
QUIDDPRO USER’ S GUIDE

VERSION 3.8

GEORGEF. VIAMONTES

HÉCTORJ. GARCÍA

IGOR L. M ARKOV

JOHN P. HAYES

UPDATED ON JUNE 21, 2011

THE UNIVERSITY OF M ICHIGAN



QuIDDPro is a fast, scalable, and easy-to-use computational interface for generic quantum circuit
simulation. It supports state vectors, density matrices, and related operations using the Quantum In-
formation Decision Diagram (QuIDD) data structure [1, 2, 4]. Software packages including Matlab,
Octave, QCSim [5], and libquantum [6], have also been used tosimulate quantum circuits. However,
unlike these packages, QuIDDPro does not always suffer fromthe exponential blow-up in size of the
matrices required to simulate quantum circuits. As a result, we have found that QuIDDPro is much
faster and uses much less memory as compared to other genericsimulation methods for some useful
circuits with much more than 10 qubits [1, 2, 4].

VERSION HISTORY (SEE APPENDICESA AND B FOR DETAILS)

• VERSION 1.0 - JANUARY 27, 2004

• VERSION 1.1 - MARCH 29, 2004

• VERSION 1.2 - DECEMBER 12, 2004

• VERSION 2.0 - JULY 27, 2005

• VERSION 2.1 - AUGUST 17, 2005

• VERSION 2.1.1 - OCTOBER 25, 2005

• VERSION 2.1.2 - DECEMBER 2, 2005

• VERSION 2.1.3 - FEBRUARY 24, 2006

• VERSION 2.1.4 - FEBRUARY 27, 2006

• VERSION 2.1.5 - SEPTEMBER 15, 2006

• VERSION 3.0β - OCTOBER 16, 2006

• VERSION 3.1β - OCTOBER 31, 2006

• VERSION 3.1 - MARCH 8, 2007

• VERSION 3.5β - JULY 10, 2010

• VERSION 3.8 - JUNE 21, 2011

GEORGEF. VIAMONTES, HÉCTOR J. GARCÍA , IGOR L. M ARKOV, JOHN P. HAYES

QUANTUM CIRCUITS GROUP

DEPARTMENT OFELECTRICAL ENGINEERING AND COMPUTER SCIENCE

UNIVERSITY OF M ICHIGAN

{gviamont, hjgarcia, imarkov, jhayes}@eecs.umich.edu

COPYRIGHT c© 2004 - 2010 GEORGEF. VIAMONTES, HÉCTOR J. GARCÍA ,
IGOR L. M ARKOV, JOHN P. HAYES, AND

THE REGENTS OF THEUNIVERSITY OF M ICHIGAN . ALL RIGHTS RESERVED.



Contents

1 Overview 1

2 Running the Simulator 1

3 Functions and Code in Multiple Files 5

4 Dirac Notation and String Manipulation 6

5 Checking Equivalence up to Global and Relative Phase 8

6 Compiling Quantum Circuits from QuIDDPro Scripts 11

7 Improved Simulation of Quantum Circuits 11

8 Language Reference 12

9 Ongoing Work 26

Appendix A: New Features in version 3.8 27

Appendix B: New Features in version 3.5 27

Appendix C: New Features in version 3.1 27

Appendix C: Notes on Performance Analysis 28

References 28



1 Overview

The goal of the QuIDDPro simulator is to provide a fast, scalable, and easy-to-use quantum-mechanical
simulator for applications such as quantum computation andcommunication. This documentation and
examples distributed with the simulator provide enough information for any user to get started. QuIDD-
Pro uses an input language similar to Matlab. It supports density matrices, state vectors, and related
operations using a recently developed data structure called the Quantum Information Decision Diagram
(QuIDD) [1, 2, 4]. Version 3.1 introduces a number of new features including functions which efficiently
compute the equivalence of states and operators up to globaland relative phase, string data types, Dirac
notation, and bit operations (see Sections 4 and 5 for a more detailed discussion of the new features).
Versions 1.2 and later are up to 60 times faster than the older version 1.1 (see Appendix B for perfor-
mance results).

Software packages, including Matlab, Octave (a free GNU package that is very similar to Matlab),
and others [5, 6, 7], have been used to simulate quantum circuits and communication. Unlike exist-
ing packages, QuIDDPro does not always suffer from the exponential blow-up in size of the matrices
required to simulate quantum circuits. As a result, we have found that QuIDDPro is much faster and
uses much less memory as compared to other generic simulators [1, 2, 4] for many useful circuits with
10 qubits or more. For example, QuIDDPro can simulate a randomly generated 100-qubit stabilizer
circuit with 10000 gates in approximately nine minutes and has a peak memory usage of 7.4MB. How-
ever, other circuits, including instances of Shor’s numberfactoring algorithm, still require a substantial
amount of computational resources.

The remainder of this documentation is organized as follows. Section 2 explains how to run the
simulator and provides examples. Section 3 describes how tocreate user-defined functions and import
code from multiple files. Section 4 shows how to use the optional Dirac notation support and string ma-
nipulation functionality using examples of several well-known quantum states to illustrate the relevant
QuIDDPro features. Section 5 demonstrates efficient functions which can determine the equivalence of
states and operators up to global and relative phase and compute the phases. Section 8 contains a lan-
guage reference, and lastly, Section 9 outlines the ongoingwork in developing the QuIDDPro simulator
and related features. Appendix A lists the major features which have been added to the latest version of
QuIDDPro. Appendix B describes major performance improvements which make versions 1.2 and later
significantly faster than version 1.1. Appendix C summarizes important guidelines for evaluating the
runtime and memory performance of the QuIDDPro simulator. Since QuIDDPro is under active devel-
opment, we welcome user feedback and contributed examples/circuits in the form of QuIDDPro scripts.
Scripts contributed by users will drive future performanceimprovements in the computational back-end
of QuIDDPro. Although the current scope of QuIDDPro is simulation, the development of other tools
to work in concert with QuIDDPro, such as a quantum circuit synthesizer, is also under consideration.

2 Running the Simulator

The QuIDDPro simulator can be run in two modes, namely batch mode and interactive mode. In batch
mode, the user supplies the simulator with an ASCII text file containing the script code to be executed.
The text file can be provided as an argument in the command lineto the simulator executable or redi-
rected to standard input as in the following examples:

File “my code.qpro” passed as an argument:
% ./qp my code.qpro

1



File “my code.qpro” redirected to standard input:
% ./qp < my code.qpro

Note that although the examples use a “.qpro” extension in the filenames, any valid filename will do.

Interactive mode is triggered when the simulator executable is given no arguments at the command
line. In this mode, the simulator will be started and producea prompt to await input from the user as
shown in the next example:

% ./qp
QuIDDPro>

Similar to Matlab, valid lines of code may be typed at the prompt and executed when the return or
enter key is pressed (i.e. when a newline is given as input). The command “quit” can be issued to exit
the simulator. Also, multiple expressions may be placed in asingle line by separating each expression
by one or more semicolons. An example of this method of input is as follows:

QuIDDPro> a = pi/3; r op = [cos(a/2) -i * sin(a/2); -i * sin(a/2) cos(a/2)]
r op =
0.866025 0-0.5i
0-0.5i 0.866025

In this example, a 1-qubit rotationalX operator matrix is created with theθ parameterπ/3. Notice
that only the value of the variable “rop” is printed out. In general, the value of the last expression is
printed out for an input line containing multiple expressions separated by semicolons. However, the
other expressions are still computed. In this example, for instance, the variable “a” will contain the
value pi/3, even though this result is not printed out. This is clearlytrue since the definition of “rop”
depends on the value of “a.” In addition to providing the means to place multiple expressions on the
same line, semicolons can be used more generally to suppressoutput to the screen. If screen output
for any particular expression is not desired, simply place asemicolon at the end of the expression to
compute it silently. Matlab behaves in the same fashion.

QuIDDPro contains a number of built-in functions and predefined variables. A listing of such func-
tions and variables can be found in Section 8. Notice that in the last example, the predefined variables
“pi” and “i” are used. “pi” contains the valueπ (to a large number of digits), while “i” contains the value
0+ i. Predefined variables can be overwritten by the user. In addition to the predefined variables just
mentioned, the built-in functions “cos” and “sin” were alsoused in the last example. To demonstrate the
use of built-in functions further, consider the next example:

QuIDDPro> r op = rx(pi/3, 1)
r op =
0.866025 0-0.5i
0-0.5i 0.866025

In this example, the built-in function “rx” is used to createthe same matrix that was created in the
previous example, namely the 1-qubit rotationalX operator. QuIDDPro provides a number of such

2



functions to create commonly used operators. See Section 8 for more details.
Although interactive mode is useful for quick calculations, it may not be preferable for non-trivial

pieces of code that are reused many times. Thus, batch mode ishighly recommended for most contexts.
In the next example, we demonstrate how to use QuIDDPro to simulate a quantum circuit in batch mode.
The code shown here can be placed into a file for execution at any time. In fact, this particular example
and others can be found in the examples/ directory.

Consider the canonical decomposition of a two-qubit unitary operatorU described in [10].U can be
expressed as:

U = (A1⊗B1)ei(θxX⊗X+θyY⊗Y+θzZ⊗Z)(A2⊗B2)

subject to the constraint thatπ
4 ≥ θx ≥ θy ≥ |θz| andA1, A2, B1, andB2 are one-qubit unitary operators.

Suppose we wish to simulate a quantum circuit in which some two-qubit unitary operatorU is to
be applied to two qubits in the density matrix state|10〉〈10|. Further suppose thatU must be computed
given the canonical decomposition parametersθx = 0.702, θy = 0.54, andθz = 0.2346. Additionally,
we are given thatA1 is a one-qubit Hadamard operator,A2 is X, B1 is I , andB2 is Y. This can be imple-
mented with the following code (from examples/misc/twoq canonical.qpro):

theta x = 0.702;
theta y = 0.54;
theta z = 0.2346;
A1 = hadamard(1);
A2 = sigma x(1);
B1 = identity(1);
B2 = sigma y(1);

Next,U can be computed with the code:

Xpart = theta x* kron(sigma x(1), sigma x(1));
Ypart = theta y* kron(sigma y(1), sigma y(1));
Zpart = theta z* kron(sigma z(1), sigma z(1));
U = kron(A1, B1) * expm(i * (Xpart + Ypart + Zpart)) * kron(A2, B2)

U is then applied to the density matrix state|10〉〈10| with the code:

state = cb(‘‘10’’);
final state = U * (state * state’) * U’

Deterministic measurement can be performed to eliminate the correlations associated with each qubit:

q index = 1;
while (q index < 3)

final state = measure(q index, final state);
q index = q index + 1;

end

3



measured state = final state

U can also be applied very easily to the state vector representation of the state if it is preferred to the
density matrix representation. In addition, the probability of measuring a 1 or 0 for any qubit in the state
vector can be computed using other measurement functions:

final state v = U* state
p0 qubit1 = measure sv0(1, final state v)
p1 qubit1 = measure sv1(1, final state v)
p0 qubit2 = measure sv0(2, final state v)
p1 qubit2 = measure sv1(2, final state v)

Probabilistic measurement can also be performed on both density matrices and state vectors. See
pmeasure andpmeasure sv in Section 8 for more details.

Upon execution of the above script, the output is:

U =

-0.110927-0.0265116i -0.0530448-0.222078i -0.650863+0 .15556i 0.162218-0.678733i

-0.162218+0.678733i 0.650863-0.15556i 0.0530448+0.222 078i 0.110927+0.0265116i

-0.110927-0.0265116i 0.0530448+0.222078i 0.650863-0.1 5556i 0.162218-0.678733i

0.162218-0.678733i 0.650863-0.15556i 0.0530448+0.2220 78i -0.110927-0.0265116i

final state =

0.447822 2.15483e-05+0.152794i -0.447822 2.15483e-05+0 .152794i

2.15483e-05-0.152794i 0.0521324 -2.15483e-05+0.152794 i 0.0521324

-0.447822 -2.15483e-05-0.152794i 0.447822 -2.15483e-05 -0.152794i

2.15483e-05-0.152794i 0.0521324 -2.15483e-05+0.152794 i 0.0521324

measured state =

0.447822 0 0 0
0 0.0521324 0 0
0 0 0.447822 0
0 0 0 0.0521324

final state v =

-0.650863+0.15556i

0.0530448+0.222078i

0.650863-0.15556i

0.0530448+0.222078i

p0 qubit1 =
0.499955

p1 qubit1 =
0.499955

4



p0 qubit2 =
0.895644

p1 qubit2 =
0.104265

Although the examples in this section demonstrate scripts that use small numbers of qubits, the real
power of QuIDDPro lies in simulating quantum-mechanical systems with many quantum states (usually
10 or more). See steaneX.qpro, steaneZ.qpro, and largeh.qpro in the examples/ directory for examples
of such systems. largeh.qpro, for instance, applies a 50 qubit Hadamard operator to a density matrix of
50 qubits. steaneX.qpro and steaneZ.qpro demonstrate error correction in quantum circuits of 12 and 13
qubits, respectively. On a single processor of one of our workstations, each of these scripts requires less
than 5 seconds to run and less than 0.5 MB of peak memory usage.

3 Functions and Code in Multiple Files

QuIDDPro supports user-defined functions via the “m-file” model commonly used in Matlab. Specif-
ically, a function call to a user-defined function may appearanywhere as long as the function body is
contained in a separate file in the working directory. The name of the file containing the function body
must be the same as the function name with “.qpro” or “.qp” appended. To illustrate, consider the fol-
lowing script which uses an oracle function to implement a simple instance of Grover’s algorithm shown
on page 256 of [9].

(examples/functions/simplegrover.qpro)
state = cb(‘‘001’’);
state = hadamard(3) * state;
state = oracle(state);
state = * cu gate(hadamard(1), ‘‘xxi’’);
# Note: The = * operation is shorthand for
# state = cu gate(hadamard(1), ‘‘xxi’’) * state;
state = * cu gate(sigma x(1), ‘‘xxi’’);
state = * cu gate(hadamard(1), ‘‘ixi’’);
state = * cu gate(sigma x(1), ‘‘cxi’’);
state = * cu gate(hadamard(1), ‘‘ixi’’);
state = * cu gate(sigma x(1), ‘‘xxi’’);
state = * hadamard(3)

(examples/functions/oracle.qpro)
function new state = oracle(curr state)
new state = cu gate(sigma x(1), ‘‘ccx’’) * curr state;

The user-defined function is “oracle” with its function bodydefined in the file “oracle.qpro.” The other
functions used are part of the QuIDDPro language (see Section 8 for more details). Notice that in
this particular example, the QuIDD (matrix) “state” is passed as a function argument. In QuIDDPro,
a QuIDD function argument only requiresO(1) memory usage because a pointer to the head of the

5



QuIDD is passed to a function rather than the entire QuIDD. The same holds true for returning QuIDDs
from a function. Thus, passing QuIDD arguments and return values is extremely efficient. In general, a
user-defined function can contain any number of parameters which can be any combination of QuIDDs
or complex numbers. Arguments passed as parameters to functions are not modified by the function (i.e.
pass-by-value is always used).

Unlike Matlab, QuIDDPro functions must have only one returnvariable (a function that returns
nothing is also not allowed). If the function is intended to return no values, such as a diagnostic printing
function, then a dummy variable can be used for the return variable. The return variable need not be
used in the function body, and when this occurs, it is automatically assigned a value of 0. A semicolon
can be appended to the function call to suppress the output ofthe 0 value. When multiple return values
are desired, they can be stored together in a matrix. Thus, requiring a single return variable does not
actually restrict the number of values that can be returned.

Like Matlab and other languages, variables declared locally in a function body exist in their own
scope. In other words, variables declared in a function bodyare undefined upon leaving the function
body. By the same token, such variables do not overwrite the values of variables with the same name
declared outside the function body.

In addition to functions, QuIDDPro supports therun command. Like its Matlab counterpart, this
command runs script code contained in another file. In the following example, the same circuit as before
is simulated, but this time the run command is used instead ofa user-defined function.

(examples/run/simplegrover.qpro)
run ‘‘oracle def.qpro’’
state = cb(‘‘001’’);
state = * hadamard(3);
state = * oracle;
state = * cu gate(hadamard(1), ‘‘xxi’’);
state = * cu gate(sigma x(1), ‘‘xxi’’);
state = * cu gate(hadamard(1), ‘‘ixi’’);
state = * cu gate(sigma x(1), ‘‘cxi’’);
state = * cu gate(hadamard(1), ‘‘ixi’’);
state = * cu gate(sigma x(1), ‘‘xxi’’);
state = * hadamard(3)

(examples/run/oracledef.qpro)
oracle = cu gate(sigma x(1), ‘‘ccx’’);

Notice that the run command does not introduce a new scope. All variables declared in a run file exist
in the current scope. As a result, the run command is ideal fordeclaring variables which can be re-used
in multiple projects. Also, there is no constraint on where arun command may appear other than that it
may not be placed within an explicit matrix.

4 Dirac Notation and String Manipulation

As of version 3.1, QuIDDPro now supports a Dirac-style syntax as well as string data types that can be
stored and manipulated. This section demonstrates how to use this functionality by presenting simple
examples of well-known quantum states implemented with these features. The states include the cat

6



(GHZ) state, the W state, and the equal superposition state.
The cat state is ann-qubit generalization of the EPR pair and is defined as|ψcat〉 = (|00. . .0〉+

|11. . .1〉)/
√

2. A QuIDDPro function which creates this state given the number of qubitsn is listed
below (from examples/states/createcat state.qpro).

function |cs:> = create cat state(n)
|cs:> = (|0:> n + |2ˆn - 1:>)/sqrt(2);

There are two important points to note in this example. First, the QuIDDPro form of a ket utilizes
the following syntax,|x:> , wherex can be an integer expression, a state vector variable, or a string
expression of the form used in thecb( ·) function (see Section 8 for a description of this function).In
the case of a state vector variable, the ket form is merely an alias for the Matlab-style variable name
and can be used to store expressions as illustrated by|cs:> above. In the case of an integer, the state
becomes the binary representation in qubits of the integer,where the left-most qubit in the state is the
most-significant bit of the integer. The number of qubits in the resulting state vector QuIDD is the
minimum number of qubits required to represent the integer in binary. QuIDDPro uses similar syntax
for a bra,<:x| , and support for writing inner and outer products using brasand kets is discussed later
in the section. The only difference is that kets may be assigned to, but bras may not.

The second point to note is that an optional subscript can be appended to the ket as follows,|x:> y ,
wherey can be any integer expression. The subscript adds leading|0〉 qubits to the resulting QuIDD
state vector. This functionality is useful to make states with integer expressions that need fewer qubits
have the same number of qubits as states with larger integer expressions. It is good to get into the habit
of putting parentheses around subscript expressions, since only integer literals and variables may be
subscript expressions without parentheses.

The next state created using these features is the W state, which is defined as|ψW〉 = (|10. . .0〉+
|01. . .0〉+ |00. . .1〉)/√n. A QuIDDPro function which creates this state given the number of qubitsn
is given below (from examples/states/createw state.qpro).

function |ws:> = create w state(n)
|ws:> = |1:> n;
j = 1;
while (j < n)

|ws:> += |2ˆj:>;
j++;

end
|ws:> /= sqrt(n);

Another interesting feature used in this example is the+= and /= operators. As in other languages
like C and C++,x op= y is merely convenient shorthand forx = x op y . All the basic arithmetic
operations support this notation, including+, - , * , / , <<, and>>, where the last two operators are left
and right bit shift, respectively. Also, the++ and-- operators are supported, which are equivalent to
+= 1 and-= 1 , respectively.

The next example uses the equal superposition state to demonstrate the string manipulation func-
tionality. An n-qubit equal superposition state represents all possible 2n measurement outcomes with
equal probability. It is defined as1√

2n ∑2n−1
j=0 | j〉 and can be created with Hadamard gates. To this state,

controlled-Z gates are applied such that each odd numbered qubiti is a control and each even numbered

7



qubit i +1 is the corresponding target. A QuIDDPro function which generates this state given the num-
ber of qubitsn is provided below (from examples/states/createequalevenodd.qpro). For odd values of
n, the last qubit is skipped.

function |eeo:> = create equal even odd(n)
|eeo:> = H(n) * |0:> n;
count = 1;
while (count < n)

gate spec = ‘‘c’’ + count + ‘‘x’’ + (count + 1);
|eeo:> = * cu gate(sigma z(1), gate spec, n);
count += 2;

end

Notice that the stringgate spec can be constructed from pieces of strings and numbers via the+
operation. In QuIDDPro, this operation simply appends to a string and automatically converts numeric
values to strings. It is important to note the difference between appending(count + 1) andcount
+ 1. In the first case, ifcount contains the value 3, then the string representation of 4 will be appended.
However, in the second case the string 31 will be appended since the+ operator will be treated as another
string append rather than as numerical addition.

The final example in this section demonstrates other types ofsupported Dirac notation for the inner
and outer products. It is often convenient, for instance, toapply a projector to a state when writing an
expression for the probability of a measurement outcome such as〈ψ|0〉〈0|ψ〉, where|ψ〉 is some 1-qubit
state. Although QuIDDPro supports several optimized measurement functions, support exists to write
such expressions directly as shown in this example (from examples/states/projector.qpro)

|psi:> = [0.8; 0.6];
p 0 = <:psi|0:><:0|psi:>
p 1 = <:psi|1:><:1|psi:>

As illustrated in the above code, inner products are only separated by a single| just as in the Dirac
notation. There is no limit to the number of inner and outer products that can be concatenated in this
way. Implicit multiplication of a ket by an operator, as inOp|psi:> , is not yet supported and requires
an explicit multiplication sign,Op* |psi:> .

5 Checking Equivalence up to Global and Relative Phase

In addition to simulation, a number of research efforts are focused on classical synthesis of quantum
circuits [11, 12, 13]. Checking the equivalence of digital circuits is a major part of classical synthesis and
verification and is likely to continue to play a role in the quantum case. Equivalence checking of quantum
states, operators, and circuits is more challenging since they can differ by global and relative phase yet be
equivalent upon measurement. As a result, QuIDDPro provides several QuIDD-based functions which
efficiently compute equivalence up to global or relative phase for both states and operators.

One such function isgp equals which returns a 2-element row vector containing a 1 (0) if thetwo
states or operators passed as arguments are (not) equal up toglobal phase and, if so, the global phase
factor. The following example illustrates the use of this function to compare a state generated in an
instance of Grover’s algorithm to the same state differing by a global phase factor.

8



(from examples/phasechecks/gpgrover state.qpro).

ckt size = 500;

# Create an oracle that marks the last element in the ‘‘databa se.’’
# The oracle uses one ancillary qubit that is flipped to mark
# the last element.
count = 0;
spec = ‘‘’’;
while (count < ckt size - 1)

spec += ‘‘c’’;
count++;

end
spec += ‘‘x’’;
oracle = cu gate(sigma x(1), spec);

# Construct the gate operators used in a Grover iteration.
hn = H(ckt size);
hni = H(ckt size - 1) (X) identity(1);
cps op = cps(ckt size - 1) (X) identity(1);

# Create the state
state = |0:>;
count = 0;
while (count < ckt size - 2)

state = state (X) |0:>;
count++;

end
state = state (X) |1:>;

# Apply one Grover iteration to an equal superposition.
state = * hn;
state = * oracle;
state = * hni;
state = * cps op;
state = * hni;
state = * (identity(ckt size - 1) (X) H(1));

# Create a state that differs by a global phase.
gp state = exp(i * 0.784) * state;

# Compute equality up to global phase using gp equals.
gp info = gp equals(gp state, state)

9



There are several points to note in the above example. First,note the alternate syntax for constructing
ann-qubit Hadamard gate usingH(n) . Similarly, note the operator form of thekron function, where
a (X) b == kron(a, b) . This alternate syntax makes QuIDDPro development seem more nat-
ural and closer to Dirac expressions. Second, althoughgp equals is used on state vectors in this
example, matrices representing operators may also be passed to the function. Third, the order in which
arguments are passed to the function can affect the return value of the phase, but not the value which
represents if the two arguments are equal up to global phase.Specifically, if |ϕ〉 = eiθ |ψ〉, whereθ is
some real number (i.e. both states are equal up to global phase), thengp equals will return a phase
factor of eiθ if |ϕ〉 is the first argument and will return1eiθ if |ψ〉 is the first argument. In either case
the result of equivalence up to global phase will be a 1 (or true). Lastly, although the above example
contains 500 qubits, it runs in just over one second on an Intel Xeon workstation due to the efficiency of
the QuIDD datastructure and equivalence-checking algorithm.

Several QuIDDPro functions exist to efficiently compute equivalence up to relative phase. In the
case of relative phase, operators or state vectors will differ by a matrix of phase factors along the di-
agonal, and this matrix may appear on the left, right, or on both sides. Two QuIDDPro functions
that can compute these relative phases given two operators or state vectors arerp equals op and
rp equals sv , respectively. Likegp equals , these functions take two arguments to be compared
for equivalence up to relative phase. If the two arguments are indeed equivalent up to relative phase,
a vector containing the diagonal phases is returned. If theyare not, then a vector of 0’s is returned.
A sample program is given below which compares a Hamiltonianconsisting of Pauli operators against
another such Hamiltonian at a different time step. Such Hamiltonians are equivalent up to relative phase
(from examples/phasechecks/hamiltonian.qpro).

ckt size = 70; qp epsilon = 1e-7;
# Construct the gate representing the Hamiltonian.
cnot diag = cnot(‘‘cx’’);
if (ckt size > 2)

cnot diag = identity(ckt size - 2) (X) cnot diag;
end
count = 0;
while (count < ckt size - 2)

c part = proj0(1) (X) identity(count + 2);
t part = proj1(1) (X) identity(count + 1) (X) sigma x(1);
curr cnot = c part + t part;
if (count < ckt size - 3)

curr cnot = identity(ckt size - count - 3) (X) curr cnot;
end
cnot diag * = curr cnot;
count++;

end
op = cnot diag * (identity(ckt size - 1) (X) expm(-i * 0.3 * sigma z(1))) *
→֒ cnot diag’;

# Create a version of the gate that differs by relative phase.
op rp = cnot diag * (identity(ckt size - 1) (X) expm(-i * 0.72 * sigma z(1))) *
→֒ cnot diag’;

10



# Compute equality up to relative phase using rp equals op.
rps = rp equals op(op, op rp);

Another useful function that can compute a necessary but notsufficient for two state vectors or operators
to be equal up to relative phase isone merge . It creates a new QuIDD matrix or vector in which all the
non-zero values of the given argument are set to 1. It is proven in [14] that two QuIDD operators or state
vectors that are equal up to relative phase are exactly equalwhen their non-zero terminals are merged
into a single terminal with the value 1. However if the transformed operators or state vectors are not
equal, then this does not necessarily mean that they are not equal up to relative phase. It is also shown in
[14] how to use the complex modulus operation and inner (matrix) product on state vectors (operators)
to compute global and relative phase equivalences. Thus, QuIDDPro also supports the complex modulus
operation in the form of theabs function.

6 Compiling Quantum Circuits from QuIDDPro Scripts

As of version 3.5, QuIDDPro features acompilebatch-mode option that maps a high-level specification
of a quantum algorithm (in the QuIDDPro language) into an intermediate representation (IR) based
on the quantum circuit model. The compiled circuit is specified in theUMICH QuCirc file format.
QuCirc is a compact data structure for quantum IRs availablein the UMICH Quantum Circuit Toolbox
package (for details contact Héctor J. Garcı́a–hjgarcia@umich.edu). If you received QuIDDPro via the
UM Quantum Circuit Toolbox tarball, the open-source code for using QuCirc is available to you in the
qc-0.9-i386 directory.

To compile a QuCirc file from a QuIDDPro script simply add the-c option when running QuIDD-
Pro in batch mode as follows.

% ./qp -c myscript.qpro

The quantum compiler orq-compiler will generate a QuCirc file for each state vector that is cre-
ated/manipulated in the QuIDDPro script. The current version of the q-compiler does not support density
matrices. Any QuIDDPro commands or functions that do not involve a state vector will be ignored by
the q-compiler. User-defined functions are supported as long as the function returns a state vector. This
is because the scope of user-defined functions is local and therefore any circuit-related changes will not
propagate to the calling script unless a state vector is returned.

7 Improved Simulation of Quantum Circuits

The current version of QuIDDPro (3.8) features animproved simulator for quantum circuits called
QuIDDProLite. If you intend to simulate a stand-alone quantum circuit (rather than a full-fledge quan-
tum algorithm with interacting quantum and classical components), you should first compile the circuit
into a QuCirc file (Section 6) and then simulate the generatedcircuit using QuIDDProLite by adding the
-s batch mode option. For example,

% ./qp -c myscript.qpro (generates myscript.qct file)
% ./qp -s myscript.qct (calls QuIDDProLite)

11



Alternatively, you can perform the above actions with a single call to QuIDDPro as follows.

% ./qp -cs myscript.qpro

QuIDDProLite is not asymptotically faster than the native QuIDDPro simulator, but runs much faster
and consumes less memory when simulating many practical quantum circuits such as stabilizer cir-
cuits [16]. Figure 1 compares the performance of both simulators on randomn-qubit stabilizer circuits
with nlgn stabilizer gates andn measurements. QuIDDProLite runs an average of four times faster than
the native QuIDDPro simulator.

 0

 100

 200

 300

 400

 500

 600

 10  15  20  25  30  35  40  45  50  55

R
un

tim
e 

(s
ec

s)

Number of qubits

QuIDDPro
QuIDDProLite

Figure 1: Average time needed by QuIDDPro and QuIDDProLite (pre-
compiled circuit simulator) to simulate and n-qubit stabilizer circuit with nlgn
unitary gates andn measurements.

Two additional options are available when using QuIDDProLite. The first is the-sN option, where
N is an integer that designates the initial basis state. If thecircuit to be simulated acts onn qubits, the
range ofN is [0,2n −1]. If N is not specified (the-s option shown previously), the simulator assumes
N = 0, i.e., it assumes the all-zeros initial basis state|00. . .0〉. The second option is-q , which outputs
the resulting state vector to the terminal at the end of the simulation.

8 Language Reference

This section provides a reference for the QuIDDPro input language. Although the language is similar
to Matlab, there are many functions in QuIDDPro specific to quantum mechanics which do not exist in
Matlab. There are also a large number of functions in Matlab which are not supported by QuIDDPro.
Additionally, some of the functions that have the same namesas those in Matlab have slightly different
functionality from their Matlab counterparts. New language features will be added in future versions
of the QuIDDPro simulator, and we welcome user suggestions.The new features as of version 3.8 are
highlighted below inbold text.

12



== =̃, != < <=
> >= && ||
+ += ++ -

-= - - * * =
/ /= = =*

( . . .) ∧ << <<=

>> >>= (X) ’

cutoff val i
output prec pi
qp epsilon r2

r3

[ . . .] ; a( n, k)
|a:> n <:a| n a{n}

a( n1,n2,n3, . . .) bn else
elseif function if

run tic toc
while end

Operations Predefined variables Language features

abs atan cb cnot
conj cos cps cu gate

dump dot echo exp expm
eye fredkin gen amp damp get bit

gp equals hadamard , H identity kron
norm measure measure sv measure sv0

measure sv1 one merge pmeasure pmeasure norm sv
pmeasure sv proj0 proj1 projplus

ptrace px, Px py, Py pz, Pz
quidd info rand round rp equals op

rp equals sv rx, Rx ry, Ry rz, Rz
set bit sigma x sigma y sigma z

sin sqrt swap toffoli
zeros phase

Built-in Functions

• [. . .] defines a matrix explicitly. Expressions are placed betweenthe brackets. Elements in the same
row are separated by whitespace (including newlines) or commas, while rows are separated by one
or more semicolons. The brackets can be nested within other brackets (matrices within matrices).

• # starts a one-line comment. Everything from the # symbol to the first newline is ignored. An
alternative comment symbol is %.

• % starts a one-line comment. Everything from the % symbol to the first newline is ignored. An
alternative comment symbol is #.

• ′ returns the complex-conjugate transpose of a matrix. For example,[1 2; 3+ 2i 4]′ → [1 3−
2i; 2 4]

• == equality operation that returns 1 if the two expressions compared are equal; otherwise
it returns 0. Comparison between matrices is supported. A complex number and a matrix are
considered not equal unless the matrix has dimensions 1× 1 and contains a number equal to the
one being compared to.

• ˜= inequality operation that performs the complement function of ==.

• ! = an alternative symbol for=̃.

• < less than operation. It returns 1 if the left-hand expression is less than the right-hand ex-
press; otherwise it returns 0. It can only be used to compare numbers. For numbers with nonzero
imaginary components, only the real parts are compared.

13



• <= less than or equal operation. It returns 1 if the left-hand expression is less than or equal
to the right-hand express; otherwise it returns 0. It can only be used to compare numbers. For
numbers with nonzero imaginary components, only the real parts are compared.

• > greater than operation. It returns 1 if the left-hand expression is greater than the right-hand
express; otherwise it returns 0. It can only be used to compare numbers. For numbers with nonzero
imaginary components, only the real parts are compared.

• >= greater than or equal operation. It returns 1 if the left-hand expression is greater than or
equal to the right-hand express; otherwise it returns 0. It can only be used to compare numbers.
For numbers with nonzero imaginary components, only the real parts are compared.

• && logical AND connective. It returns 1 if both sides of the operator evaluate to 1; otherwise it
returns 0. It can only be used to compare numbers with nonzeroimaginary components.

• || logical OR connective. It returns 1 if either side of the operator evaluates to 1; otherwise it
returns 0. It can only be used to compare numbers with nonzeroimaginary components.

• +, +=, ++ addition operation. For complex numbers, it returns the sumof the numbers. For
matrices, it returns the element-wise addition of both matrices (both matrices must have the same
number of rows and columns). When a matrix is added to a complex number, the complex number
is added to each element of the matrix as a scalar. The+= form adds the right-hand expression to
the left-hand variable and saves the result in that variable. ++ is equivalent to+= 1.

• - , -= , - - subtraction operation. For complex numbers, it returns thedifference of the numbers.
For matrices, it returns the element-wise difference of both matrices (both matrices must have the
same number of rows and columns). When a matrix is subtractedfrom a complex number or vice-
versa, scalar subtraction is performed element-by-element. When there is no left-hand expression,
it is treated as a unary minus applied to the right-hand side expression. Within a matrix definition,
for example[1−2], the minus sign is treated as a unary minus. However, in[1−2] and[1−2], the
minus sign is treated as the binary minus expression. Parenthesis can be used to force the minus
sign to be treated one way or the other. The-= form subtracts the right-hand expression from the
left-hand variable and saves the result in that variable.-- is equivalent to-= 1 .

• * , * = , =* multiplication operation. For complex numbers, it returnsthe product of the num-
bers. For matrices, matrix multiplication is performed (asopposed to element-wise multiplication).
Scalar multiplication is performed when a matrix and a complex number are multiplied together.
The* = form multiplies the right-hand expression with the left-hand variable and saves the result in
that variable. The=* form performs left-hand multiplication and saves the result in that variable.

• / , /= division operation. For complex numbers, it returns the division of the numbers. Unlike
the C language, integer division isnot performed if the operands are both integer values. Double
floating point division is always performed. For matrices, element-wise division is performed
(both matrices must have the same number of rows and columns). When a matrix is divided by a
complex number, scalar division is performed. However, a complex number may not be divided
by a matrix. The/= form divides the left-hand variable by the right-hand expression and saves the
result in that variable.

• = assignment operation. Assigns the value of an expression (right-hand side) to a variable
(left-hand side). The expression may result in either a complex number or a matrix. The left-hand
side expression must be a variable name (it must start with a letter and contain only alpha-numeric
characters and optionally underscores). Variables can be assigned “on-the-fly.” In other words,
unlike languages like C/C++, variables are not declared nortyped in any way prior to their first

14



assignment. However, a variable must be assigned a value before it can be used in an expression.
Similar to languages such as C/C++, an assignment expression returns a value just like any other
expression, namely the value that was assigned to the variable on the left-hand side. Therefore,
statements such asx= y= 3+4i are valid. In statements like these, if output is not suppressed, the
value of the leftmost variable will be output to the screen. Although the other variables assigned
values will not be output to the screen, they are still assigned their values. Another important note
is that even though string literals appear as arguments in some functions, includingcu gateand
echo, assignment of a string literal to a variable is not yet supported.

• ∧ exponentiation operation for complex numbers. It returns the expression on the left-hand side
of the∧ raised to the power of the expression on the right-hand side.For matrix exponentiation,
see theexpm function.

• <<, <<= performs a left bit shift on the left-hand expression or variable. The right-hand
expression must be a non-negative integer which specifies the number of times to shift the bits
to the left. The left-hand expression or variable must be an integer. The<<= form shifts the
left-hand variable right-hand-many times and saves the result in that variable.

• >>, >>= performs a right bit shift on the left-hand expression or variable. The right-hand
expression must be a non-negative integer which specifies the number of times to shift the bits
to the right. The left-hand expression or variable must be aninteger. The>>= form shifts the
left-hand variable right-hand-many times and saves the result in that variable.

• (X) an operator form of thekron function which implements the tensor or Kronecker product.
The left-hand side is tensored with the right-hand side.

• (. . .) forces precedence for an expression as in any other programming language. An expression
within the parentheses is evaluated before evaluating expressions outside of the parentheses.

• ; the semicolon suppresses output of an expression. For example, x= 1 would store the value of
1 in the variablex and outputx = 1 to standard output, whereasx = 1; would also store the value
of 1 in the variablex but would not output anything to standard output. When a semicolon appears
in a matrix definition, it has a different meaning entirely. Within a matrix definition, a semicolon
denotes the end of a row.

• a( n, k) if a is a variable containing a matrix, then this expression returns the element indexed by
the row indexn and the column indexk. Numbering of indices starts at 1. Unlike languages such
as Matlab, this expression may not be used to assign values toelements of a matrix. It may only be
used to read a particular element from a matrix (e.g.x = a( 1, 2) + 2 is valid, buta( 1, 2) =
3+2 is not). Future versions may support this, however, if thereis demand for such functionality.n
andk must be complex numbers with no imaginary components.n andk must also each be within
10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that
are within this threshold are rounded to the nearest integer(e.g. 9.99999 is interpreted as 10). In
addition,n andk must each be at least 1 after rounding.

• |a:> n, <:a| n Dirac-style syntax for the ket and bra respectively.a may be any state vector or
integer expression, and the complex-conjugate transpose is automatically applied where necessary
when expressing it as a bra or a ket. Ifa is a state vector variable, it may be assigned to using this
syntax. Then portion is an optional integer expression, and it prependsn |0〉 or 〈0| state vectors to
the resulting state. This feature is useful when combining bras and kets whose bit representations
of a have different numbers of bits and therefore ensures the dimensions are the same. The bras
and kets may be concatenated as in standard Dirac notation tocompute inner and outer products.
Examples of this feature are presented in Section 4.

15



• a{n} indexes thenth character or bit ofa if a is a string variable or integer variable, respectively.
n must be an integer expression. This feature can be used to read or set thenth character or bit.
For integers,a{1} is the least-significant bit.

• a( n1, n2, n3, . . .) if a is not a variable containing a matrix, it is considered to be user-defined
function call. n1, n2, andn3 are function arguments that can be expressions or variablesof any
type. There is no constraint on the number of arguments. Alsonote that passing QuIDD arguments
and QuIDD return values only requiresO(1) memory since only a single pointer to the head of a
QuIDD needs to be passed. Arguments passed as parameters to functions are not modified by the
function (i.e. pass-by-value is always used). See Section 3for more details.

• abs(n) computes the complex modulus of the numerical expression, QuIDD matrix, or QuIDD
vectorn. Whenn is a QuIDD matrix or vector, the complex modulus is computed on each element.
In the case of a real-valued numbern, this operation reduces to the standard absolute value.

• atan( n) returns the arc tangent of the expressionn passed as an argument. Ifn is a matrix, it
returns a matrix containing the element-wise arc tangent ofn.

• bn evaluates the binary expressionn as a decimal integer. For example,foo = b100 sets the
variablefoo to the integer value 4. Notice that the left-most bit is the most-significant bit. As a
result, in this example,foo {1} would evaluate to 0, whilefoo {3} would evaluate to 1. Since this
is an ordinary integer expression, it may be used in conjunction with the Dirac notation.|b100:>
would create the QuIDD state vector representation for the state|100〉 for instance.

• cb( “ . . .” ) returns a computational basis state vector. The string literal argument consists of
a sequence of any number and combination of ’0’ and ’1’ characters. The string is parsed from
left to right. Each ’0’ causes a|0〉 to be tensored into the vector, and each ’1’ causes a|1〉 to be
tensored into the vector.cb can easily be used to create density matrices by using it in conjunction
with the complex-conjugate transpose operation (’ ), matrix multiplication, and scalar operations.

• cnot( “ . . .” ) returns a 2-qubit controlled-NOT (CNOT) gate matrix. This is a faster, specialized
version ofcu gate . If a controlled gate matrix with different numbers of controls/targets and/or
a different action (U operator) is desired, then use the more generalcu gate function. The argu-
ment tocnot is a string literal using the same gate specification syntax ascu gate . However, the
only valid parameters accepted bycnot are’cx’ and’xc’ , since these string specifications are the
only possible strings that produce a valid 2-qubit CNOT gatematrix. For example,cnot( ’cx’ )
produces a CNOT gate matrix with the control on the “top” wireand the action (X operator) on
the “bottom” wire. For a discussion of how the concept of wires relates to creating controlled gate
matrices, seecu gate .

• conj( n) returns the complex-conjugate of the expressionn passed as an argument.n can be a
complex number or a matrix.

• cos( n) returns the cosine of the expressionn passed as an argument. Ifn is a matrix, it returns
a matrix containing the element-wise cosine ofn.

• cps( n) returns ann-qubit conditional phase shift (CPS) gate matrix.n must be a complex num-
ber with no imaginary component.n must also be within 10E−5 of an integer value (e.g. 9.99999,
1.00001, and 3 are valid, but 4.5 is not), and values that are within this threshold are rounded to
the nearest integer (e.g. 9.99999 is interpreted as 10). In addition,n must be at least 1 after round-
ing. Always use this function instead of explicitly definingyour own CPS matrix. This function is
asymptotically faster and uses asymptotically less memorythan defining the matrix explicitly. The
conditional phase shift gate is particularly useful in Grover’s quantum search algorithm [8].

16



• cu gate( a, “ . . .” ) is a generalized controlled-U gate matrix creation function. It returns a
controlled or uncontrolled gate matrix given an action matrix (a) and a string literal with the gate
specification (the second argument contained in“ s). The string literal consists of a sequence of
characters. The idea is for the string literal to specify what the gate should do to each “wire” in a
quantum circuit. When conceptualizing a quantum circuit graphically and reading top-down, the
first character corresponds to the first qubit wire, the second character corresponds to the second
qubit wire, etc. Each character can take one of four possiblevalues. ’i’ denotes the identity, which
means that the gate does nothing to the wire at that location.’x’ denotes an action, which means
that the matrix specified by the argumenta is applied to the wire at that location. ’c’ denotes a
control, which means that the wire at that location is used asa control on any ’x’ wire (a|1〉 state
forcesa to operate on any ’x’ wire, whereas a|0〉 causes nothing to happen on any ’x’ wire). ’n’
is a negated control, which is the opposite of ’c’ (a|0〉 state forcesa to operate on any ’x’ wire,
whereas a|1〉 causes nothing to happen on any ’x’ wire). Any sequence of these characters may
be used. Although there is no “actual” circuit, the string characters allow a user to conceptualize
a circuit and construct a matrix which operates on the wires in that conceptualized circuit.a may
be a matrix that operates on more than one qubit as long as one or more blocks of contiguous ’x’
characters appear such that the size of each block is equal tothe number of qubits operated on bya.
For examples, see steaneX.qpro and steaneZ.qpro under the examples/nist/ subdirectory. Always
use this function instead of defining your own gates explicitly, since it is asymptotically faster
and uses asymptotically less memory. Sincecu gate must parse the input specification string,
other functions such ashadamard andcps should be used instead ofcu gate for specific gates
because they do not perform any parsing and are therefore a bit more efficient. An alternative
function name forcu gate is lambda . Also see the alternative, condensed version ofcu gate
discussed next. The alternative version may be preferable for circuits with many qubits.

• cu gate( a, “ . . .”, n ) An alternative syntax forcu gate which takes a condensed string lit-
eral. This condensed string literal specifies only the actions and controls along with the qubit wires
they are applied to. For example, a Toffoli gate in a 5-qubit circuit, with controls on the second and
fourth wires and the action on the fifth wire, can be created with the callcu gate(sigma x(1) ,
“c2c4x5”, 5) . As implied by this example,n is the total number of qubits in the circuit that the
gate is applied to.n must be a complex number with no imaginary component.n must also be
within 10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and val-
ues that are within this threshold are rounded to the nearestinteger (e.g. 9.99999 is interpreted as
10). In addition,n must be at least 1 after rounding. More examples can be found in the examples/
directory and include hadderbf1.qpro and rcadder1.qpro, among others.

• cutoff val If the cutoff value is set, any portion of all QuIDD element values that is less
than the cutoff value will be rounded. For example,cutoff val = 1e−15 will cause all sub-
sequently created QuIDD element values to be rounded at the 15th decimal place. By default, the
cutoff value is not set and no rounding occurs. If the cutoff value is set by the user, it can be reset
to the default (i.e. no rounding) by assigning 0 tocutoff val .

• dump dot( “ . . .”, “ . . .”, a ) outputs thedot form of the graphical QuIDD representation of
the matrix/vectora to a file specified by the second argument. The first argument isthe name
that will appear at the top of the QuIDD image. dot is a simple scripting language supported in
the Graphviz package1 Once the dot file is generated, dot can be run from the command line to
produce a PostScript image of the QuIDD representation as such:

1Graphviz can be obtained athttp://www.graphviz.org/ .

17



dot -Tps filename.dot -o filename.ps
dot can generate other graphical file formats as well. Consult Graphviz for more details. A simple
example is contained in the examples/dot subdirectory.

• echo( “ . . .” ) prints the string literal passed as an argument to standard output. Putting one or
more semicolons afterecho does not suppress its output.echo has no return value, so it cannot
be used in expressions.

• else program flow control construct that is part of an “if-elseif-else” control block sequence.
Its meaning is the same as in just about any other language. Only oneelse may optionally appear
in an “if-elseif-else” block, and it must appear only at the end of the block. If anelse block is
used, its body (a sequence of zero or more expressions and/orcontrol blocks to be executed) must
be terminated by anend even if the body is empty. The body followingelse is executed when
the precedingif andelseif conditions evaluate to “false” (i.e. a complex numbered value of
zero).

• elseif program flow control construct that is part of an “if-elseif-else” control block sequence.
Its meaning is the same as in just about any other language. Itcontains a condition which is an
expression enclosed in parentheses. Zero or moreelseif ’s may appear in an “if-elseif-else”
block, but the firstelseif must appear after anif , and the lastelseif must appear before
an optionalelse . If no else appears after anelseif , the body of theelseif (a sequence
of zero or more expressions and/or control blocks to be executed) must be terminated by anend
even if the body is empty. The condition determines whether or not the statements in the body are
executed. The body of theelseif is executed when the following two conditions are met: 1.) the
precedingif andelseif conditions evaluate to “false” (i.e. a complex numbered value of zero),
and 2.) theelseif condition evaluates to “true” (i.e. any non-zero complex numbered value).

• end keyword that signifies the end of a program flow control construct. In other words,end
should be used to denote the end of “if-elseif-else” and “while” blocks.

• exp( n) returnsen. If n is a matrix, then it returns a matrix containing the element-wise compu-
tation ofek wherek is an element fromn.

• expm( n) returnsen, wheren is a matrix. This is standard matrix exponentiation and is ap-
proximated by a finitely bounded Taylor series. In the current version of the QuIDDPro simulator,
you may only applyexpm to a matrixn whose dimensions do not exceed 8× 8 for efficiency
reasons. Future versions may support larger dimensional arguments, but it is unlikely that larger
dimensional arguments will be needed for most quantum-mechanics applications. Ifn is a complex
number, then it returnsen.

• eye( n) returns ann× n identity matrix. If you only need an identity matrix whose dimen-
sions are a power of 2 in size (e.g. fork-qubit identity gate matrices) then useidentity(k) instead
(see below), which runs slightly faster.n must be a complex number with no imaginary compo-
nent. n must also be within 10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid,
but 4.5 is not), and values that are within this threshold are rounded to the nearest integer (e.g.
9.99999 is interpreted as 10). In addition,n must be at least 1 after rounding. Always useeye or
identity instead of defining identity matrices explicitly because they are asymptotically faster
and use asymptotically less memory.

• fredkin() returns a Fredkin gate matrix.

• function var name= func name( n1, n2, n3, . . .) defines a function body. This definition
should exist in a file by itself with a filename that matchesfunc nameappended by the “.qpro”

18



or “.qp” extensions.var nameis the name of the variable that contains the return value.n1, n2,
and n3 are function parameters that can be of any type. There is no constraint on the number
of parameters. Also note that passing QuIDD arguments and QuIDD return values only requires
O(1) memory since only a single pointer to the head of a QuIDD needsto be passed. Arguments
passed as parameters to functions are not modified by the function (i.e. pass-by-value is always
used). Following the return value/function name line, the script code comprising the function body
should appear. See Section 3 for more details.

• gen amp damp( d, p, n, a) performs generalized amplitude dampening (see [9, p. 382] for a
description of generalized amplitude dampening).a is a density matrix (it must be square and have
dimensions that are a power of 2 in size) on which dampening isto be performed.a is not modified,
but the result of dampening applied toa is returned.d is the dampening parameter and must be a
complex number with no imaginary component.p is the probability parameter and must also be a
complex number with no imaginary component.d andp must each be in the range[0,1]. n is the
qubit wire number that dampening is to be applied to. This wire number is only conceptual and can
alternatively be thought of as thenth quantum state in the density matrix (seecu gatefor a more
detailed description of wire numbers and steaneX.qpro and steaneZ.qpro under examples/nist/ for
examples).n must be a complex number with no imaginary component.n must also be within
10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that
are within this threshold are rounded to the nearest integer(e.g. 9.99999 is interpreted as 10). In
addition,n must be at least 1 after rounding.

• get bit(n, a) returns the value of thenth bit of the integera. n = 1 is the least-significant
bit.

• gp equals(a, b) returns a 2-element row vector, where the the first element isa 1 (0) if a
andb are (not) equal up to global phase, and the second element is the global phase factor if the
first element is a 1.a andb must be QuIDD matrices or vectors. Examples of this functionare
presented in Section 5.

• hadamard( n) , H(n) returns ann-qubit Hadamard gate matrix.n must be a complex number
with no imaginary component.n must also be within 10E−5 of an integer value (e.g. 9.99999,
1.00001, and 3 are valid, but 4.5 is not), and values that are within this threshold are rounded to the
nearest integer (e.g. 9.99999 is interpreted as 10). In addition,n must be at least 1 after rounding.
Always use this function instead of explicitly defining yourown Hadamard matrix. This function
is asymptotically faster and uses asymptotically less memory than defining the matrix explicitly.

• i is a variable that is preset to the value 0+1i. It can be overwritten at runtime by the user.

• identity( n) returns ann-qubit identity gate matrix.n must be a complex number with no
imaginary component.n must also be within 10E−5 of an integer value (e.g. 9.99999, 1.00001,
and 3 are valid, but 4.5 is not), and values that are within this threshold are rounded to the nearest
integer (e.g. 9.99999 is interpreted as 10). In addition,n must be at least 1 after rounding. Always
use this function instead of explicitly defining your own identity matrix. This function is asymp-
totically faster and uses asymptotically less memory than defining the matrix explicitly. Also see
theeyefunction.

• if program flow control construct that is part of an “if-elseif-else” control block sequence.
Its meaning is the same as in just about any other language. Itcontains a condition which is
an expression enclosed in parentheses. An “if-elseif-else” block must be started by a singleif ,
but “if-elseif-else” blocks can be nested within other “if-elseif-else” blocks (nesting with “while”
blocks is also allowed). Anif must be followed by a body of zero or more expressions and/or

19



control blocks, and this body must be terminated by either anelseif , an else , or anend ,
even if the body is empty. The condition determines whether or not the statements in the body are
executed. The body is executed once if the condition evaluates to “true” (i.e. any non-zero complex
numbered value). Otherwise if the condition evaluates to “false” (i.e. a complex numbered value
of zero), the body is not executed.

• kron( n, k) returns the tensor (Kronecker) product of the matrix expressionsn andk. If n andk
are complex numbers, then they are multiplied together.

• lambda( a, “ . . .” ) an alternative name for the functioncu gate .

• measure( n, a) performs deterministic measurement on thenth qubit in the density matrix
a. In other words, all off-diagonal correlations corresponding to the qubit being measured are
zeroed out, and the resultant density matrix is returned (for probabilistic measurement of a qubit
in a density matrix that returns a 1 or 0, seepmeasure ). a must be square and have dimensions
that are a power of 2 in size.a is not modified, but the result of measurement applied toa is
returned.n is the qubit wire number that measurement is to be applied to.This wire number is
only conceptual and can alternatively be thought of as thenth quantum state in the density matrix
(seecu gatefor a more detailed description of wire numbers and steaneX.qpro and steaneZ.qpro
under examples/nist/ for examples).n must be a complex number with no imaginary component.
n must also be within 10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5
is not), and values that are within this threshold are rounded to the nearest integer (e.g. 9.99999 is
interpreted as 10). In addition,n must be at least 1 after rounding.

• measure sv( n, a) probabilistic measurement is performed on qubitn. A state vector is re-
turned which represents the state vectora as modified by the measurement result and its associated
norm. If the measurement result and the associated norm havealready been computed with a pre-
vious call topmeasure norm sv , thenmeasure sv can be called with the alternative syntax
measure sv( n, a, res, norm) . res andnorm denote the precomputed measurement result and
associated norm, respectively. Sincea must be a state vector, one of the dimensions must be 1,
and the other dimension must be a power of 2.a is not modified by this function.n must be a
complex number with no imaginary component.n must also be within 10E−5 of an integer value
(e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within this threshold are
rounded to the nearest integer (e.g. 9.99999 is interpreted as 10). In addition,n must be at least 1
after rounding.resmust have the value 0 or 1 to within the rounding threshold.normshould be a
valid norm of a state vector.

• measure sv0( n, a) returns the probability of measuring qubitn as a 0 in state vectora (for
probabilistic measurement of a qubit in a state vector that returns a 1 or 0, seepmeasure sv ).
Sincea must be a state vector, one of the dimensions must be 1, and theother dimension must be
a power of 2.a is not modified by this function.n must be a complex number with no imaginary
component.n must also be within 10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are
valid, but 4.5 is not), and values that are within this threshold are rounded to the nearest integer
(e.g. 9.99999 is interpreted as 10). In addition,n must be at least 1 after rounding.

• measure sv1( n, a) returns the probability of measuring qubitn as a 1 in state vectora (for
probabilistic measurement of a qubit in a state vector that returns a 1 or 0, seepmeasure sv ).
Sincea must be a state vector, one of the dimensions must be 1, and theother dimension must be
a power of 2.a is not modified by this function.n must be a complex number with no imaginary
component.n must also be within 10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are

20



valid, but 4.5 is not), and values that are within this threshold are rounded to the nearest integer
(e.g. 9.99999 is interpreted as 10). In addition,n must be at least 1 after rounding.

• norm( a) returns the norm of a state vector or complex numbera. Sincea must be a state vector,
one of the dimensions must be 1, and the other dimension must be a power of 2.

• one merge(a) returns the result of changing every non-zero element ofa into a 1.a must be
a QuIDD matrix, QuIDD vector, or a number. As discussed in Section 5, this function can be used
to determine a necessary condition for two operators or states to be equal up to relative phase.

• output prec denotes the output precision. When assigned a non-negativeinteger value, it
specifies how many digits should be output to the screen. Any digits which exceed this number
are rounded. For example,output prec = 3 will cause 1/3 to output 0.333 to the screen.
Note that the internal precision of any numbers and variables are unaffected.output prec only
affects the screen output precision. By default, the variable output prec is not set, but the
output precision is initially 6. Assigning a negative valueto output prec restores the default
output precision. However, assigning a matrix tooutput prec leaves the precision unchanged
from its previous value.

• phase(n) returns ann-qubit Phase gate matrix (aka.S gate [9]). n must be a complex number
with no imaginary component.n must also be within 10E−5 of an integer value (e.g. 9.99999,
1.00001, and 3 are valid, but 4.5 is not), and values that are within this threshold are rounded to the
nearest integer (e.g. 9.99999 is interpreted as 10). In addition,n must be at least 1 after rounding.
Always use this function instead of explicitly defining yourown Phase matrix. This function is
asymptotically faster and uses asymptotically less memorythan defining the matrix explicitly.

• pi is a variable that is preset to the value ofπ to a large number of decimal places. It can be
overwritten at runtime by the user.

• pmeasure( n, a) performs probabilistic measurement on thenth qubit in the density matrixa.
The result returned is a 1 or 0 (for deterministic measurement of a qubit in a density matrix, see
measure ). a must be square and have dimensions that are a power of 2 in size. a is not modified
by this function.n must be a complex number with no imaginary component.n must also be within
10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that
are within this threshold are rounded to the nearest integer(e.g. 9.99999 is interpreted as 10). In
addition,n must be at least 1 after rounding.

• pmeasure norm sv( n, a) performs probabilistic measurement on thenth qubit in the state
vectora. A 1×2 vector is returned containing a 1 or 0 for the measurement result (the first element)
and the norm associated with the measurement result (the second element). Sincea must be a state
vector, one of the dimensions must be 1, and the other dimension must be a power of 2.a is not
modified by this function.n must be a complex number with no imaginary component.n must also
be within 10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and
values that are within this threshold are rounded to the nearest integer (e.g. 9.99999 is interpreted
as 10). In addition,n must be at least 1 after rounding.

• pmeasure sv( n, a) performs probabilistic measurement on thenth qubit in the state vector
a. The result returned is a 1 or 0 (for deterministic measurement of a qubit in a state vector see
measure sv0 andmeasure sv1 . Sincea must be a state vector, one of the dimensions must
be 1, and the other dimension must be a power of 2.a is not modified by this function.n must be a
complex number with no imaginary component.n must also be within 10E−5 of an integer value
(e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within this threshold are

21



rounded to the nearest integer (e.g. 9.99999 is interpreted as 10). In addition,n must be at least 1
after rounding.

• proj0( n) returns ann-qubit |0〉 projector gate matrix (i.e.|0. . .0〉〈0. . .0|, for n 0’s). n must be
a complex number with no imaginary component.n must also be within 10E−5 of an integer value
(e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within this threshold are
rounded to the nearest integer (e.g. 9.99999 is interpreted as 10). In addition,n must be at least
1 after rounding. Always use this function instead of explicitly defining your own|0〉 projector
matrix. This function is asymptotically faster and uses asymptotically less memory than defining
the matrix explicitly.

• proj1( n) returns ann-qubit |1〉 projector gate matrix (i.e.|1. . .1〉〈1. . .1|, for n 1’s). n must be
a complex number with no imaginary component.n must also be within 10E−5 of an integer value
(e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within this threshold are
rounded to the nearest integer (e.g. 9.99999 is interpreted as 10). In addition,n must be at least
1 after rounding. Always use this function instead of explicitly defining your own|1〉 projector
matrix. This function is asymptotically faster and uses asymptotically less memory than defining
the matrix explicitly.

• projplus( n) returns ann-qubit |+〉 projector gate matrix (i.e.|+ . . .+〉〈+ . . .+ |, for n +’s).
n must be a complex number with no imaginary component.n must also be within 10E−5 of an
integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within this
threshold are rounded to the nearest integer (e.g. 9.99999 is interpreted as 10). In addition,n must
be at least 1 after rounding. Always use this function instead of explicitly defining your own|+〉
projector matrix. This function is asymptotically faster and uses asymptotically less memory than
defining the matrix explicitly.

• ptrace( n, a) performs the partial trace over thenth qubit in the density matrixa. a must
be square and have dimensions that are a power of 2 in size.a is not modified, but the result
of the partial trace applied toa is returned.n is the qubit wire number that is traced over. This
wire number is only conceptual and can alternatively be thought of as thenth quantum state in the
density matrix (seecu gatefor a more detailed description of wire numbers and steaneX.qpro and
steaneZ.qpro under examples/nist/ for examples).n must be a complex number with no imaginary
component.n must also be within 10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are
valid, but 4.5 is not), and values that are within this threshold are rounded to the nearest integer
(e.g. 9.99999 is interpreted as 10). In addition,n must be at least 1 after rounding.

• px( p, n, a) applies a probabilistic PauliX gate matrix to thenth qubit in the density matrix
a. a must be square and have dimensions that are a power of 2 in size. a is not modified, but the
result of dampening applied toa is returned.p is the probability parameter and must be a complex
number with no imaginary component.p must be in the range[0,1]. n is the qubit wire number that
the probabilisticX gate matrix is to be applied to. This wire number is only conceptual and can
alternatively be thought of as thenth quantum state in the density matrix (seecu gatefor a more
detailed description of wire numbers and steaneX.qpro and steaneZ.qpro under examples/nist/ for
examples).n must be a complex number with no imaginary component.n must also be within
10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that
are within this threshold are rounded to the nearest integer(e.g. 9.99999 is interpreted as 10). In
addition,n must be at least 1 after rounding.

• Px( p, n, a) an alternative name for the functionpx .

22



• py( p, n, a) applies a probabilistic PauliY gate matrix to thenth qubit in the density matrix
a. a must be square and have dimensions that are a power of 2 in size. a is not modified, but the
result of dampening applied toa is returned.p is the probability parameter and must be a complex
number with no imaginary component.p must be in the range[0,1]. n is the qubit wire number
that the probabilisticY gate matrix is to be applied to. This wire number is only conceptual and can
alternatively be thought of as thenth quantum state in the density matrix (seecu gatefor a more
detailed description of wire numbers and steaneX.qpro and steaneZ.qpro under examples/nist/ for
examples).n must be a complex number with no imaginary component.n must also be within
10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that
are within this threshold are rounded to the nearest integer(e.g. 9.99999 is interpreted as 10). In
addition,n must be at least 1 after rounding.

• Py( p, n, a) an alternative name for the functionpy .

• pz( p, n, a) applies a probabilistic PauliZ gate matrix to thenth qubit in the density matrix
a. a must be square and have dimensions that are a power of 2 in size. a is not modified, but the
result of dampening applied toa is returned.p is the probability parameter and must be a complex
number with no imaginary component.p must be in the range[0,1]. n is the qubit wire number
that the probabilisticZ gate matrix is to be applied to. This wire number is only conceptual and can
alternatively be thought of as thenth quantum state in the density matrix (seecu gatefor a more
detailed description of wire numbers and steaneX.qpro and steaneZ.qpro under examples/nist/ for
examples).n must be a complex number with no imaginary component.n must also be within
10E−5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that
are within this threshold are rounded to the nearest integer(e.g. 9.99999 is interpreted as 10). In
addition,n must be at least 1 after rounding.

• Pz( p, n, a) an alternative name for the functionpz .

• qp epsilon When creating new QuIDD element values, a cache is checked internally to see
if those values have already been created. The more repeatedvalues there are in a matrix, the
more the matrix is compressed by its QuIDD representation. When checking the cache, QuIDD-
Pro compares the equality of a new value to other values already in the cache to using an epsilon.
Specifically,a andb are considered equal ifabs(a−b) < epsilon∗a andabs(a−b) < epsilon∗b.
Epsilon can be changed by assigning values toqp epsilon . By default, the epsilon value is
1e−8. Currently, the epsilon value is not always used when creating new QuIDD element values,
but in future versions of QuIDDPro, the epsilon value will play a much greater role.

• quidd info( a) prints information about an operator or state to standard output. This infor-
mation includes the number of qubits represented (or acted upon), the dimensions of the explicit
representation of the matrix, and the number of nodes in the QuIDD representation of the matrix.
Note that the explicit matrix representation is not actually stored anywhere.a must be a valid
operator, state vector, or density matrix.

• r2 is a variable that is preset to the value of
√

2 to a large number of decimal places. It can be
overwritten at runtime by the user.

• r3 is a variable that is preset to the value of
√

3 to a large number of decimal places. It can be
overwritten at runtime by the user.

• rand( n) returns a pseudo-random value between 0 andn. n can be any real value, including
negative values.

• round( n) returnsn with its real and imaginary parts rounded to the nearest integer. “Halfway”
cases are rounded away from 0. Since there is no native integer type supported in QuIDDPro,

23



round can be extremely helpful in ensuring that values whichare supposed to be integer values are
indeed integer values.

• rp equals op(a, b) returns a vector containing relative phase factors ifa andb are equal up
to relative phase, otherwise it returns a vector of 0’s.a andb must be QuIDD matrices. Examples
of this function are presented in Section 5.

• rp equals sv(a, b) returns a vector containing relative phase factors ifa andb are equal
up to relative phase, otherwise it returns a vector of 0’s.a andb must be QuIDD state vectors.
Examples of this function are presented in Section 5.

• run “ . . .” executes all script code contained in the file specified by theargument. The run
command may appear anywhere in a script except inside an explicit matrix. This command is ideal
for declaring variables that may be re-used in multiple projects.

• rx( n, k) returns ak-qubit rotational PauliX gate matrix given a real valued angle parametern. n
must be a complex number with no imaginary component.n must be in the range[0,1]. k must be a
complex number with no imaginary component.k must also be within 10E−5 of an integer value
(e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within this threshold are
rounded to the nearest integer (e.g. 9.99999 is interpreted as 10). In addition,k must be at least 1
after rounding.

• Rx( n, k) an alternative name for the functionrx .

• ry( n, k) returns ak-qubit rotational PauliY gate matrix given a real valued angle parametern. n
must be a complex number with no imaginary component.n must be in the range[0,1]. k must be a
complex number with no imaginary component.k must also be within 10E−5 of an integer value
(e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within this threshold are
rounded to the nearest integer (e.g. 9.99999 is interpreted as 10). In addition,k must be at least 1
after rounding.

• Ry( n, k) an alternative name for the functionry .

• rz( n, k) returns ak-qubit rotational PauliZ gate matrix given a real valued angle parametern. n
must be a complex number with no imaginary component.n must be in the range[0,1]. k must be a
complex number with no imaginary component.k must also be within 10E−5 of an integer value
(e.g. 9.99999, 1.00001, and 3 are valid, but 4.5 is not), and values that are within this threshold are
rounded to the nearest integer (e.g. 9.99999 is interpreted as 10). In addition,k must be at least 1
after rounding.

• Rz( n, k) an alternative name for the functionrz .

• set bit(n, a) sets the value of thenth bit of the integera. n = 1 is the least-significant bit.

• sigma x( n) returns ann-qubit PauliX gate matrix. n must be a complex number with no
imaginary component.n must also be within 10E−5 of an integer value (e.g. 9.99999, 1.00001,
and 3 are valid, but 4.5 is not), and values that are within this threshold are rounded to the nearest
integer (e.g. 9.99999 is interpreted as 10). In addition,n must be at least 1 after rounding. Always
use this function instead of explicitly defining your ownX matrix. This function is asymptotically
faster and uses asymptotically less memory than defining thematrix explicitly.

• sigma y( n) returns ann-qubit PauliY gate matrix. n must be a complex number with no
imaginary component.n must also be within 10E−5 of an integer value (e.g. 9.99999, 1.00001,
and 3 are valid, but 4.5 is not), and values that are within this threshold are rounded to the nearest
integer (e.g. 9.99999 is interpreted as 10). In addition,n must be at least 1 after rounding. Always

24



use this function instead of explicitly defining your ownX matrix. This function is asymptotically
faster and uses asymptotically less memory than defining thematrix explicitly.

• sigma z( n) returns ann-qubit PauliZ gate matrix. n must be a complex number with no
imaginary component.n must also be within 10E−5 of an integer value (e.g. 9.99999, 1.00001,
and 3 are valid, but 4.5 is not), and values that are within this threshold are rounded to the nearest
integer (e.g. 9.99999 is interpreted as 10). In addition,n must be at least 1 after rounding. Always
use this function instead of explicitly defining your ownX matrix. This function is asymptotically
faster and uses asymptotically less memory than defining thematrix explicitly.

• sin( n) returns sine of the expressionn passed as an argument. Ifn is a matrix, it returns a
matrix containing the element-wise sine ofn.

• tan( n) returns the tangent of the expressionn passed as an argument. Ifn is a matrix, it returns
a matrix containing the element-wise sine ofn.

• sqrt( n) returns the square root of the expressionn passed as an argument. Ifn is a matrix, it
returns a matrix containing the element-wise square root ofn.

• swap( n, k, a) returns the vector resulting from swapping qubitsn andk in the state vectora.
This function swaps qubitsmuch more quicklythan swapping usingCNOT and Hadamard gates.
Sincea must be a state vector, one of the dimensions must be 1, and theother dimension must
be a power of 2.a is not modified by this function.n andk must be complex numbers with no
imaginary components.n andk must also be within 10E− 5 of an integer value (e.g. 9.99999,
1.00001, and 3 are valid, but 4.5 is not), and values that are within this threshold are rounded to the
nearest integer (e.g. 9.99999 is interpreted as 10).n andk must also be at least 1 after rounding.

• tic starts a timer and also starts to record the peak memory usagefrom the pointtic is called.
tic has no return value, so it cannot be used in expressions. The timer only records time spent
and memory used while running code. Thus, in the case of interactive mode, the timer will not be
recording time spent nor memory used while at an idle prompt.

• toc stops a timer started by a previoustic or toc command. It outputs to standard output
the time that has elapsed (i.e. time spent running code), thenumber of gates applied, the average
runtime per gate, and memory that was used (peak memory) since the lasttic or toc command.
It also outputs the base memory which is the memory used in initializing the simulator and reading
the input code. Base memory should be interpreted as a one-time initialization cost of the simulator
and should not be considered when measuring performance. Please see Appendix B for more de-
tails. Operations that are recorded as applied gates include matrix multiplication,gen amp damp,
measure , measure sv , Px, Py, andPz.

• toffoli( “ . . .” ) returns a 3-qubit Toffoli gate matrix. This is a faster, specialized version of
cu gate . If a controlled gate matrix with different numbers of controls/targets and/or a different
action (U operator) is desired, then use the more generalcu gate function. The string argument
uses the same syntax as that ofcu gate . However,toffoli only accepts the strings’ccx’, ’cxc’,
and ’xcc’, since these are the only valid Toffoli specifications. For example,toffoli( ’ccx’)
produces a Toffoli gate matrix with the controls on the “top”two wires and the action (X operator)
on the “bottom” wire. For a discussion of how the concept of wires relates to creating controlled
gate matrices, seecu gate .

• while program flow control construct that allows multiple iterations of a body of code (“loop-
ing”). Its meaning is the same as in just about any other language. It contains a condition which
is an expression enclosed in parentheses. A “while” block must be started by a singlewhile , but

25



“while” blocks can be nested within other “while” blocks (nesting with “if-elseif-else” blocks is
also allowed). Awhile must be followed by a body of zero or more expressions and/or control
blocks, and this body must be terminated by anend , even if the body is empty. The condition
determines whether or not the statements in the body are executed. As long as the condition eval-
uates to “true” (i.e. any non-zero complex numbered value),the body is iteratively executed. The
iterations stop when the condition becomes “false” (i.e. a complex numbered value of zero). The
condition is checked once prior to executing each iterationof the body.

• zeros( n, k) returns ann× k matrix of all 0’s. x andy must be complex numbers with no
imaginary components.n andk must be complex numbers with no imaginary component.n and
k must also each be within 10E− 5 of an integer value (e.g. 9.99999, 1.00001, and 3 are valid,
but 4.5 is not), and values that are within this threshold are rounded to the nearest integer (e.g.
9.99999 is interpreted as 10). In addition,n andk must each be at least 1 after rounding. Always
usezerosinstead of defining zero matrices explicitly because it is asymptotically faster and uses
asymptotically less memory.

9 Ongoing Work

We are currently implementing and considering several new features, mentioned below. Feedback on
the relevance and utility of these features and requests forother features are greatly appreciated.

• We are looking to extend the interface between the QuCirc data structure and the QuIDDPro sim-
ulator. In particular, we are developing a feature that allows the user to load pre-compiled circuits
into memory and built-in functions to apply such circuits during interactive mode.

• Equivalence checking can be improved for circuits with onlyclassical gates (NOT, CNOT, Toffoli,
SWAP and Fredkin). When checking two such circuits, one can convert each gate to AND and
XOR gates, and use fast verification tools such as ABC/CEC [17]. We are developing QuIDDPro
functions to detect such cases and make external calls to ABCautomatically.

• For matrices with too little structure, using an array-based matrix representation instead of a
QuIDD may improve runtime performance. Thus, we are developing heuristics for switching in-
ternally between explicit matrices and QuIDDs “on the fly.” We also hope to decrease memory
consumption and runtime of QuIDDPro by enhancing the QuIDD datastructure.

• Other extensions to the input language may also be useful. Weare looking at alternative input
languages, including [15], to explore such extensions.

• More examples will be added to the QuIDDPro package. For example, we are planning to use
QuIDDPro to simulate quantum adiabatic computation, amongother applications. However, since
it is difficult to envision all potential quantum-mechanical contexts in which QuIDDPro can be
applied,user feedback can be particularly helpful in this regard. We will incorporate QuIDD-
Pro code submitted by users into the package, with proper credits.

26



Appendix A: New Features in version 3.8

• New features

– Support for construction of Phase matrices directly using abuilt-in function. This is particu-
larly useful for simulating stabilizer circuits.

– Batch-mode options for simulating a UMICH 1.0 quantum circuit description file using an
optimized version of QuIDDPro. See Sections 6 and 7 for details.

• Bug fixes

– Fixed a bug that crashed the application when a user typed tabor backspace during interactive
mode.

Appendix B: New Features in version 3.5

• New features

– Support for left-multiplication via =*. This is useful for applying operators to state vectors.
The script examples in this document illustrate how to use this feature.

– Compilation mode for generating a UMICH 1.0 quantum circuitdescription file from a QuIDD-
Pro script. See Section 6 for details.

• New example scripts

– qft/ directory inexamples/ contains functions for calculating the QFT and inverse QFT.

Appendix C: New Features in version 3.1

• New features

– Efficient functions for checking equivalence up to global and relative phase of operators and
states. The phase factors are also computed by most of these functions. See Section 5 for
details. The algorithms that these functions are based on are described in [14].

– Support for Dirac-style notation. See Section 4 for details.

– Support for string data types, including variable storage and string manipulation, has been
added. Section 4 has examples of this feature. This feature makes thecu gate function
much easier to use.

– New operators including+=, -= , * =, and/= .

– Bit manipulation operators including<< and>>. Also functions to get and set individual bits
of an integer variable have been added.

– Binary integer expressions are now supported using thebn syntax.

– Theabs function has been added, which implements the complex modulus operation.

– Alternate syntax for thekron function in the form of the(X) operator, which makes writing
Dirac-style expressions more natural.

– Alternate syntax for thehadamard function. H is now syntactic short-hand for it.

• New example scripts

– New example scripts have been added which demonstrate all ofthe new features.

27



• C++ compatibility

– A C++ library and API are available to use QuIDDPro in C++ programs.

• Bug fixes

– A bug which degraded runtime and memory performance when using loops and function calls
within tight loops has been fixed.

– In some cases when multiplying a call tocu gate with a state vector, the state vector was
modified incorrectly. This bug has been fixed.

– Fixed thecnot and toffoli functions, which previously would incorrectly modify state
vectors in certain cases.

Appendix C: Notes on Performance Analysis

The QuIDDPro simulator uses the QuIDDPro library developedin C++ by George Viamontes at the
University of Michigan. This library is integrated as a back-end. The Bison-generated front-end parser
accepts a “QuIDDPro input language” similar to Matlab (see Section 8).

The commandstic andtocreport runtime, base, and peak memory (see Section 8). The base memory
refers to the initialization of the simulator and input, rather than the simulation itself. The peak memory
refers to the usage by the simulation back-end between thetic andtoc commands. The sum of these
two readings gives the memory required to run the overall simulation. The base memory due to the
simulator initialization is a constant of about 10.5MB on Linux, and may be larger on Solaris. Most
of this base memory is due to initialization of the CUDD manager. For large quantum circuits, this
overhead is often dwarfed by asymptotic improvements of QuIDDs over array-based representations of
states and operators.

References

[1] G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Graph-based simulation of quantum computation in
the density matrix representation,”Quantum Information and Computation, 5 (2), pp. 113-130, 2005.

[2] G. F. Viamontes, I. L. Markov, J. P. Hayes, ”Improving Gate-Level Simulation of
Quantum Circuits,” Quantum Information Processing, 2 (5), 347-380, October 2003.
http://www.arxiv.org/abs/quant-ph/0309060

[3] G. F. Viamontes, I. L. Markov, J. P. Hayes, ”Is Quantum Search Practi-
cal?” Computing in Science and Engineering, 7 (4), pp. 22-30, May/June 2005.
http://www.arxiv.org/abs/quant-ph/0405001

[4] G. F. Viamontes, M. Rajagopolan, I. L. Markov, and J. P. Hayes, “Gate-level simulation of quantum
circuits,” Proc. of ACM/IEEE Asia and South-Pacific Design Automation Conf. (ASPDAC), pp. 295-
301, Kitakyushu, Japan, January 2003.

[5] P. E. Black et al., “Quantum compiling and simulation,”
http://hissa.nist.gov/˜black/Quantum/

[6] libquantum,http://www.enyo.de/libquantum/

[7] ”QHDL: A Design Language for Quantum Computing,”
http://www.atcorp.com/Projects/Quantum%20computing/ quantum.htm

28



[8] L. Grover, “Quantum mechanics helps in searching for a needle in a haystack,”Phys. Rev. Lett.(79),
pp. 325-8, 1997.

[9] M. A. Nielsen and I. L. Chuang,Quantum Computation and Quantum Information, Cambridge
Univ. Press, 2000.

[10] A. M. Childs, H. L. Haselgrove, and M. A. Nielsen, “Lowerbounds on the complexity of simulating
quantum gates,”Phys. Rev. A(68), 052311, 2003.

[11] A. Barenco et al., “Elementary gates for quantum computation,” Phys. Rev. A, 52, pp. 3457-3467,
1995.

[12] V. V. Shende, S. S. Bullock, I. L. Markov, “Synthesis of quantum logic circuits,”IEEE Trans. on
Computer-Aided Design, 25, pp. 1000-1010, 2006.

[13] G. Song and A. Klappenecker, “Optimal realizations of simplified Toffoli gates,”Quantum Infor-
mation and Computation, 4, pp. 361-372, 2004.

[14] G. F. Viamontes, “Efficient Quantum Circuit Simulation,” Ph.D. Dissertation at the University of
Michigan, 2007.

[15] Andrew Petersen and Mark Oskin, “A new algebraic foundation for quantum programming lan-
guages,” In the 2nd workshop on Non-Silicon Computing (NSC)at ISCA, June 2003.

[16] S. Aaronson and D. Gottesman, “Improved simulation of stabilizer circuits,” Phys. Rev. A, 70,
052328, 2004,http://www.scottaaronson.com/chp/

[17] R. Brayton and A. Mishchenko, “ABC: An Academic Industrial-Strength Ver-
ification Tool,” Computer-aided Verification (CAV), 6174, pp. 24-40, 2010,
http://www.eecs.berkeley.edu/ alanmi/abc/

29


