Efficient Permutation
¥ Instructions for Fast
Software Cryptography

Aditya Prasad
2/10/02

Introduction

@ Want to perform permutations in
software

@ Current ISAs do not provide efficient bit-
level software permutations

Motivations

@ Facilitates more widespread use of
e Secure information processing
e Faster multimedia processing

@ Current processors are word-oriented,
so bit-level permutations are hard.

Secure Information

Processing
@ Authentication of users and host
machines
@ Confidentiality of messages sent over
public networks
@ Assurance that messages, programs,
and data have not changed in transit

Secure Information
Processing, cont’d

@ Access control

@ Provisions to ensure
e privacy
e anonymity
¢ availability of essential services

Question

@ “What general-purpose operations

should this programmable processor
incorporate so that it can execute
cryptographic functions without
significant performance degradation?”

Symmetric-key
cryptography

@ Break message into blocks and use

¢ Confusion, to obscure relationship between

plaintext and ciphertext
¢ Diffusion, to spread redundancy of
plaintext over ciphertext
@ Used by DES (Data Encryption
Standard), needs to be sped up

Quick Multimedia
Processing

@ Required for fast processing of

multimedia instructions

@ Many ISA extensions do not provide

subword permutation instructions

New Permutation

Instructions
@ Permuting n 1-bit elements, multi-bit
elements in an n-bit word
@ Previously, arbitrary n-bit permutations
took O(n) time.
@ Created four new methods: PPERM,
GRP, CROSS, OMFLIP

Some math

@ Number of n-bit permutations
e nl = O(n")
e nl =Q(2")
@ Bits needed to specify one
e lg(n!)) =08[nlg(n)]
@ Repetition allowed
e Ig(n") = n'lg(n)

PPERM

@ Explicitly specifies position from source
for each bit in destination
@ PPERM, x, Rs, Rc, Rd
e x specifies contiguous bits in Rd
e Rs contains bits to be permuted
e Rc contains config. bits
¢ Rd gets permuted result

PPERM

@ n bits in destination

@ each requires Ig(n) bits to determine
source

@ total n Ig(n) bits

@ Specify k bits per instruction

e Need n/k = Ig(n) instructions to do an n-bit
permutation. For n =64, k =8 need 8
instructions

GRP

GRP Rs, Rc, Rd
e Rs is a source reg
e Rc is a source reg
e Rd is destination reg
@ Sort the bits in Rs into left and right
groups, according to bits in Rc

FF oa el w 'y

GRP

@ n-bit registers
@ Can do any n-bit perm. with Ig(n) GRP
instructions

e Paper claims proof by construction
[Z. Shi and R. Lee, 2000]

CROSS

@ Based on the Benes network

e Connecting two butterfly networks of the
same size back-to-back

e An n-input Benes network can be broken
into 2 Ig(n) stages, with Ig(n) distinct stages

e At each stage, every input has two outputs
to the next stage

o
P

I.I

E.II
L
byl
L

L

CROSS

CROSS, m1, m2, Rs, Rc, Rd
e Rs is source register
e Rd is destination register
¢ Rc is the configuration register
e m1, m2 specify the basic ops
@ Any perm. requires Ig(n) CROSS
instructions

OMFLIP 1-_.1.,.'-.,'...:;.;_:..:;;-..,.!-1'

@ CROSS requires unit to have whole Bt lelis e ole] ot
Benes network in hardware R i i)

@ Instead, use Omega-flip network: an e ;
omega network followed by a flip elolelsashe e te
network .

o= Y |

| e]

OMFLIP el
@ OMFLIP, ¢, Rs, Rc, Rd B T
e Rs is a source register g v | F48 A P T
¢ Rc is a source register) rT T I T TLY

e Rd is a source register T

e For each bit in ¢, O indicates omega
operation, 1 indicates flip operation o

@ Requires lg(n) instructions, with less i
hardware

1P, A o i na st AT,
rFrYTy ¥ ¥y reymeoy

Hardware reqs

@ PPERM requires a 64x8 crossbar
network, and specialized shifter

GRP requires a hierarchical gathering
network with Ig(n) stage bits.

@ CROSS instruction requires a full Benes
network

@ OMFLIP requires the smallest area

