Outline

The Hidden Subgroup Problem

Ketan Patel

May 13, 2002

- Preliminaries
- Simon's Problem
- Integer Factoring / Order Finding
- Hidden Subgroup Problem
- Generalized Fourier Transform
- Non-Abelian Groups

Hadamard Transform

1-qubit Hadamard

$$
H(\alpha|0\rangle+\beta|1\rangle)=\alpha \frac{|0\rangle+|1\rangle}{\sqrt{2}}+\beta \frac{|0\rangle-|1\rangle}{\sqrt{2}}
$$

Applying Hadamard to n qubits individually

$$
H_{n}|x\rangle=\frac{1}{\sqrt{2^{n}}} \sum_{y}(-1)^{x \cdot y}|y\rangle
$$

Note: $H_{n}|0\rangle$ gives equal superposition of all basis states

Quantum Fourier Transform

n-qubit Quantum Fourier Transform $\left(N=2^{n}\right)$

$$
|x\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \exp ^{2 \pi i x k / N}|k\rangle
$$

Simon's Problem

Given: function $f: B^{n} \rightarrow B^{n}$

$$
\begin{gathered}
f(x)=f(y) \quad \text { iff } x \oplus y=\beta \text { for all } x, y \in B^{n} \\
f \text { has "periodicity" } \beta
\end{gathered}
$$

Goal: Determine β efficiently

Simon's Algorithm (cont.)

Step 4) Apply Hadamard Transform to first n qubits

$$
\begin{aligned}
\left|x_{0}\right\rangle+\left|x_{0} \oplus \beta\right\rangle & \rightarrow \sum_{y}\left((-1)^{x_{0} \cdot y}+(-1)^{\left(x_{0} \oplus \beta\right) \cdot y}\right)|y\rangle \\
& =\sum_{y: y \cdot \beta=0}(-1)^{x_{0} \cdot y}|y\rangle \quad \Leftarrow x_{0} \text { only affects phase }
\end{aligned}
$$

Step 5) Measure first n qubits and get y_{i} such that $y_{i} \cdot \beta=0$
Step 6) Repeat enough times $\left(O\left(n^{2}\right)\right)$ to get system of equations

$$
\left[\begin{array}{cccc}
y_{0}(1) & y_{0}(2) & \cdots & y_{0}(n) \\
y_{1}(1) & y_{1}(2) & \cdots & y_{1}(n) \\
\ldots & \ldots & & \ldots \\
y_{k}(1) & y_{k}(2) & \cdots & y_{k}(n)
\end{array}\right] \cdot\left[\begin{array}{c}
\beta(1) \\
\beta(2) \\
\ldots \\
\beta(n)
\end{array}\right]=0
$$

Step 7) Solve for β

Integer Factoring

Integer factoring can be mapped to order finding
Problem: Find factor of $N \Rightarrow$ Problem: Find least integer r such that

$$
y^{r} \equiv 1(\bmod N)
$$

Step 0) Select integer $a<N$ at random
Step 1) Use Euclid's algorithm to compute $\operatorname{gcd}(a, N)$
Step 2) If >1 done
Step 3) Otherwise use order finding algorithm to find least r for

$$
a^{r} \equiv 1(\bmod N)
$$

Step 4) If r is odd or $a^{r / 2} \equiv-1(\bmod N)$ start over
Step 5) Calculate α and β :

$$
a^{r}-1=\underbrace{\left(a^{r / 2}-1\right)}_{\alpha} \underbrace{\left(a^{r / 2}+1\right)}_{\beta} \equiv 0(\bmod N)
$$

Step 6) If $N \mid \alpha$ or $N \mid \beta$ start over
Step 7) Compute $\operatorname{gcd}(N, \alpha)$ and $\operatorname{gcd}(N, \beta)$

Order Finding Algorithm

Step 0) Prepare $t+\left\lceil\log _{2} N\right\rceil$ qubits in $|0\rangle$ state (Let $T=2^{t}$) Step 1) Create uniform superposition on first t qubits Step 2) Apply U_{f}

$$
\sum_{x}|x\rangle|0\rangle \rightarrow \sum_{x}|x\rangle\left|y^{x} \bmod N\right\rangle
$$

Step 3) Measure second register

$$
\sum_{x}|x\rangle\left|y^{x}\right\rangle \rightarrow \sum_{\lambda}\left|x_{0}+\lambda r\right\rangle\left|y^{x_{0}}\right\rangle
$$

Step 4) Apply Discrete Fourier Transform to first register

$$
\begin{aligned}
\sum_{\lambda}\left|x_{0}+\lambda r\right\rangle & \rightarrow \sum_{l} \sum_{\lambda} \exp ^{2 \pi i l\left(x_{0}+\lambda r\right) / T}|l\rangle \\
& =\sum_{l} \exp ^{2 \pi i l x_{0} / T}|l\rangle \overbrace{\sum_{\lambda} \exp ^{2 \pi i l \lambda r / T}}^{\approx 0 \text { if } l r \neq k T} \\
& \approx \sum_{k} \exp ^{2 \pi i k x_{0} / r}\left|\frac{k T}{r}\right\rangle
\end{aligned}
$$

Hidden Subgroup Problem

Suppose

- K is a subgroup of a group G
- $f: g \rightarrow x$ function from G to discrete set X
- $f\left(g_{1}\right)=f\left(g_{2}\right) \Leftrightarrow g_{2} \in g_{1}+K$

G \qquad

Problem: Find generating set for K

Example (Simon's Problem): $K=\{0, \beta\}$

More Group Theory

Representation $\rho(G)$: Mapping from $G \Rightarrow$ group of complex matrices preserving group properties (homomorphism) e.g. $\rho\left(g_{i}\right) \rho\left(g_{j}\right)=\rho\left(g_{i}+g_{j}\right)$

Irreducible Representation $\rho: \rho$ cannot be written as $\rho_{1} \oplus \rho_{2}$

Example: The irreducible representations of Z_{4}

	$\rho(0)$	$\rho(1)$	$\rho(2)$	$\rho(3)$
ρ_{1}	1	1	1	1
ρ_{2}	1	$-i$	-1	i
ρ_{3}	1	-1	1	-1
ρ_{4}	1	i	-1	$-i$

Character $\chi(\rho):$ Mapping defined by $g_{i} \rightarrow \operatorname{trace}\left(\rho\left(g_{i}\right)\right)$

For Abelian groups irr. representations are 1-D \Rightarrow irreducible $\chi(\rho)=\rho$

Fourier Transform over G

Fourier Transform: Transformation from standard basis of group elements

Properties:

- subgroup $K \xrightarrow{F T} K^{\perp}:=\{\chi: \chi(k)=1$ for all $k \in K\}$

$$
K=\bigcap_{\chi \in K^{\perp}} \operatorname{ker} \chi
$$

- shift invariance

$$
\sum_{k \in K}|g+k\rangle \xrightarrow{F T}=\sum_{\chi \in K^{\perp}} \chi(g)|\chi\rangle
$$

General HSP Algorithm

Step 1) Create uniform superposition of states in coset of K

Step 2) Apply Fourier Transform over G

Step 3) Sample distribution $\chi_{i} \in K^{\perp}$

Step 4) Reconstruct (classically) $K=\cap$ ker χ_{i}

General Issues

- Constructing initial superposition may be nontrivial
- Efficient FT over group may not be known
- Group may not be known (e.g., factoring)

Non-Abelian Groups

Issues for Non-Abelian case:

- Non-unique Fourier Transform
- Efficient implementation of FT
- Determining subgroup from sampling of FT
- In general no shift-invariant basis

Graph Isomorphism

Let M_{A}, M_{B} be the incidence matrices of graphs A and B $A \simeq B$ if $P\left(M_{A}\right)=M_{B}$ for some permutation matrix P

Problem: Given A and B determine if $A \simeq B$

Formulate as Non-abelian HSP:

- Let $C=A \cup B, L_{A}=\{$ vertices of $A\}$ and $L_{B}=\{$ vertices of $B\}$
- Automorphism group of C, K is a subgroup of $S_{2 n}$
- If $A \not \approx B$ all $k \in K$ will $\operatorname{map} L_{A} \xrightarrow{k} L_{A}$ otherwise half of K will map $L_{A} \rightarrow L_{B}$
- Therefore sampling K will determine if $A \simeq B$

Unfortunately generating superposition of elements of K nontrivial

Results for Non-Abelian Case

- Solved for normal subgroup assuming efficient FT (Hallgren et al. 2000)
- Solvable if \cap normalizers of all subgroups is large (Grigni et al. 2000)
- "Solved" for dihedral groups — need exponential post-processing (Ettinger and Høyer 2000)
- Solved for groups formed by certain wreath products (Rötteler \& Beth 1998)
- Efficient FT over S_{n} known (Beals 1997)

References

- Jozsa - Quantum Factoring, Discrete Logarithms, and the Hidden Subgroup Problem (2000)
quant-ph/0012084
- Jozsa - Quantum Algorithms and the Fourier Transform (1997) quant-ph/9707033
- Hallgren \& Russell - The Hidden Subgroup Problem and Quantum Computation Using Group Representations (2001)
www.cs.caltech.edu/ hallgren/reps 1.pdf
- Hallgren - Quantum Fourier Sampling, the Hidden Subgroup Problem, and Beyond (2000)
www.cs.caltech.edu/ hallgren/thesis.pdf

