Outline

- Overall Goal
- Quantum Error Correction
- Quantum Computer Architecture
- Conclusions

Goal

Provide a general-purpose architecture for quantum computation

- quantum storage
- quantum ALU
- data paths
- classical control circuits
- system integration

Important consideration: Reduce error-correction overhead

Quantum Error Correction

QEC can be used to combat the effects of decoherence and noisy gates

Single error correcting code decreases error prob. from $p \Rightarrow cp^2$

Recursively applying: $p \Rightarrow cp^2 \Rightarrow (cp^2)^2 \Rightarrow \ldots \Rightarrow (cp)^{2^k}/c$

Error decreases exp. while increase in overhead is "only" poly.
Error Correction Overhead

Recursive QEC can introduce large overheads

For example (using the Steane [7, 1] code):

<table>
<thead>
<tr>
<th>Recursion level (k)</th>
<th>Storage overhead 7^k</th>
<th>Operation overhead 153^k</th>
<th>Minimum time overhead 5^k</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>2,868,577</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>2,401</td>
<td>147,921,983</td>
<td>125</td>
</tr>
<tr>
<td>4</td>
<td>16,807</td>
<td>53,441,356,953</td>
<td>3,125</td>
</tr>
</tbody>
</table>

Critical to only use as much error correction as necessary

Quantum Computer Architecture

- Classical Compiler/Scheduler
- Quantum ALU
- Quantum Memory
- Quantum Wires
- Code Teleporter

Compilers

- **Static Precompiler**
 - Generates code for target error rate on ideal quantum computer
 - No knowledge of error model

- **Dynamic Compiler**
 - Produces instructions for FT-computation
 - Dynamically determines necessary error correction

Dynamic Scheduler

Dynamically translates logical quantum ops => physical qubit ops

- Uses knowledge of input data size & physical qubit error rates
- Controls quantum ALU, code teleportation & memory refresh units

Critical to making architecture efficient—should be fast
Quantum ALU

Performs elementary ops fault-tolerantly on encoded states
- Hadamard
- Identity
- bit flip (X)
- phase flip (Z)
- combined bit & phase flip (Y)
- phase (S)
- $\pi/8$ (T)
- C-NOT (CNOT)

Specialized HW provides fresh ancilla

Quantum Memory

Key: Memory should be more reliable than computation
(Could make use of decoherence-free subsystems)

Logical qubits periodically "refreshed" with dedicated hardware

Quantum Wires

Use quantum teleportation to move qubits

No need to transmit qubits, only shared cat states and classical bits

Code Teleportation

Use teleportation to convert between codes

Can use space-efficient code for memory and operation-efficient code for computation
Error Correction Optimization

Recursive EC increases in steps
Leads to unnecessarily large overhead

Classical processor aggregates cost of EC over several ops

Conclusions

- Practical architecture will require error rates between 10^{-6} and 10^{-9}
- Reliability of underlying technology crucial
- Error correction overhead is most pressing issue