 shows how to use the opti@irac notation support and string ma-
nipulation functionality using examples of several welbkvn quantum states to illustrate the relevant
QuIDDPro features. Section 5 demonstrates efficient fanstivhich can determine the equivalence of
states and operators up to global and relative phase andutertiie phases. Section 8 contains a lan-
guage reference, and lastly, Section 9 outlines the ongearg in developing the QuiDDPro simulator
and related features. Appendix A lists the major featureighvhave been added to the latest version of
QuIDDPro. Appendix B describes major performance impraseis which make versions2land later
significantly faster than versionIl Appendix C summarizes important guidelines for evahgathe
runtime and memory performance of the QuIDDPro simulatorcé&QulDDPro is under active devel-
opment, we welcome user feedback and contributed exarojpéests in the form of QuIDDPro scripts.
Scripts contributed by users will drive future performanmo@rovements in the computational back-end
of QuIDDPro. Although the current scope of QuIDDPro is siatign, the development of other tools
to work in concert with QuIDDPro, such as a quantum circuittegsizer, is also under consideration.

2 Running the Simulator

The QuIDDPro simulator can be run in two modes, namely batotlerand interactive mode. In batch
mode, the user supplies the simulator with an ASCII text fietaining the script code to be executed.
The text file can be provided as an argument in the commandditiee simulator executable or redi-
rected to standard input as in the following examples:

File “my_code.qpro” passed as an argument:
% ./gp my _code.gpro

File “my_code.qpro” redirected to standard input:
% ./gp < my _code.gpro

Note that although the examples use a “.qpro” extensiondriitbnames, any valid filename will do.

Interactive mode is triggered when the simulator execatabgiven no arguments at the command
line. In this mode, the simulator will be started and prodagaompt to await input from the user as
shown in the next example:

% ./gp
QuIDDPro>

Similar to Matlab, valid lines of code may be typed at the ppband executed when the return or
enter key is pressed (i.e. when a newline is given as inpuite cbmmand “quit” can be issued to exit
the simulator. Also, multiple expressions may be placedsimgle line by separating each expression
by one or more semicolons. An example of this method of inpasifollows:

QuIDDPro> a = pi/3; r _op = [cos(a/2) -i *sin(a/2); -i *sin(a/2) cos(a/2)]
rop =

0.866025 0-0.5i

0-0.5i 0.866025

In this example, a 1-qubit rotationXl operator matrix is created with tieparametent/3. Notice
that only the value of the variable_“ap” is printed out. In general, the value of the last expas$s
printed out for an input line containing multiple expressicseparated by semicolons. However, the
other expressions are still computed. In this example, ristance, the variable “a” will contain the
value pi/3, even though this result is not printed out. This is cletnlye since the definition of “bp”
depends on the value of “a.” In addition to providing the netmplace multiple expressions on the
same line, semicolons can be used more generally to suppugsst to the screen. If screen output
for any particular expression is not desired, simply plasemicolon at the end of the expression to
compute it silently. Matlab behaves in the same fashion.

QuIDDPro contains a number of built-in functions and pretsdivariables. A listing of such func-
tions and variables can be found in Section 8. Notice thaténast example, the predefined variables
“pi” and “i” are used. “pi” contains the valug (to a large number of digits), while “i” contains the value
0+i. Predefined variables can be overwritten by the user. Intiaddio the predefined variables just
mentioned, the built-in functions “cos” and “sin” were alsged in the last example. To demonstrate the
use of built-in functions further, consider the next exaenpl

QuUIDDPro> r _op = rx(pi/3, 1)
rop =

0.866025 0-0.5i

0-0.5i 0.866025

In this example, the built-in function “rx” is used to credt® same matrix that was created in the
previous example, namely the 1-qubit rotatioxabperator. QulDDPro provides a number of such

functions to create commonly used operators. See SectionrBdre details.

Although interactive mode is useful for quick calculatipitsmay not be preferable for non-trivial
pieces of code that are reused many times. Thus, batch mbighlg recommended for most contexts.
In the next example, we demonstrate how to use QuIDDPro tolatena quantum circuit in batch mode.
The code shown here can be placed into a file for executionyairae. In fact, this particular example
and others can be found in the examples/ directory.

Consider the canonical decomposition of a two-qubit upitgreratotJ described in [10]U can be
expressed as:

U= (Al ® Bl)ei(exX®X+9yY®Y+9zZ®Z) (Az ® BZ)
subject to the constraint th&tz Bx > 6y > |6,| andAq, Ay, By, andB; are one-qubit unitary operators.

Suppose we wish to simulate a quantum circuit in which sormedubit unitary operatoU is to
be applied to two qubits in the density matrix stét6) (10|. Further suppose that must be computed
given the canonical decomposition parametrs- 0.702, 6y = 0.54, andB, = 0.2346. Additionally,
we are given thaf\; is a one-qubit Hadamard operatés, is X, By is |, andB, is Y. This can be imple-
mented with the following code (from examples/misc/tqu@anonical.qpro):

theta x = 0.702;
theta y = 0.54;
theta z = 0.2346;

Al = hadamard(1);
A2 = sigma x(1);
Bl = identity(1);

B2 = sigma y(1);

Next,U can be computed with the code:

Xpart = theta x=*kron(sigma x(1), sigma x(1));
Ypart = theta _y*kron(sigma _y(1), sigma _y(1));
Zpart = theta _z*kron(sigma _z(1), sigma _z(1));
U = kron(Al, B1) =expm(i *(Xpart + Ypart + Zpart)) *kron(A2, B2)

U is then applied to the density matrix st&t®) (10| with the code:

state = cb(*10");
final _state = U =*(state =*state’) *U’

Deterministic measurement can be performed to elimina&edhrelations associated with each qubit:

g.index = 1;

while (g _index < 3)
final _state = measure(q _index, final _state);
g.index = q _index + 1;

end

measured _state = final _state

U can also be applied very easily to the state vector reprasamtof the state if it is preferred to the
density matrix representation. In addition, the probgbof measuring a 1 or 0 for any qubit in the state

vector can be computed using other measurement functions:

final _state _v = U= state

pO_qubitl = measure _svO(1, final _state _v)
pl_qubitl = measure _sv1(1, final _state _v)
pO_qubit2 = measure _svO(2, final _state _v)
pl_qubit2 = measure _sv1(2, final _state _v)

Probabilistic measurement can also be performed on botkitgematrices and state vectors.

pmeasure andpmeasure _sv in Section 8 for more details.

Upon execution of the above script, the output is:

U =

-0.110927-0.0265116i -0.0530448-0.222078i -0.650863+0 .15556i 0.162218-0.678733i
-0.162218+0.678733i 0.650863-0.15556i 0.0530448+0.222 078i 0.110927+0.0265116i
-0.110927-0.0265116i 0.0530448+0.222078i 0.650863-0.1 5556i 0.162218-0.678733i
0.162218-0.678733i 0.650863-0.15556i 0.0530448+0.2220 78i -0.110927-0.0265116i
final _state =

0.447822 2.15483e-05+0.152794i -0.447822 2.15483e-05+0 152794
2.15483e-05-0.152794i 0.0521324 -2.15483e-05+0.152794 i 0.0521324
-0.447822 -2.15483e-05-0.152794i 0.447822 -2.15483e-05 -0.152794i
2.15483e-05-0.152794i 0.0521324 -2.15483e-05+0.152794 i 0.0521324

measured _state =

0.447822 0 0 0
0 0.0521324 0 0
0 0 0.447822 0
0 0 0 0.0521324

final _state v =
-0.650863+0.15556i
0.0530448+0.222078i
0.650863-0.15556i
0.0530448+0.222078i

p0_qubitl
0.499955

pl_qubitl
0.499955

See

p0 _qubit2
0.895644

pl_qubit2
0.104265

Although the examples in this section demonstrate scijatsuse small numbers of qubits, the real
power of QuIDDPro lies in simulating quantum-mechanicaitegns with many quantum states (usually
10 or more). See steaneX.qpro, steaneZ.gpro, and_laggeo in the examples/ directory for examples
of such systems. largle.qpro, for instance, applies a 50 qubit Hadamard operatardiensity matrix of
50 qubits. steaneX.gpro and steaneZ.qpro demonstratecerrection in quantum circuits of 12 and 13
qubits, respectively. On a single processor of one of oukstations, each of these scripts requires less
than 5 seconds to run and less thah KRIB of peak memory usage.

3 Functions and Code in Multiple Files

QuIDDPro supports user-defined functions via the “m-file”dalocommonly used in Matlab. Specif-

ically, a function call to a user-defined function may app&@ywhere as long as the function body is
contained in a separate file in the working directory. The eaifithe file containing the function body

must be the same as the function name with “.qpro” or “.qp"esqgied. To illustrate, consider the fol-

lowing script which uses an oracle function to implemennamé instance of Grover’s algorithm shown
on page 256 of [9].

(examples/functions/simplgrover.qprg

state = cb(*001");

state = hadamard(3) =*state;

state = oracle(state);

state = * cu_gate(hadamard(l), “xxi"”);

Note: The = * operation is shorthand for
state = cu _gate(hadamard(l), “xxi") * state;
state cu_gate(sigma x(1), “xxi™);

state = =* cu_gate(hadamard(1), “ixi");

state = * cu_gate(sigma x(1), “cxi™);

state = * cu_gate(hadamard(l), “ixi");

state = * cu_gate(sigma x(1), “xxi");

state = * hadamard(3)

1
*

(examples/functions/oracle.gpro
function new _state = oracle(curr _State)
new_state = cu _gate(sigma x(1), “ccx”) *curr _state;

The user-defined function is “oracle” with its function bodigfined in the file “oracle.gpro.” The other
functions used are part of the QuIDDPro language (see $e8tifmr more details). Notice that in
this particular example, the QuIDD (matrix) “state” is pagsas a function argument. In QuiDDPro,
a QuIDD function argument only requiré3(1) memory usage because a pointer to the head of the

QuIDD is passed to a function rather than the entire QuID® Jdmme holds true for returning QuiDDs
from a function. Thus, passing QuIDD arguments and retulumegas extremely efficient. In general, a
user-defined function can contain any number of parameteichvean be any combination of QuIDDs
or complex numbers. Arguments passed as parameters twhmare not modified by the function (i.e.
pass-by-value is always used).

Unlike Matlab, QuIDDPro functions must have only one retuamiable (a function that returns
nothing is also not allowed). If the function is intendedeturn no values, such as a diagnostic printing
function, then a dummy variable can be used for the returiali@. The return variable need not be
used in the function body, and when this occurs, it is autmali assigned a value of 0. A semicolon
can be appended to the function call to suppress the outghedf value. When multiple return values
are desired, they can be stored together in a matrix. Thgsjrieg a single return variable does not
actually restrict the number of values that can be returned.

Like Matlab and other languages, variables declared lpaalh function body exist in their own
scope. In other words, variables declared in a function tardyundefined upon leaving the function
body. By the same token, such variables do not overwrite #iigeg of variables with the same name
declared outside the function body.

In addition to functions, QuIDDPro supports then command. Like its Matlab counterpart, this
command runs script code contained in another file. In tHeviihg example, the same circuit as before
is simulated, but this time the run command is used insteadusker-defined function.

(examples/run/simplgrover.qprg

run “oracle _def.gpro”

state = cb(“001");

state = * hadamard(3);

state = * oracle;

state = * cu_gate(hadamard(l), “xxi”);
state = * cu_gate(sigma x(1), “xxi");
state = =* cu_gate(hadamard(1), “ixi");
state = * cu_gate(sigma x(1), “cxi™);
state = =* cu_gate(hadamard(1), “ixi");
state = * cu_gate(sigma x(1), “xxi");
state = * hadamard(3)

(examples/run/oraclelef.qprg
oracle = cu _gate(sigma x(1), “ccx™);

Notice that the run command does not introduce a new scopezaidhbles declared in a run file exist
in the current scope. As a result, the run command is idealdolaring variables which can be re-used
in multiple projects. Also, there is no constraint on wheraracommand may appear other than that it
may not be placed within an explicit matrix.

4 Dirac Notation and String Manipulation

As of version 31, QuIDDPro now supports a Dirac-style syntax as well aggtiiata types that can be
stored and manipulated. This section demonstrates howetthiss functionality by presenting simple
examples of well-known quantum states implemented witkdlfeatures. The states include the cat

(GHZ) state, the W state, and the equal superposition state.

The cat state is an-qubit generalization of the EPR pair and is defineduas; = (|00...0) +
|11...1))/v/2. A QuIDDPro function which creates this state given the bemof qubitsn is listed
below (from examples/states/creatat state.qpro).

function |cs:> = create _cat _state(n)
cs:> = (]0:> N+ |2°n - 1:>)/sqrt(2);

There are two important points to note in this example. Fitst QuIDDPro form of a ket utilizes
the following syntax|x:> , wherex can be an integer expression, a state vector variable, oing st
expression of the form used in tlee(-) function (see Section 8 for a description of this functiolm).
the case of a state vector variable, the ket form is merelylias for the Matlab-style variable name
and can be used to store expressions as illustratédsby above. In the case of an integer, the state
becomes the binary representation in qubits of the integeere the left-most qubit in the state is the
most-significant bit of the integer. The number of qubitshe tesulting state vector QuiDD is the
minimum number of qubits required to represent the integdiinary. QuIDDPro uses similar syntax
for a bra,<:x| , and support for writing inner and outer products using laras kets is discussed later
in the section. The only difference is that kets may be assiga, but bras may not.

The second point to note is that an optional subscript capperaled to the ket as followjs;> _y,
wherey can be any integer expression. The subscript adds led@irgubits to the resulting QuiDD
state vector. This functionality is useful to make statethviteger expressions that need fewer qubits
have the same number of qubits as states with larger integeessions. It is good to get into the habit
of putting parentheses around subscript expressionse sinly integer literals and variables may be
subscript expressions without parentheses.

The next state created using these features is the W staieh stdefined asyw) = (|10...0) +
|01...0) +00...1))//n. A QuiDDPro function which creates this state given the nerdf qubitsn
is given below (from examples/states/createstate.qpro).

function |ws:> = create _w_state(n)
lws:> = |1:> n;
=1
while (j < n)
[ws:> += |27:>;
j++
end
|ws:> /= sqrt(n);

Another interesting feature used in this example istheand/= operators. As in other languages
like C and C++x op= y is merely convenient shorthand for= x op Yy . All the basic arithmetic
operations support this notation, includifg- , *, / , <<, and>>, where the last two operators are left
and right bit shift, respectively. Also, thet and-- operators are supported, which are equivalent to
+= 1 and-= 1, respectively.

The next example uses the equal superposition state to ddratenthe string manipulation func-
tionality. An n-qubit equal superposition state represents all possiblaeasurement outcomes with
equal probability. It is defined a% 21-2":61|j> and can be created with Hadamard gates. To this state,
controlledZ gates are applied such that each odd numbered jiskdt control and each even numbered

qubiti + 1 is the corresponding target. A QuiDDPro function whicheyates this state given the num-
ber of qubitsnis provided below (from examples/states/creatgialevenodd.qpro). For odd values of
n, the last qubit is skipped.

function |eeo:> = create _equal _even _odd(n)
leeo:> = H(n) *[0:>
count = 1;

while (count < n)
gate _spec = “c” + count + “x” + (count + 1);
leeo:> = * cu_gate(sigma z(1), gate _spec, n);
count += 2;

end

Notice that the stringgate _spec can be constructed from pieces of strings and numbers via the
operation. In QuIDDPro, this operation simply appends ttriagsand automatically converts numeric
values to strings. It is important to note the differencenasin appendingcount + 1) andcount

+ 1. Inthefirst case, ifount contains the value 3, then the string representation oflbeihppended.
However, in the second case the string 31 will be appended #ie+ operator will be treated as another
string append rather than as numerical addition.

The final example in this section demonstrates other typsgmdorted Dirac notation for the inner
and outer products. It is often convenient, for instancgpply a projector to a state when writing an
expression for the probability of a measurement outcomk as@y|0) (O|w), where|y) is some 1-qubit
state. Although QuIDDPro supports several optimized mregsent functions, support exists to write
such expressions directly as shown in this example (frormeles/states/projector.qpro)

[psi:> = [0.8; 0.6];
p_.0 = <:psi|0:><:0|psi:>
p.1 = <ppsi|l:><:1|psi:>

As illustrated in the above code, inner products are onhaisspd by a singl¢ just as in the Dirac
notation. There is no limit to the number of inner and outedpicts that can be concatenated in this
way. Implicit multiplication of a ket by an operator, as@p|psi:> , is not yet supported and requires
an explicit multiplication signQp* |psi:>

5 Checking Equivalence up to Global and Relative Phase

In addition to simulation, a number of research efforts a@i$ed on classical synthesis of quantum
circuits [11, 12, 13]. Checking the equivalence of digiiataits is a major part of classical synthesis and
verification and is likely to continue to play a role in the qtian case. Equivalence checking of quantum
states, operators, and circuits is more challenging shieedan differ by global and relative phase yet be
equivalent upon measurement. As a result, QuIDDPro prevéggeral QuiDD-based functions which
efficiently compute equivalence up to global or relativegghéor both states and operators.

One such function igp _equals which returns a 2-element row vector containing a 1 (0) iftthe
states or operators passed as arguments are (not) equaglgb&b phase and, if so, the global phase
factor. The following example illustrates the use of thiadtion to compare a state generated in an
instance of Grover’s algorithm to the same state differipglglobal phase factor.

(from examples/phasehecks/gpgrovet state.qpro).
ckt _size = 500;

Create an oracle that marks the last element in the “databa
The oracle uses one ancillary qubit that is flipped to mark
the last element.
count = O;
spec =
while (count < ckt size - 1)
spec += *c’;
count++;
end
spec += “Xx";
oracle = cu _gate(sigma x(1), spec);

Construct the gate operators used in a Grover iteration.
hn = H(ckt _size);

hni = H(ckt _size - 1) (X) identity(1);

cps op = cps(ckt _size - 1) (X) identity(1);

Create the state

state = |0:>;

count = O;

while (count < ckt _Size - 2)
state = state (X) |0:>;
count++;

end

state = state (X) [1:>;

Apply one Grover iteration to an equal superposition.
state = * hn;

state = * oracle;

state = * hni;

state = * cps _op;

state = * hni;

state = * (identity(ckt Size - 1) (X) H(1);

Create a state that differs by a global phase.
gp_state = exp(i *0.784) = state;

Compute equality up to global phase using gp _equals.
gp_.info = gp _equals(gp _state, state)

Se.

There are several points to note in the above example. kgt the alternate syntax for constructing
ann-qubit Hadamard gate usirig(n) . Similarly, note the operator form of th@on function, where
a (X) b == kron(a, b) . This alternate syntax makes QuiDDPro development seera madr
ural and closer to Dirac expressions. Second, althaymlequals is used on state vectors in this
example, matrices representing operators may also bedostee function. Third, the order in which
arguments are passed to the function can affect the retlme wé the phase, but not the value which
represents if the two arguments are equal up to global pr&secifically, if|¢) = €° |), where8 is
some real number (i.e. both states are equal up to globaéphthengp _equals will return a phase
factor of €® if |¢) is the first argument and will retur§-§ if |W) is the first argument. In either case
the result of equivalence up to global phase will be a 1 (cg)triLastly, although the above example
contains 500 qubits, it runs in just over one second on aih X@en workstation due to the efficiency of
the QuIDD datastructure and equivalence-checking alyurit

Several QuIDDPro functions exist to efficiently compute ieglence up to relative phase. In the
case of relative phase, operators or state vectors wikrdiffy a matrix of phase factors along the di-
agonal, and this matrix may appear on the left, right, or oth lsdes. Two QulDDPro functions
that can compute these relative phases given two operat@tate vectors argp _equals _op and
rp _equals _sv, respectively. Likegp_equals , these functions take two arguments to be compared
for equivalence up to relative phase. If the two argumenrgsirsiteed equivalent up to relative phase,
a vector containing the diagonal phases is returned. If #ieynot, then a vector of O's is returned.
A sample program is given below which compares a Hamiltoo@msisting of Pauli operators against
another such Hamiltonian at a different time step. Such Hanians are equivalent up to relative phase
(from examples/phasehecks/hamiltonian.qpro).

ckt size = 70; gp _epsilon = le-7;

Construct the gate representing the Hamiltonian.
cnot _diag = cnot(“‘cx”);

if (ckt _size > 2)

cnot _diag = identity(ckt Size - 2) (X) cnot _diag;
end
count = O;
while (count < ckt size - 2)
c_part = projo(1) (X) identity(count + 2);
t part = proj1(1) (X) identity(count + 1) (X) sigma X(1);
curr cnot = ¢ _part + t _part;
if (count < ckt _size - 3)
curr _cnot = identity(ckt Size - count - 3) (X) curr _cnot;
end
cnot _diag =*= curr _cnot;
count++;
end
op = cnot _diag * (identity(ckt size - 1) (X) expm(-i +*0.3 *sigma z(1))) =

— cnot _diag’;
Create a version of the gate that differs by relative phase.

op_rp = cnot _diag * (identity(ckt size - 1) (X) expm(-i *0.72 *sigma z(1))) =*
— cnot _diag’;

10

Compute equality up to relative phase using rp _equals _op.
rps = rp _equals _op(op, op _rp);

Another useful function that can compute a necessary buguifitient for two state vectors or operators
to be equal up to relative phaseoise _-merge . It creates a new QuiDD matrix or vector in which all the
non-zero values of the given argument are set to 1. It is provgl4] that two QuiDD operators or state
vectors that are equal up to relative phase are exactly eguzth their non-zero terminals are merged
into a single terminal with the value 1. However if the tramsied operators or state vectors are not
equal, then this does not necessarily mean that they arejnal ep to relative phase. It is also shown in
[14] how to use the complex modulus operation and inner (R)gtroduct on state vectors (operators)
to compute global and relative phase equivalences. Thug§)[@Rro also supports the complex modulus
operation in the form of thabs function.

6 Compiling Quantum Circuits from QuIDDPro Scripts

As of version 3.5, QuIDDPro featurecampilebatch-mode option that maps a high-level specification
of a quantum algorithm (in the QuIDDPro language) into aermiediate representation (IR) based
on the quantum circuit model. The compiled circuit is spedifin theUMICH QuCirc file format.
QuCirc is a compact data structure for quantum IRs availabilee UMICH Quantum Circuit Toolbox
package (for details contact Héctor J. Garcia—hjgaraia@h.edu). If you received QuIiDDPro via the
UM Quantum Circuit Toolbox tarball, the open-source codeufsing QuCirc is available to you in the
gc-0.9-i1386 directory.

To compile a QuCirc file from a QuIDDPro script simply add tlae option when running QuiDD-
Pro in batch mode as follows.

% ./gp -c myscript.qpro

The quantum compiler og-compiler will generate a QuCirc file for each state vector that is cre-
ated/manipulated in the QuIDDPro script. The current wersif the g-compiler does not support density
matrices. Any QuiDDPro commands or functions that do noblver a state vector will be ignored by
the g-compiler. User-defined functions are supported agdasrthe function returns a state vector. This
is because the scope of user-defined functions is local @meftite any circuit-related changes will not
propagate to the calling script unless a state vector isret

7 Improved Simulation of Quantum Circuits

The current version of QuIDDPro (3.8) features iamproved simulator for quantum circuits called
QuIDDProLite If you intend to simulate a stand-alone quantum circuth@athan a full-fledge quan-
tum algorithm with interacting quantum and classical congrs), you should first compile the circuit
into a QuCirc file (Section 6) and then simulate the genereitedit using QuiDDProLite by adding the
-s batch mode option. For example,

% ./gp -c myscript.gpro (generates myscript.qct file)
% ./gp -s myscript.qct (calls QuiDDProLite)

11

Alternatively, you can perform the above actions with a krmall to QuiIDDPro as follows.
% ./gp -cs myscript.gpro

QuIDDProLite is not asymptotically faster than the natived @DPro simulator, but runs much faster
and consumes less memory when simulating many practicaltgacircuits such as stabilizer cir-
cuits [16]. Figure 1 compares the performance of both sitotdaon randomm-qubit stabilizer circuits
with nlg n stabilizer gates and measurements. QuIiDDProLite runs an average of four tingsrfghan
the native QuIDDPro simulator.

600
QuiDDPro ——
QuIDDProlLite —+—

500 t

400 r

300 |

200 r

Runtime (secs)

100

0

10 15 20 25 30 35 40 45 50 55
Number of qubits

Figure 1: Average time needed by QuiDDPro and QuIDDProLite fre-
compiled circuit simulator) to simulate and n-qubit stabilizer circuit with nlgn
unitary gates andn measurements.

Two additional options are available when using QuIDDP®LT he first is thesN option, where
Nis an integer that designates the initial basis state. Ittt to be simulated acts amqubits, the
range ofNis [0,2" — 1]. If Nis not specified (thes option shown previously), the simulator assumes
N = 0,i.e., itassumes the all-zeros initial basis state..0). The second option i) , which outputs
the resulting state vector to the terminal at the end of timelsition.

8 Language Reference

This section provides a reference for the QuIDDPro inpugleage. Although the language is similar
to Matlab, there are many functions in QuIDDPro specific tarqum mechanics which do not exist in
Matlab. There are also a large number of functions in Matlaickvare not supported by QuiDDPro.
Additionally, some of the functions that have the same naasablose in Matlab have slightly different
functionality from their Matlab counterparts. New langeagatures will be added in future versions
of the QuIDDPro simulator, and we welcome user suggestidhs. new features as of versiorB3are
highlighted below irbold text.

12

== = I= < <=
> - && | | [..] ; a(n, K
— — — - cutoff _val i [a:> _n <al n a{n}
— — " " output _prec | pi a(ny,p,ng,...) bn else
] = — — gp _epsilon r2 elseif function if
_ _ _ r3 run tic toc
) A << | <<= :
- while end
>> | >>= | (X)
Operations Predefined variables Language features
abs atan ch cnot
conj cos cps cu _gate
dump_dot echo exp expm
eye fredkin gen_amp.damp get _bit
gp-equals hadamard , H identity kron
norm measure measure _sv measure _sv0
measure _sv1 one_merge pmeasure pmeasure _norm_sv
pmeasure _sv projo projl projplus
ptrace px, Px py, Py pz, Pz
quidd _info rand round rp _.equals _op
rp _equals _sv rx, Rx ry, Ry rz, Rz
set _hit sigma X sigma _y sigma _z
sin sqrt swap toffoli
zeros phase

Built-in Functions

[...] defines a matrix explicitly. Expressions are placed betvileeibrackets. Elements in the same
row are separated by whitespace (including newlines) omneasy while rows are separated by one
or more semicolons. The brackets can be nested within othekéts (matrices within matrices).

starts a one-line comment. Everything from the # symbohé&ofirst newline is ignored. An
alternative comment symbol is %.

% starts a one-line comment. Everything from the % symbdhédfirst newline is ignored. An
alternative comment symbol is #.

' returns the complex-conjugate transpose of a matrix. Famgle,[1 2; 3+ 2i 4] — [1 3—
2i; 24

== equality operation that returns 1 if the two expressions mam&d are equal; otherwise

it returns 0. Comparison between matrices is supported. mMptex number and a matrix are
considered not equal unless the matrix has dimensiong and contains a number equal to the

one being compared to.
"= inequality operation that performs the complement fumctb==.
I = an alternative symbol for=.

< less than operation. It returns 1 if the left-hand expresssoess than the right-hand ex-
press; otherwise it returns 0. It can only be used to compamgbers. For numbers with nonzero
imaginary components, only the real parts are compared.

13

<= less than or equal operation. It returns 1 if the left-hanpression is less than or equal
to the right-hand express; otherwise it returns 0. It caly el used to compare numbers. For
numbers with nonzero imaginary components, only the re#s$ pae compared.

> greater than operation. It returns 1 if the left-hand exgiogsis greater than the right-hand
express; otherwise it returns 0. It can only be used to coenpambers. For numbers with nonzero
imaginary components, only the real parts are compared.

>= (greater than or equal operation. It returns 1 if the lefteharpression is greater than or
equal to the right-hand express; otherwise it returns Oart@nly be used to compare numbers.
For numbers with nonzero imaginary components, only thiepads are compared.

&& logical AND connective. It returns 1 if both sides of theamator evaluate to 1; otherwise it
returns 0. It can only be used to compare numbers with nongeginary components.

|| logical OR connective. It returns 1 if either side of the @per evaluates to 1; otherwise it
returns 0. It can only be used to compare numbers with nongeginary components.

+, +=, ++ addition operation. For complex numbers, it returns the sfitihe numbers. For
matrices, it returns the element-wise addition of both roesr(both matrices must have the same
number of rows and columns). When a matrix is added to a conmpimber, the complex number
is added to each element of the matrix as a scalar.+Ehiorm adds the right-hand expression to
the left-hand variable and saves the result in that variatias equivalent tor= 1.

-,-=,- - subtraction operation. For complex numbers, it returnglifierence of the numbers.
For matrices, it returns the element-wise difference ohlmatrices (both matrices must have the
same number of rows and columns). When a matrix is subtrdicigda complex number or vice-
versa, scalar subtraction is performed element-by-elenvghen there is no left-hand expression,
it is treated as a unary minus applied to the right-hand sigeession. Within a matrix definition,
for example[1— 2], the minus sign is treated as a unary minus. Howevet, in2] and[1— 2], the
minus sign is treated as the binary minus expression. Hegstcan be used to force the minus
sign to be treated one way or the other. Fheform subtracts the right-hand expression from the
left-hand variable and saves the result in that variableis equivalent te= 1 .

* += =+ multiplication operation. For complex numbers, it retutine product of the num-
bers. For matrices, matrix multiplication is performeddpposed to element-wise multiplication).
Scalar multiplication is performed when a matrix and a caxplumber are multiplied together.
Thex = form multiplies the right-hand expression with the lefiadavariable and saves the result in
that variable. The+ form performs left-hand multiplication and saves the resuthat variable.

[, /= division operation. For complex numbers, it returns thesttim of the numbers. Unlike
the C language, integer division m®t performed if the operands are both integer values. Double
floating point division is always performed. For matriceleneent-wise division is performed
(both matrices must have the same number of rows and colurftsgn a matrix is divided by a
complex number, scalar division is performed. However, mmex number may not be divided
by a matrix. The= form divides the left-hand variable by the right-hand esgien and saves the
result in that variable.

= assignment operation. Assigns the value of an expressight-fiand side) to a variable
(left-hand side). The expression may result in either a dexnpumber or a matrix. The left-hand
side expression must be a variable name (it must start wétter land contain only alpha-numeric
characters and optionally underscores). Variables carsfigreed “on-the-fly.” In other words,
unlike languages like C/C++, variables are not declaredtyymed in any way prior to their first

14

assignment. However, a variable must be assigned a valoeehietan be used in an expression.
Similar to languages such as C/C++, an assignment expnessiarns a value just like any other
expression, namely the value that was assigned to the leudabthe left-hand side. Therefore,
statements such as=y = 3+ 4i are valid. In statements like these, if output is not sugmesthe
value of the leftmost variable will be output to the screerthdugh the other variables assigned
values will not be output to the screen, they are still assigiheir values. Another important note
is that even though string literals appear as argumentsnre ganctions, includingu.gate and
echq assignment of a string literal to a variable is not yet sujgub

A exponentiation operation for complex numbers. It retuhesexpression on the left-hand side
of the A raised to the power of the expression on the right-hand $tde matrix exponentiation,
see theexpm function.

<<, <<= performs a left bit shift on the left-hand expression or alke. The right-hand
expression must be a non-negative integer which specifeesiimber of times to shift the bits
to the left. The left-hand expression or variable must benéeger. The<<= form shifts the
left-hand variable right-hand-many times and saves thdtriesthat variable.

>> >>= performs a right bit shift on the left-hand expression oralde. The right-hand
expression must be a non-negative integer which specifeesidimber of times to shift the bits
to the right. The left-hand expression or variable must béntwger. The>>= form shifts the
left-hand variable right-hand-many times and saves thdtriesthat variable.

(X) an operator form of thieron function which implements the tensor or Kronecker product.
The left-hand side is tensored with the right-hand side.

(...) forces precedence for an expression as in any other prograpiamguage. An expression
within the parentheses is evaluated before evaluatingeegmns outside of the parentheses.

; the semicolon suppresses output of an expression. For éxampl would store the value of
1 in the variablex and outputx = 1 to standard output, whereas- 1; would also store the value
of 1 in the variablex but would not output anything to standard output. When a celom appears
in a matrix definition, it has a different meaning entirelyitiih a matrix definition, a semicolon
denotes the end of a row.

a(n,K if aisavariable containing a matrix, then this expressionrnstthe element indexed by
the row indexn and the column indek. Numbering of indices starts at 1. Unlike languages such
as Matlab, this expression may not be used to assign val@srteents of a matrix. It may only be
used to read a particular element from a matrix (&.g= a(1,2 + 2 isvalid, buta(1,2 =

3+2 is not). Future versions may support this, however, if thiedemand for such functionalitn
andk must be complex numbers with no imaginary componamesdk must also each be within
10E — 5 of an integer value (e.g.99999, 100001, and 3 are valid, but3lis not), and values that
are within this threshold are rounded to the nearest integgr 999999 is interpreted as 10). In
addition,n andk must each be at least 1 after rounding.

[a:> _n,<:a] _n Dirac-style syntax for the ket and bra respectivelynay be any state vector or
integer expression, and the complex-conjugate transpagdmatically applied where necessary
when expressing it as a bra or a ketalfs a state vector variable, it may be assigned to using this
syntax. Then portion is an optional integer expression, and it preper|@5 or (0| state vectors to
the resulting state. This feature is useful when combiniag land kets whose bit representations
of a have different numbers of bits and therefore ensures therdiians are the same. The bras
and kets may be concatenated as in standard Dirac notatmipute inner and outer products.
Examples of this feature are presented in Section 4.

15

e a{n} indexes theith character or bit o if a is a string variable or integer variable, respectively.
n must be an integer expression. This feature can be useddmreset thenth character or bit.
For integersa{1} is the least-significant bit.

e a(ny, np, ng, ...) if aisnota variable containing a matrix, it is considered to berwefined
function call. ny, np, andng are function arguments that can be expressions or variablasy
type. There is no constraint on the number of arguments. Adse that passing QuiDD arguments
and QuIDD return values only requir€{1) memory since only a single pointer to the head of a
QuIDD needs to be passed. Arguments passed as parametenstioris are not modified by the
function (i.e. pass-by-value is always used). See Sectfon B ore details.

e abs(n) computes the complex modulus of the numerical expressiatQ matrix, or QuiDD
vectorn. Whenn is a QuIDD matrix or vector, the complex modulus is compute@ach element.
In the case of a real-valued numberthis operation reduces to the standard absolute value.

e atan(n) returns the arc tangent of the expressigmassed as an argument.nifs a matrix, it
returns a matrix containing the element-wise arc tangent of

e bn evaluates the binary expressioras a decimal integer. For examplep = b100 sets the
variablefoo to the integer value 4. Notice that the left-most bit is thestygignificant bit. As a
result, in this exampldpo {1} would evaluate to 0, while®o {3} would evaluate to 1. Since this
is an ordinary integer expression, it may be used in conjometith the Dirac notation|b100:>
would create the QuiDD state vector representation fortdie 00 for instance.

e cb(“...”) returns a computational basis state vector. The strincali@gument consists of
a sequence of any number and combination of '0’ and 1’ cltarac The string is parsed from
left to right. Each '0’ causes @) to be tensored into the vector, and each "1’ causgs & be
tensored into the vectoch can easily be used to create density matrices by using itijunotion
with the complex-conjugate transpose operatioy hatrix multiplication, and scalar operations.

e cnot(“...”) returns a2-qubit controlled-NOT (CNOT) gate matrix. Tlisifaster, specialized
version ofcu _gate . If a controlled gate matrix with different numbers of cais/targets and/or
a different actiony operator) is desired, then use the more ger@rafjate function. The argu-
ment tocnot is a string literal using the same gate specification syraaxiagate . However, the
only valid parameters accepted tiyot are’cx’ and’xc’, since these string specifications are the
only possible strings that produce a valid 2-qubit CNOT gatgrix. For examplegnot(’'cx’)
produces a CNOT gate matrix with the control on the “top” waral the actionX operator) on
the “bottom” wire. For a discussion of how the concept of wirelates to creating controlled gate
matrices, seeu _gate .

e conj(n) returns the complex-conjugate of the expressigrassed as an argumentcan be a
complex number or a matrix.

e cos(n) returns the cosine of the expressimpassed as an argumentnlis a matrix, it returns
a matrix containing the element-wise cosinenof

e cps(n) returns am-qubit conditional phase shift (CPS) gate matrbmust be a complex num-
ber with no imaginary component.must also be within 1B —5 of an integer value (e.g. 99999,
1.00001, and 3 are valid, but3lis not), and values that are within this threshold are redno
the nearest integer (e.9-99999 is interpreted as 10). In additionmust be at least 1 after round-
ing. Always use this function instead of explicitly definiggur own CPS matrix. This function is
asymptotically faster and uses asymptotically less mertiamy defining the matrix explicitly. The
conditional phase shift gate is particularly useful in Gnts quantum search algorithm [8].

16

e cu gate(a,“...”) is a generalized controlled-gate matrix creation function. It returns a
controlled or uncontrolled gate matrix given an action m&t@) and a string literal with the gate
specification (the second argument containetish The string literal consists of a sequence of
characters. The idea is for the string literal to specify ttha gate should do to each “wire” in a
quantum circuit. When conceptualizing a quantum circugtphpically and reading top-down, the
first character corresponds to the first qubit wire, the seadraracter corresponds to the second
qubit wire, etc. Each character can take one of four possdilges. 'i’ denotes the identity, which
means that the gate does nothing to the wire at that locattddenotes an action, which means
that the matrix specified by the argumenis applied to the wire at that location. 'c’ denotes a
control, which means that the wire at that location is used esntrol on any 'x’ wire (g1) state
forcesa to operate on any 'x’ wire, whereas|@ causes nothing to happen on any 'x’ wire). 'n’
is a negated control, which is the opposite of 'c’|(a state forces to operate on any X’ wire,
whereas 41) causes nothing to happen on any 'x’ wire). Any sequence cfetlabaracters may
be used. Although there is no “actual” circuit, the strin@ueltters allow a user to conceptualize
a circuit and construct a matrix which operates on the windbat conceptualized circuia may
be a matrix that operates on more than one qubit as long asranere blocks of contiguous 'x’
characters appear such that the size of each block is eqina tmmber of qubits operated on &y
For examples, see steaneX.qpro and steaneZ.qpro undetaimples/nist/ subdirectory. Always
use this function instead of defining your own gates exjlicitince it is asymptotically faster
and uses asymptotically less memory. Siogegate must parse the input specification string,
other functions such dsmadamard andcps should be used instead afi _gate for specific gates
because they do not perform any parsing and are thereforeraobé efficient. An alternative
function name focu _gate islambda . Also see the alternative, condensed versioowfgate
discussed next. The alternative version may be preferabl@ricuits with many qubits.

e cu_gate(a, “...”,n) An alternative syntax focu _gate which takes a condensed string lit-
eral. This condensed string literal specifies only the astend controls along with the qubit wires
they are applied to. For example, a Toffoli gate in a 5-quibdwat, with controls on the second and
fourth wires and the action on the fifth wire, can be creatdt thie callcu _gate(sigma x(1) ,
“c2c4x5”, 5) . As implied by this exampley is the total number of qubits in the circuit that the
gate is applied ton must be a complex number with no imaginary componeninust also be
within 10E — 5 of an integer value (e.g.90999, 100001, and 3 are valid, but3lis not), and val-
ues that are within this threshold are rounded to the nesresgfer (e.g. 29999 is interpreted as
10). In addition,n must be at least 1 after rounding. More examples can be foutittiexamples/
directory and include hadddafl.qpro and rcadderl.gpro, among others.

e cutoff _val If the cutoff value is set, any portion of all QuIDD elemeniues that is less
than the cutoff value will be rounded. For exampiatoff _val = 1le— 15 will cause all sub-
sequently created QuIDD element values to be rounded atthedecimal place. By default, the
cutoff value is not set and no rounding occurs. If the cutafiie is set by the user, it can be reset
to the default (i.e. no rounding) by assigning Gctdoff _val .

e dumpdot(“...”, " ...”, a) outputs thedot form of the graphical QuIiDD representation of
the matrix/vectora to a file specified by the second argument. The first argumethieifiame
that will appear at the top of the QuIDD image. dot is a simglepsing language supported in
the Graphviz packageOnce the dot file is generated, dot can be run from the commaedd
produce a PostScript image of the QuiDD representation@s su

1Graphviz can be obtained bitp://iwww.graphviz.org/

17

dot -Tps filename.dot -o filename.ps
dot can generate other graphical file formats as well. Co@&w@aphviz for more details. A simple
example is contained in the examples/dot subdirectory.

echo(“...”) prints the string literal passed as an argument to standaplib Putting one or
more semicolons aftexcho does not suppress its outpeicho has no return value, so it cannot
be used in expressions.

else program flow control construct that is part of an “if-elseie” control block sequence.
Its meaning is the same as in just about any other languadg.obeelse may optionally appear
in an “if-elseif-else” block, and it must appear only at thmelef the block. If arelse block is
used, its body (a sequence of zero or more expressions ahtwol blocks to be executed) must
be terminated by aand even if the body is empty. The body followiregse is executed when
the precedingf andelseif conditions evaluate to “false” (i.e. a complex humberedigaif
Zero).

elseif program flow control construct that is part of an “if-elsele” control block sequence.
Its meaning is the same as in just about any other languagmntains a condition which is an
expression enclosed in parentheses. Zero or rats@f ’'s may appear in an “if-elseif-else”
block, but the firsielseif = must appear after aifi , and the lastlseif = must appear before
an optionalelse . If no else appears after aalseif , the body of theelseif (a sequence
of zero or more expressions and/or control blocks to be eézdfunust be terminated by @md
even if the body is empty. The condition determines whethebthe statements in the body are
executed. The body of thedseif is executed when the following two conditions are met: 1€) th
precedingf andelseif conditions evaluate to “false” (i.e. a complex numbered®alf zero),
and 2.) theelseif condition evaluates to “true” (i.e. any non-zero complerbered value).

end keyword that signifies the end of a program flow control cartdtr In other wordsend
should be used to denote the end of “if-elseif-else” and lgVHilocks.

exp(n) returnse. If n is a matrix, then it returns a matrix containing the elemeisie compu-
tation ofé¢ wherek is an element fronm.

expm(n) returns€’, wheren is a matrix. This is standard matrix exponentiation and is ap
proximated by a finitely bounded Taylor series. In the curuension of the QuIDDPro simulator,
you may only applyexpm to a matrixn whose dimensions do not exceeck 8 for efficiency
reasons. Future versions may support larger dimensiogahaents, but it is unlikely that larger
dimensional arguments will be needed for most quantum-argck applications. Ifiis a complex
number, then it returng”.

eye(n) returns am x n identity matrix. If you only need an identity matrix whoserain-
sions are a power of 2 in size (e.g. foqubit identity gate matrices) then uskentity(k) instead
(see below), which runs slightly fasten.must be a complex number with no imaginary compo-
nent. n must also be within 1B — 5 of an integer value (e.g..$9999, 100001, and 3 are valid,
but 45 is not), and values that are within this threshold are rednid the nearest integer (e.g.
9.99999 is interpreted as 10). In additionmust be at least 1 after rounding. Always &s® or
identity instead of defining identity matrices explicitly becauseytare asymptotically faster
and use asymptotically less memory.

fredkin() returns a Fredkin gate matrix.

function var_name= funcname n;, np, n3, ...) defines a function body. This definition
should exist in a file by itself with a filename that matcliesc nameappended by the “.qpro”

18

or “.gp” extensions.var_nameis the name of the variable that contains the return valyeny,
andns are function parameters that can be of any type. There is nstr@nt on the number
of parameters. Also note that passing QuIDD arguments adD@return values only requires
O(1) memory since only a single pointer to the head of a QuIDD néetle passed. Arguments
passed as parameters to functions are not modified by thédar(ce. pass-by-value is always
used). Following the return value/function name line, s code comprising the function body
should appear. See Section 3 for more details.

gen_ampdamp(d, p, n, @ performs generalized amplitude dampening (see [9, p. 382 f
description of generalized amplitude dampeniras a density matrix (it must be square and have
dimensions that are a power of 2 in size) on which dampenitglie performeda is not modified,
but the result of dampening applieddas returned.d is the dampening parameter and must be a
complex number with no imaginary componepts the probability parameter and must also be a
complex number with no imaginary componedtandp must each be in the rand@ 1]. nis the
qubit wire number that dampening is to be applied to. Thigwirmber is only conceptual and can
alternatively be thought of as tmth quantum state in the density matrix (seegatefor a more
detailed description of wire numbers and steaneX.qpro teahsZ.qpro under examples/nist/ for
examples).n must be a complex number with no imaginary componenimust also be within
10E — 5 of an integer value (e.g.99999, 100001, and 3 are valid, but3lis not), and values that
are within this threshold are rounded to the nearest integgr 999999 is interpreted as 10). In
addition,n must be at least 1 after rounding.

get _bit(n, a) returns the value of thieth bit of the integerma. n= 1 is the least-significant
bit.
gp_equals(a, b) returns a 2-element row vector, where the the first elemeatlig0) if a

andb are (not) equal up to global phase, and the second elemdrd gddbal phase factor if the
first element is a 1a andb must be QuiDD matrices or vectors. Examples of this functon
presented in Section 5.

hadamard(n),H(n) returns am-qubit Hadamard gate matrixx must be a complex humber
with no imaginary componeni must also be within 1B — 5 of an integer value (e.g..$9999,
1.00001, and 3 are valid, but3lis not), and values that are within this threshold are redrid the
nearest integer (e.g.®999 is interpreted as 10). In additionmust be at least 1 after rounding.
Always use this function instead of explicitly defining yawwn Hadamard matrix. This function
is asymptotically faster and uses asymptotically less nmgiti@n defining the matrix explicitly.

i is avariable that is preset to the value Qi. It can be overwritten at runtime by the user.

identity(n) returns am-qubit identity gate matrixn must be a complex number with no
imaginary componentn must also be within 1B — 5 of an integer value (e.g..29999, 100001,
and 3 are valid, but.5 is not), and values that are within this threshold are redrtd the nearest
integer (e.g. 9999 is interpreted as 10). In additionmust be at least 1 after rounding. Always
use this function instead of explicitly defining your ownidiey matrix. This function is asymp-
totically faster and uses asymptotically less memory trefinohg the matrix explicitly. Also see
the eyefunction.

if program flow control construct that is part of an “if-elselée” control block sequence.
Its meaning is the same as in just about any other languageontains a condition which is
an expression enclosed in parentheses. An “if-elseif-ddkk must be started by a singit ,

but “if-elseif-else” blocks can be nested within other éikeif-else” blocks (nesting with “while”
blocks is also allowed). Aif must be followed by a body of zero or more expressions and/or

19

control blocks, and this body must be terminated by eitheelagif , anelse , or anend,
even if the body is empty. The condition determines whethebthe statements in the body are
executed. The body is executed once if the condition eveduat“true” (i.e. any non-zero complex
numbered value). Otherwise if the condition evaluates ats” (i.e. a complex numbered value
of zero), the body is not executed.

kron(n,K returns the tensor (Kronecker) product of the matrix expoesn andk. If nandk
are complex numbers, then they are multiplied together.

lambda(a,“...”) an alternative name for the function _gate .

measure(n, @ performs deterministic measurement on title qubit in the density matrix
a. In other words, all off-diagonal correlations correspiogdto the qubit being measured are
zeroed out, and the resultant density matrix is returnedpifobabilistic measurement of a qubit
in a density matrix that returns a 1 or 0, g@aeasure). a must be square and have dimensions
that are a power of 2 in sizea is not modified, but the result of measurement applied te
returned. n is the qubit wire number that measurement is to be applied’tas wire number is
only conceptual and can alternatively be thought of asitheguantum state in the density matrix
(seecu_gatefor a more detailed description of wire numbers and steay@X.and steaneZ.gpro
under examples/nist/ for examples) must be a complex number with no imaginary component.
n must also be within 1B — 5 of an integer value (e.g.. 99999, 100001, and 3 are valid, but3!

is not), and values that are within this threshold are rodridehe nearest integer (e.g99999 is
interpreted as 10). In addition,must be at least 1 after rounding.

measure sv(n, d probabilistic measurement is performed on qubitA state vector is re-
turned which represents the state veetas modified by the measurement result and its associated
norm. If the measurement result and the associated normatazely been computed with a pre-
vious call topmeasure _norm _sv, thenmeasure _sv can be called with the alternative syntax
measure sv(n, a, res, norm. resandnormdenote the precomputed measurement result and
associated norm, respectively. Sirecenust be a state vector, one of the dimensions must be 1,
and the other dimension must be a power ofa2s not modified by this functionn must be a
complex number with no imaginary componeninust also be within 1B — 5 of an integer value
(e.g. 999999, 100001, and 3 are valid, but3lis not), and values that are within this threshold are
rounded to the nearest integer (e.cPIM9I9 is interpreted as 10). In additionmust be at least 1
after rounding.resmust have the value 0 or 1 to within the rounding threshaolatrm should be a
valid norm of a state vector.

measure svO(n, & returns the probability of measuring qubitas a 0 in state vecta (for
probabilistic measurement of a qubit in a state vector thiatrns a 1 or 0, segmeasure _sv).
Sincea must be a state vector, one of the dimensions must be 1, amdht®edimension must be
a power of 2.a is not modified by this functionn must be a complex number with no imaginary
component.n must also be within 1B — 5 of an integer value (e.g..$9999, 100001, and 3 are
valid, but 45 is not), and values that are within this threshold are rednd the nearest integer
(e.g. 999999 is interpreted as 10). In additionmust be at least 1 after rounding.

measure svl(n, & returns the probability of measuring qubitas a 1 in state vecta (for
probabilistic measurement of a qubit in a state vector thafrns a 1 or 0, segmeasure _sv).
Sincea must be a state vector, one of the dimensions must be 1, amdhfedimension must be
a power of 2.a is not modified by this functionn must be a complex number with no imaginary
component.n must also be within 1B — 5 of an integer value (e.g..99999, 100001, and 3 are

20

valid, but 45 is not), and values that are within this threshold are rednid the nearest integer
(e.g. 999999 is interpreted as 10). In additionmust be at least 1 after rounding.

norm(a) returns the norm of a state vector or complex nunzh&incea must be a state vector,
one of the dimensions must be 1, and the other dimension rawspbwer of 2.

one_merge(a) returns the result of changing every non-zero elemeatiofo a 1.a must be
a QuiDD matrix, QulDD vector, or a number. As discussed inti®ad, this function can be used
to determine a necessary condition for two operators cestatbe equal up to relative phase.

output _prec denotes the output precision. When assigned a non-negatager value, it
specifies how many digits should be output to the screen. Agijsdvhich exceed this number
are rounded. For exampleutput _prec = 3 will cause /3 to output 0333 to the screen.
Note that the internal precision of any numbers and varsahte unaffectecoutput _prec only
affects the screen output precision. By default, the végialitput _prec is not set, but the
output precision is initially 6. Assigning a negative valoeoutput _prec restores the default
output precision. However, assigning a matribotgtput _prec leaves the precision unchanged
from its previous value.

phasef) returns am-qubit Phase gate matrix (ak&. gate [9]). n must be a complex number
with no imaginary componenin must also be within 1B — 5 of an integer value (e.g..$9999,
1.00001, and 3 are valid, but3lis not), and values that are within this threshold are redrd the
nearest integer (e.g.®999 is interpreted as 10). In additionmust be at least 1 after rounding.
Always use this function instead of explicitly defining yomwn Phase matrix. This function is
asymptotically faster and uses asymptotically less merti@ny defining the matrix explicitly.

pi is a variable that is preset to the valuerofo a large number of decimal places. It can be
overwritten at runtime by the user.

pmeasure(n, @ performs probabilistic measurement on tile qubit in the density matria.
The result returned is a 1 or O (for deterministic measuréroka qubit in a density matrix, see
measure). amust be square and have dimensions that are a power of 2 iresizaot modified
by this function.n must be a complex number with no imaginary componemntust also be within
10E — 5 of an integer value (e.g.99999, 100001, and 3 are valid, but3lis not), and values that
are within this threshold are rounded to the nearest integgr 999999 is interpreted as 10). In
addition,n must be at least 1 after rounding.

pmeasure _.norm_sv(n, @ performs probabilistic measurement on tiilk qubit in the state
vectora. A 1 x 2 vector is returned containing a 1 or 0 for the measuremeanttr@he first element)
and the norm associated with the measurement result (tbadgetement). Sinca must be a state
vector, one of the dimensions must be 1, and the other dimemsust be a power of 2a is not
modified by this functionn must be a complex number with no imaginary componemntust also
be within 1E — 5 of an integer value (e.g.. 29999, 100001, and 3 are valid, but3lis not), and
values that are within this threshold are rounded to theastamteger (e.g..99999 is interpreted
as 10). In additionn must be at least 1 after rounding.

pmeasure sv(n, @ performs probabilistic measurement on tiile qubit in the state vector

a. The result returned is a 1 or O (for deterministic measurgroga qubit in a state vector see
measure _sv0O andmeasure _sv1l . Sincea must be a state vector, one of the dimensions must
be 1, and the other dimension must be a power @afi&.not modified by this functionn must be a
complex number with no imaginary componeninust also be within 1B — 5 of an integer value
(e.g. 999999, 100001, and 3 are valid, but&lis not), and values that are within this threshold are

21

rounded to the nearest integer (e.cP99 is interpreted as 10). In additionmust be at least 1
after rounding.

e projo(n) returns am-qubit|0) projector gate matrix (i.€0...0)(0...0|, for n0’s). n must be
a complex number with no imaginary componeaninust also be within 18— 5 of an integer value
(e.g. 999999, 100001, and 3 are valid, but3lis not), and values that are within this threshold are
rounded to the nearest integer (e.g9999 is interpreted as 10). In additiammust be at least
1 after rounding. Always use this function instead of extlicdefining your own|0) projector
matrix. This function is asymptotically faster and usesnasiptically less memory than defining
the matrix explicitly.

e proj1(n) returns am-qubit|1) projector gate matrix (i.e1...1)(1...1|, for n 1's). n must be
a complex number with no imaginary componeaminust also be within 18— 5 of an integer value
(e.g. 999999, 100001, and 3 are valid, but3lis not), and values that are within this threshold are
rounded to the nearest integer (e.g9999 is interpreted as 10). In additiammust be at least
1 after rounding. Always use this function instead of explicdefining your own|1) projector
matrix. This function is asymptotically faster and usesnasiptically less memory than defining
the matrix explicitly.

e projplus(n) returns am-qubit|+) projector gate matrix (i.e.+...+)(+...+ |, for n +’s).
n must be a complex number with no imaginary componamhust also be within 18 —5 of an
integer value (e.g..99999, 100001, and 3 are valid, but3lis not), and values that are within this
threshold are rounded to the nearest integer (e39999 is interpreted as 10). In additionmust
be at least 1 after rounding. Always use this function irstefaexplicitly defining your owr+)
projector matrix. This function is asymptotically fasterdauses asymptotically less memory than
defining the matrix explicitly.

e ptrace(n,ad performs the partial trace over timth qubit in the density matria. a must
be square and have dimensions that are a power of 2 in size.not modified, but the result
of the partial trace applied ta is returned.n is the qubit wire number that is traced over. This
wire number is only conceptual and can alternatively beghoof as thenth quantum state in the
density matrix (seeu_gatefor a more detailed description of wire numbers and steag@X.and
steaneZ.qpro under examples/nist/ for exampleg)ust be a complex nhumber with no imaginary
component.n must also be within 1B — 5 of an integer value (e.g..99999, 100001, and 3 are
valid, but 45 is not), and values that are within this threshold are rednd the nearest integer
(e.g. 999999 is interpreted as 10). In additionmust be at least 1 after rounding.

e px(p,n, g applies a probabilistic Pauk gate matrix to theath qubit in the density matrix
a. a must be square and have dimensions that are a power of 2 inasig@ot modified, but the
result of dampening applied tois returnedp is the probability parameter and must be a complex
number with no imaginary componemtmust be in the rang®, 1. nis the qubit wire number that
the probabilisticX gate matrix is to be applied to. This wire number is only cqbgal and can
alternatively be thought of as thh quantum state in the density matrix (seegatefor a more
detailed description of wire numbers and steaneX.qpro teahsZ.qpro under examples/nist/ for
examples).n must be a complex number with no imaginary componenimust also be within
10E — 5 of an integer value (e.g.®9999, 100001, and 3 are valid, but3lis not), and values that
are within this threshold are rounded to the nearest integgr 999999 is interpreted as 10). In
addition,n must be at least 1 after rounding.

e Px(p,n,d an alternative name for the functigx .

22

e py(p,n, 3 applies a probabilistic Paul gate matrix to thenth qubit in the density matrix
a. a must be square and have dimensions that are a power of 2 inesig&ot modified, but the
result of dampening applied tis returnedp is the probability parameter and must be a complex
number with no imaginary componerp.must be in the rang@, 1]. n is the qubit wire number
that the probabilistiY gate matrix is to be applied to. This wire number is only cateal and can
alternatively be thought of as thth quantum state in the density matrix (seegatefor a more
detailed description of wire numbers and steaneX.gpro ssahsZ.qpro under examples/nist/ for
examples).n must be a complex number with no imaginary componeniust also be within
10E — 5 of an integer value (e.g.$9999, 100001, and 3 are valid, but3lis not), and values that
are within this threshold are rounded to the nearest integgr 999999 is interpreted as 10). In
addition,n must be at least 1 after rounding.

e Py(p,n,g an alternative name for the functiqy .

e pz(p,n, @ applies a probabilistic Paull gate matrix to thenth qubit in the density matrix
a. a must be square and have dimensions that are a power of 2 inasigeot modified, but the
result of dampening applied tois returnedp is the probability parameter and must be a complex
number with no imaginary componenp.must be in the rang@, 1]. nis the qubit wire number
that the probabilistiZ gate matrix is to be applied to. This wire number is only catieal and can
alternatively be thought of as tlth quantum state in the density matrix (seegatefor a more
detailed description of wire numbers and steaneX.gpro ssahsZ.qpro under examples/nist/ for
examples).n must be a complex number with no imaginary componeniust also be within
10E — 5 of an integer value (e.g.®9999, 100001, and 3 are valid, but3lis not), and values that
are within this threshold are rounded to the nearest integgr 999999 is interpreted as 10). In
addition,n must be at least 1 after rounding.

e Pz(p,n,d an alternative name for the functiqz .

e (p_epsilon When creating new QuIDD element values, a cache is checledhally to see
if those values have already been created. The more repealiges there are in a matrix, the
more the matrix is compressed by its QuIDD representatiohemthecking the cache, QuiDD-
Pro compares the equality of a new value to other valuesreethe cache to using an epsilon.
Specifically,a andb are considered equalabga—b) < epsilon«a andabga— b) < epsilon«b.
Epsilon can be changed by assigning valuegpoepsilon . By default, the epsilon value is
le— 8. Currently, the epsilon value is not always used when icrgaiew QuilDD element values,
but in future versions of QuIDDPro, the epsilon value wikhpla much greater role.

e quidd _info(a) prints information about an operator or state to standatdubu This infor-
mation includes the number of qubits represented (or agted)y the dimensions of the explicit
representation of the matrix, and the number of nodes in tH®D representation of the matrix.
Note that the explicit matrix representation is not acjualiored anywhere.a must be a valid
operator, state vector, or density matrix.

e r2 s avariable that is preset to the value\d® to a large number of decimal places. It can be
overwritten at runtime by the user.

e r3 s avariable that is preset to the value\d8 to a large number of decimal places. It can be
overwritten at runtime by the user.

e rand(n) returns a pseudo-random value between Orand can be any real value, including
negative values.

e round(n) returnsnwith its real and imaginary parts rounded to the nearesgante'Halfway”
cases are rounded away from 0. Since there is no native mtgge supported in QuiDDPro,

23

round can be extremely helpful in ensuring that values whrehsupposed to be integer values are
indeed integer values.

rp _,equals _op(a, b) returns a vector containing relative phase factoasahdb are equal up
to relative phase, otherwise it returns a vector of 8'andb must be QuIiDD matrices. Examples
of this function are presented in Section 5.

rp _,equals _sv(a, b) returns a vector containing relative phase factoes @#ndb are equal
up to relative phase, otherwise it returns a vector of @sandb must be QuiDD state vectors.
Examples of this function are presented in Section 5.

“ ”

run executes all script code contained in the file specified byatigement. The run
command may appear anywhere in a script except inside aitiexpatrix. This command is ideal
for declaring variables that may be re-used in multiple gxty.

rx(n, K returns &-qubit rotational PaulK gate matrix given a real valued angle paramater
must be a complex number with no imaginary componemntust be in the rangf®, 1]. k must be a
complex number with no imaginary componekinust also be within 1B — 5 of an integer value
(e.g. 999999, 100001, and 3 are valid, but3lis not), and values that are within this threshold are
rounded to the nearest integer (e.cPM99 is interpreted as 10). In additidomust be at least 1
after rounding.

Rx(n, K an alternative name for the functior .

ry(n, K returns &-qubit rotational Paul¥ gate matrix given a real valued angle paramater
must be a complex number with no imaginary componemntust be in the rangf®, 1]. k must be a
complex number with no imaginary componekinust also be within 1B — 5 of an integer value
(e.g. 999999, 100001, and 3 are valid, but3lis not), and values that are within this threshold are
rounded to the nearest integer (.99 is interpreted as 10). In additidomust be at least 1
after rounding.

Ry(n, K an alternative name for the function .

rz(n,K returns &-qubit rotational Paulz gate matrix given a real valued angle paramatar
must be a complex number with no imaginary componentust be in the rang@®, 1]. kmust be a
complex number with no imaginary componekinust also be within 1B — 5 of an integer value
(e.g. 999999, 100001, and 3 are valid, but3lis not), and values that are within this threshold are
rounded to the nearest integer (e.cPM99 is interpreted as 10). In additidomust be at least 1
after rounding.

Rz(n, K an alternative name for the function .
set _bit(n, a) sets the value of thith bit of the integema. n = 1 is the least-significant bit.

sigma x(n) returns am-qubit PauliX gate matrix. n must be a complex number with no
imaginary componentn must also be within 1B — 5 of an integer value (e.g..29999, 100001,
and 3 are valid, but.5 is not), and values that are within this threshold are redrtd the nearest
integer (e.g. 9999 is interpreted as 10). In additionmust be at least 1 after rounding. Always
use this function instead of explicitly defining your owdrmatrix. This function is asymptotically
faster and uses asymptotically less memory than defininghtigx explicitly.

sigma y(n) returns am-qubit PauliY gate matrix. n must be a complex number with no
imaginary component must also be within 1B — 5 of an integer value (e.g..99999, 100001,
and 3 are valid, but.5 is not), and values that are within this threshold are redrtd the nearest
integer (e.g. 9999 is interpreted as 10). In additionmust be at least 1 after rounding. Always

24

use this function instead of explicitly defining your ow{rmatrix. This function is asymptotically
faster and uses asymptotically less memory than definingnttex explicitly.

sigma _z(n) returns am-qubit PauliZ gate matrix. n must be a complex number with no
imaginary componentn must also be within 1B — 5 of an integer value (e.g..29999, 100001,
and 3 are valid, but.5 is not), and values that are within this threshold are redrtd the nearest
integer (e.g. 9999 is interpreted as 10). In additionmust be at least 1 after rounding. Always
use this function instead of explicitly defining your owdrmatrix. This function is asymptotically
faster and uses asymptotically less memory than definingnttex explicitly.

sin(n) returns sine of the expressionpassed as an argument. nlis a matrix, it returns a
matrix containing the element-wise sinerof

tan(n) returns the tangent of the expressiopassed as an argumentnlis a matrix, it returns
a matrix containing the element-wise sinenof

sqgrt(n) returns the square root of the expressigpassed as an argument.nifs a matrix, it
returns a matrix containing the element-wise square root of

swap(n, k, @ returns the vector resulting from swapping quinitsndk in the state vectoa.
This function swaps qubitsiuch more quicklghan swapping usinGNOT and Hadamard gates.
Sincea must be a state vector, one of the dimensions must be 1, amatlibe dimension must
be a power of 2.a is not maodified by this functionn andk must be complex numbers with no
imaginary componentsn andk must also be within 1B — 5 of an integer value (e.g.. 99999,
1.00001, and 3 are valid, but3lis not), and values that are within this threshold are redrid the
nearest integer (e.g.¥999 is interpreted as 10).andk must also be at least 1 after rounding.

tic starts a timer and also starts to record the peak memory fisagehe pointtic is called.
tic has no return value, so it cannot be used in expressions. imke dnly records time spent
and memory used while running code. Thus, in the case ofictige mode, the timer will not be
recording time spent nor memory used while at an idle prompt.

toc stops a timer started by a previotis or toc command. It outputs to standard output
the time that has elapsed (i.e. time spent running codenuheer of gates applied, the average
runtime per gate, and memory that was used (peak memorg #iedastic ortoc command.

It also outputs the base memory which is the memory usedtialining the simulator and reading
the input code. Base memory should be interpreted as amegttitialization cost of the simulator
and should not be considered when measuring performaneasd*ee Appendix B for more de-
tails. Operations that are recorded as applied gates imchadrix multiplicationgen _amp.damp,
measure , measure _sv, Px, Py, andPz.

toffoli(“...”) returns a 3-qubit Toffoli gate matrix. This is a faster, spkred version of
cu _gate . If a controlled gate matrix with different numbers of cai¢itargets and/or a different
action (U operator) is desired, then use the more geraragate function. The string argument
uses the same syntax as thatofgate . Howevertoffoli only accepts the stringscx’, 'cxc’,
and’xcc’, since these are the only valid Toffoli specifications. Fxareple,toffoli(‘ccx’)
produces a Toffoli gate matrix with the controls on the “tdwb wires and the actiorX(operator)
on the “bottom” wire. For a discussion of how the concept aewirelates to creating controlled
gate matrices, sem _gate .

while program flow control construct that allows multiple iteost$ of a body of code (“loop-
ing”). Its meaning is the same as in just about any other laggu It contains a condition which
is an expression enclosed in parentheses. A “while” blocktrba started by a singlghile , but

25

“while” blocks can be nested within other “while” blocks gtmg with “if-elseif-else” blocks is
also allowed). Awhile must be followed by a body of zero or more expressions andfairal
blocks, and this body must be terminated byesm, even if the body is empty. The condition
determines whether or not the statements in the body areiexkcAs long as the condition eval-
uates to “true” (i.e. any non-zero complex numbered valine) body is iteratively executed. The
iterations stop when the condition becomes “false” (i.eomglex numbered value of zero). The
condition is checked once prior to executing each iteradicine body.

e zeros(n,K returns am x k matrix of all 0’'s. x andy must be complex numbers with no
imaginary componentsn andk must be complex numbers with no imaginary componerdnd
k must also each be within E)- 5 of an integer value (e.g..29999, 100001, and 3 are valid,
but 45 is not), and values that are within this threshold are rednid the nearest integer (e.g.
9.99999 is interpreted as 10). In additionandk must each be at least 1 after rounding. Always
usezerosinstead of defining zero matrices explicitly because it igygstotically faster and uses
asymptotically less memory.

9 Ongoing Work

We are currently implementing and considering several reatufes, mentioned below. Feedback on
the relevance and utility of these features and requestsitier features are greatly appreciated.

e We are looking to extend the interface between the QuCirg staticture and the QuIDDPro sim-
ulator. In particular, we are developing a feature thawedlthe user to load pre-compiled circuits
into memory and built-in functions to apply such circuitgidg interactive mode.

e Equivalence checking can be improved for circuits with arifssical gates (NOT, CNOT, Toffoli,
SWAP and Fredkin). When checking two such circuits, one cavert each gate to AND and
XOR gates, and use fast verification tools such as ABC/CET [/ are developing QuiDDPro
functions to detect such cases and make external calls togAB@natically.

e For matrices with too little structure, using an array-loaseatrix representation instead of a
QuIDD may improve runtime performance. Thus, we are dewetpheuristics for switching in-
ternally between explicit matrices and QuiDDs “on the fly."e\&Iso hope to decrease memory
consumption and runtime of QuIDDPro by enhancing the Quiistructure.

e Other extensions to the input language may also be usefulard/éooking at alternative input
languages, including [15], to explore such extensions.

e More examples will be added to the QuIDDPro package. For pkgmve are planning to use
QuIDDPro to simulate quantum adiabatic computation, anaihgr applications. However, since
it is difficult to envision all potential quantum-mecharicantexts in which QuIDDPro can be
applied,user feedback can be particularly helpful in this regard We will incorporate QulDD-
Pro code submitted by users into the package, with propeitsre

26

Appendix A: New Features in version 3.8

e New features
— Support for construction of Phase matrices directly usibgiti-in function. This is particu-
larly useful for simulating stabilizer circuits.
— Batch-mode options for simulating a UMICH 1.0 quantum dirclescription file using an
optimized version of QuUIDDPro. See Sections 6 and 7 for etali
e Bug fixes

— Fixed a bug that crashed the application when a user typeaf tadickspace during interactive
mode.

Appendix B: New Features in version 3.5

e New features
— Support for left-multiplication via =*. This is useful foipplying operators to state vectors.
The script examples in this document illustrate how to useféature.
— Compilation mode for generating a UMICH 1.0 quantum cirdeiscription file from a QuIiDD-
Pro script. See Section 6 for details.
e New example scripts

— gft/ directory inexamples/ contains functions for calculating the QFT and inverse QFT.

Appendix C: New Features in version 3.1

o New features

— Efficient functions for checking equivalence up to globadl aelative phase of operators and
states. The phase factors are also computed by most of thestohs. See Section 5 for
details. The algorithms that these functions are basedeodescribed in [14].

— Support for Dirac-style notation. See Section 4 for details

— Support for string data types, including variable storage string manipulation, has been
added. Section 4 has examples of this feature. This feataleesnthecu gate function
much easier to use.

New operators including=, -= , * =, and/= .

Bit manipulation operators including< and>>. Also functions to get and set individual bits
of an integer variable have been added.

Binary integer expressions are now supported usingpthsyntax.
— Theabs function has been added, which implements the complex medgeration.

— Alternate syntax for th&ron function in the form of th€X) operator, which makes writing
Dirac-style expressions more natural.

— Alternate syntax for thbadamard function. His now syntactic short-hand for it.

e New example scripts

— New example scripts have been added which demonstratethk ofew features.

27

e C++ compatibility
— A C++ library and API are available to use QuIDDPro in C++ pags.
e Bug fixes

— A bug which degraded runtime and memory performance whegusops and function calls
within tight loops has been fixed.

— In some cases when multiplying a call¢a _gate with a state vector, the state vector was
modified incorrectly. This bug has been fixed.

— Fixed thecnot andtoffoli functions, which previously would incorrectly modify stat
vectors in certain cases.

Appendix C: Notes on Performance Analysis

The QuIDDPro simulator uses the QuiDDPro library develope@€++ by George Viamontes at the
University of Michigan. This library is integrated as a baakd. The Bison-generated front-end parser
accepts a “QuiDDPro input language” similar to Matlab (seetf®n 8).

The commandtc andtocreport runtime, base, and peak memory (see Section 8). Beelamory
refers to the initialization of the simulator and inputhet than the simulation itself. The peak memory
refers to the usage by the simulation back-end betweetidcheandtoc commands. The sum of these
two readings gives the memory required to run the overalukition. The base memory due to the
simulator initialization is a constant of about.A™B on Linux, and may be larger on Solaris. Most
of this base memory is due to initialization of the CUDD magragFor large quantum circuits, this
overhead is often dwarfed by asymptotic improvements oD@ over array-based representations of
states and operators.

References

[1] G.F. Viamontes, I. L. Markov, and J. P. Hayes, “Graphdehsimulation of quantum computation in
the density matrix representatior@uantum Information and Computatiof(2), pp. 113-130, 2005.

[2] G. F. Viamontes, 1. L. Markov, J. P. Hayes, "Improving @&dtevel Simulation of
Quantum Circuits,” Quantum Information Processing2 (5), 347-380, October 2003.
http://lwww.arxiv.org/abs/quant-ph/0309060

[38] G. F. Viamontes, |I. L. Markov, J. P. Hayes, "Is Quantum 8bha Practi-
cal?” Computing in Science and Engineering7 (4), pp. 22-30, May/June 2005.
http://lwww.arxiv.org/abs/quant-ph/0405001

[4] G.F. Viamontes, M. Rajagopolan, I. L. Markov, and J. Pykk “Gate-level simulation of quantum
circuits,” Proc. of ACM/IEEE Asia and South-Pacific Design AutomatiomiQASPDAC), pp. 295-
301, Kitakyushu, Japan, January 2003.

[5] P. E. Black et al., “Quantum compiling and simulation,”
http://hissa.nist.gov/"black/Quantum/

[6] libquantum,http://www.enyo.de/libquantum/

[7] "QHDL: A Design Language for Quantum Computing,”
http://www.atcorp.com/Projects/Quantum%?20computing/ guantum.htm

28

[8] L. Grover, “Quantum mechanics helps in searching foredhein a haystackPhys. Rev. Let{79),
pp. 325-8, 1997.

[9] M. A. Nielsen and I. L. ChuangQuantum Computation and Quantum Informati@@ambridge
Univ. Press, 2000.

[10] A. M. Childs, H. L. Haselgrove, and M. A. Nielsen, “Loweounds on the complexity of simulating
guantum gatesPhys. Rev. 468), 052311, 2003.

[11] A. Barenco et al., “Elementary gates for quantum corapomn,” Phys. Rev. A52, pp. 3457-3467,
1995.

[12] V. V. Shende, S. S. Bullock, I. L. Markov, “Synthesis afantum logic circuits,’'EEE Trans. on
Computer-Aided Desigr25, pp. 1000-1010, 2006.

[13] G. Song and A. Klappenecker, “Optimal realizations iof@ified Toffoli gates,”Quantum Infor-
mation and Computatiqr, pp. 361-372, 2004.

[14] G. F. Viamontes, “Efficient Quantum Circuit Simulatip®h.D. Dissertation at the University of
Michigan, 2007.

[15] Andrew Petersen and Mark Oskin, “A new algebraic fodmmhafor quantum programming lan-
guages,” In the 2nd workshop on Non-Silicon Computing (NSQBCA, June 2003.

[16] S. Aaronson and D. Gottesman, “Improved simulation tab#izer circuits,” Phys. Rev. A70,
052328, 2004http://www.scottaaronson.com/chp/

[17] R. Brayton and A. Mishchenko, “ABC: An Academic InduatrStrength Ver-
ification Tool,” Computer-aided Verification (CAV) 6174 pp. 24-40, 2010,
http://www.eecs.berkeley.edu/ alanmi/abc/

29

