
1

Efficient Permutation

Instructions for Fast

Software Cryptography

Aditya Prasad
2/10/02

Introduction

Want to perform permutations in
software

Current ISAs do not provide efficient bit-
level software permutations

Motivations

Facilitates more widespread use of
� Secure information processing
� Faster multimedia processing

Current processors are word-oriented,
so bit-level permutations are hard.

Secure Information

Processing

Authentication of users and host
machines
Confidentiality of messages sent over
public networks
Assurance that messages, programs,
and data have not changed in transit

2

Secure Information

Processing, cont’d

Access control

Provisions to ensure
� privacy
� anonymity
� availability of essential services

Question

“What general-purpose operations
should this programmable processor
incorporate so that it can execute
cryptographic functions without
significant performance degradation?”

Symmetric-key

cryptography

Break message into blocks and use
� Confusion, to obscure relationship between

plaintext and ciphertext
� Diffusion, to spread redundancy of

plaintext over ciphertext

Used by DES (Data Encryption
Standard), needs to be sped up

Quick Multimedia

Processing

Required for fast processing of
multimedia instructions

Many ISA extensions do not provide
subword permutation instructions

3

New Permutation

Instructions

Permuting n 1-bit elements, multi-bit
elements in an n-bit word
Previously, arbitrary n-bit permutations
took O(n) time.
Created four new methods: PPERM,
GRP, CROSS, OMFLIP

Some math

Number of n-bit permutations
� n! = O(nn)
� n! = Ω(2n)

Bits needed to specify one
� lg(n!) = θ[n lg(n)]

Repetition allowed
� lg(nn) = n lg(n)

PPERM

Explicitly specifies position from source
for each bit in destination
PPERM, x, Rs, Rc, Rd
� x specifies contiguous bits in Rd
� Rs contains bits to be permuted
� Rc contains config. bits
� Rd gets permuted result

4

PPERM

n bits in destination
each requires lg(n) bits to determine
source
total n lg(n) bits
Specify k bits per instruction
� Need n/k = lg(n) instructions to do an n-bit

permutation. For n = 64, k = 8 need 8
instructions

GRP

GRP Rs, Rc, Rd
� Rs is a source reg
� Rc is a source reg
� Rd is destination reg

Sort the bits in Rs into left and right
groups, according to bits in Rc

GRP

n-bit registers
Can do any n-bit perm. with lg(n) GRP
instructions
� Paper claims proof by construction

� [Z. Shi and R. Lee, 2000]

5

CROSS

Based on the Benes network
� Connecting two butterfly networks of the

same size back-to-back
� An n-input Benes network can be broken

into 2 lg(n) stages, with lg(n) distinct stages
� At each stage, every input has two outputs

to the next stage

CROSS

CROSS, m1, m2, Rs, Rc, Rd
� Rs is source register
� Rd is destination register
� Rc is the configuration register
� m1, m2 specify the basic ops

Any perm. requires lg(n) CROSS
instructions

6

OMFLIP

CROSS requires unit to have whole
Benes network in hardware
Instead, use Omega-flip network: an
omega network followed by a flip
network

OMFLIP

OMFLIP, c, Rs, Rc, Rd
� Rs is a source register
� Rc is a source register
� Rd is a source register
� For each bit in c, 0 indicates omega

operation, 1 indicates flip operation

Requires lg(n) instructions, with less
hardware

7

Hardware reqs

PPERM requires a 64x8 crossbar
network, and specialized shifter
GRP requires a hierarchical gathering
network with lg(n) stage bits.
CROSS instruction requires a full Benes
network
OMFLIP requires the smallest area

