The Hidden Subgroup Problem

Ketan Patel

May 13, 2002
Outline

- Preliminaries
- Simon’s Problem
- Integer Factoring / Order Finding
- Hidden Subgroup Problem
- Generalized Fourier Transform
- Non-Abelian Groups
Groups

- Group \((G, +)\): closure, associativity, identity, inverses

- Abelian Group: group satisfying commutativity

- Subgroup \(K\) of \(G\): subset of \(G\) forming a group

- Coset of \(K\): translation of a subgroup \(K\)

Examples of groups:
- \((Z_n, +)\) additive group of integers mod \(n\)
- \((R, \ast)\) multiplicative group of nonzero real numbers
- \((B^n, +)\) additive group of binary \(n\)-tuples \((+ \equiv \text{bitwise } \oplus)\)
- \((S_n, \ast)\) group of permutations on \(n\) elements \((\ast \equiv \text{composition})\)
Hadamard Transform

1-qubit Hadamard

\[H (\alpha |0\rangle + \beta |1\rangle) = \frac{\alpha}{\sqrt{2}} |0\rangle + \frac{\beta}{\sqrt{2}} |1\rangle + \frac{\beta}{\sqrt{2}} |0\rangle - \frac{\beta}{\sqrt{2}} |1\rangle \]

Applying Hadamard to \(n \) qubits individually

\[H_n |x\rangle = \frac{1}{\sqrt{2^n}} \sum_y (-1)^{x \cdot y} |y\rangle \]

Note: \(H_n |0\rangle \) gives equal superposition of all basis states
Quantum Fourier Transform

n-qubit Quantum Fourier Transform ($N = 2^n$)

$$|x\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \exp^{2\pi i x k/N} |k\rangle$$
Simon’s Problem

Given: function $f : B^n \to B^n$

$$f(x) = f(y) \iff x \oplus y = \beta \text{ for all } x, y \in B^n$$

f has “periodicity” β

Goal: Determine β efficiently
Simon’s Algorithm

Step 0) Prepare $2n$ qubits in $|0\rangle$ state
Step 1) Create superposition of all basis states in first n qubits
Step 2) Apply U_f

$$\sum_{x} |x\rangle |0\rangle \rightarrow \sum_{x} |x\rangle |f(x)\rangle$$

Step 3) Measure last n qubits

$$\sum_{x} |x\rangle |f(x)\rangle \rightarrow \left(|x_0\rangle + |x_0 \oplus \beta\rangle \right) \otimes |f(x_0)\rangle$$

state of 1st n qubits

Measuring 1st n qubits yields no information about β
Simon’s Algorithm (cont.)

Step 4) Apply Hadamard Transform to first n qubits

$$|x_0\rangle + |x_0 \oplus \beta\rangle \rightarrow \sum_y \left((-1)^{x_0 \cdot y} + (-1)^{(x_0 \oplus \beta) \cdot y} \right) |y\rangle$$

$$= \sum_{y: y \cdot \beta = 0} (-1)^{x_0 \cdot y} |y\rangle \quad \Leftarrow x_0 \text{ only affects phase}$$

Step 5) Measure first n qubits and get y_i such that $y_i \cdot \beta = 0$

Step 6) Repeat enough times ($O(n^2)$) to get system of equations

$$\begin{bmatrix} y_0(1) & y_0(2) & \cdots & y_0(n) \\ y_1(1) & y_1(2) & \cdots & y_1(n) \\ \cdots & \cdots & \cdots & \cdots \\ y_k(1) & y_k(2) & \cdots & y_k(n) \end{bmatrix} \cdot \begin{bmatrix} \beta(1) \\ \beta(2) \\ \cdots \\ \beta(n) \end{bmatrix} = 0$$

Step 7) Solve for β
Integer Factoring

Integer factoring can be mapped to order finding

Problem: Find factor of \(N \) \(
\Rightarrow \) **Problem:** Find least integer \(r \) such that \(y^r \equiv 1 \pmod{N} \)

Step 0: Select integer \(a < N \) at random
Step 1: Use Euclid’s algorithm to compute \(\gcd(a,N) \)
Step 2: If \(> 1 \) done
Step 3: Otherwise use **order finding algorithm** to find least \(r \) for
\[
a^r \equiv 1 \pmod{N}
\]

Step 4: If \(r \) is odd or \(a^{r/2} \equiv -1 \pmod{N} \) start over
Step 5: Calculate \(\alpha \) and \(\beta \):
\[
a^r - 1 = \underbrace{\left(a^{r/2} - 1 \right)}_{\alpha} \underbrace{\left(a^{r/2} + 1 \right)}_{\beta} \equiv 0 \pmod{N}
\]

Step 6: If \(N|\alpha \) or \(N|\beta \) start over
Step 7: Compute \(\gcd(N,\alpha) \) and \(\gcd(N,\beta) \)
Order Finding Algorithm

Step 0) Prepare $t + \lceil \log_2 N \rceil$ qubits in $|0\rangle$ state (Let $T = 2^t$)

Step 1) Create uniform superposition on first t qubits

Step 2) Apply U_f

$$
\sum_x |x\rangle |0\rangle \rightarrow \sum_x |x\rangle |y^x \mod N\rangle
$$

Step 3) Measure second register

$$
\sum_x |x\rangle |y^x\rangle \rightarrow \sum_\lambda |x_0 + \lambda r\rangle |y^{x_0}\rangle
$$

Step 4) Apply Discrete Fourier Transform to first register

$$
\sum_\lambda |x_0 + \lambda r\rangle \rightarrow \sum_l \sum_\lambda \exp^{2\pi il (x_0 + \lambda r) / T} |l\rangle
$$

$$
= \sum_l \exp^{2\pi il x_0 / T} |l\rangle \sum_\lambda \exp^{2\pi il \lambda r / T}
\approx 0 \text{ if } lr \neq kT
$$

$$
\approx \sum_k \exp^{2\pi ikx_0 / r} \left| \frac{kT}{r} \right\rangle
$$
Order Finding Algorithm (cont.)

Step 5) Measure first register and get \(c = k(T/r) \)

Step 6) Use continued fraction algorithm to retrieve \(r \)
Hidden Subgroup Problem

Suppose

- K is a subgroup of a group G
- $f : g \rightarrow x$ function from G to discrete set X
- $f(g_1) = f(g_2) \iff g_2 \in g_1 + K$

Problem: Find generating set for K

Example (Simon’s Problem): $K = \{0, \beta\}$
More Group Theory

Representation $\rho(G)$: Mapping from $G \Rightarrow$ group of complex matrices preserving group properties (homomorphism)
e.g. $\rho(g_i)\rho(g_j) = \rho(g_i + g_j)$

Irreducible Representation ρ: ρ cannot be written as $\rho_1 \oplus \rho_2$

Example: The irreducible representations of Z_4

$$
\begin{array}{cccc}
\rho(0) & \rho(1) & \rho(2) & \rho(3) \\
\rho_1 & 1 & 1 & 1 & 1 \quad \Leftarrow \text{trivial representation} \\
\rho_2 & 1 & -i & -1 & i \\
\rho_3 & 1 & -1 & 1 & -1 \\
\rho_4 & 1 & i & -1 & -i \\
\end{array}
$$

Character $\chi(\rho)$: Mapping defined by $g_i \rightarrow \text{trace}(\rho(g_i))$

For Abelian groups irr. representations are 1-D \Rightarrow irreducible $\chi(\rho) = \rho$
Fourier Transform over G

Fourier Transform: Transformation from standard basis of group elements to basis of irreducible characters of G

Properties:

- subgroup $K \xrightarrow{FT} K^\perp := \{ \chi : \chi(k) = 1 \text{ for all } k \in K \}$

\[
K = \bigcap_{\chi \in K^\perp} \ker \chi
\]

- shift invariance

\[
\sum_{k \in K} |g + k\rangle \xrightarrow{FT} = \sum_{\chi \in K^\perp} \chi(g) |\chi\rangle
\]
General HSP Algorithm

Step 1) Create uniform superposition of states in coset of K

Step 2) Apply Fourier Transform over G

Step 3) Sample distribution $\chi_i \in K^\perp$

Step 4) Reconstruct (classically) $K = \cap \ker \chi_i$
General Issues

- Constructing initial superposition may be nontrivial
- Efficient FT over group may not be known
- Group may not be known (e.g., factoring)
Non-Abelian Groups

Issues for Non-Abelian case:

- Non-unique Fourier Transform
- Efficient implementation of FT
- Determining subgroup from sampling of FT
- In general no shift-invariant basis
Graph Isomorphism

Let M_A, M_B be the incidence matrices of graphs A and B

$A \cong B$ if $P(M_A) = M_B$ for some permutation matrix P

Problem: Given A and B determine if $A \cong B$

Formulate as Non-abelian HSP:
- Let $C = A \cup B$, $L_A = \{\text{vertices of } A\}$ and $L_B = \{\text{vertices of } B\}$
- Automorphism group of C, K is a subgroup of S_{2n}
- If $A \not\cong B$ all $k \in K$ will map $L_A \xrightarrow{k} L_A$
 otherwise half of K will map $L_A \to L_B$
- Therefore sampling K will determine if $A \cong B$

Unfortunately generating superposition of elements of K nontrivial
Results for Non-Abelian Case

- Solved for normal subgroup assuming efficient FT (Hallgren et al. 2000)

- Solvable if \cap normalizers of all subgroups is large (Grigni et al. 2000)

- “Solved” for dihedral groups — need exponential post-processing (Ettinger and Høyer 2000)

- Solved for groups formed by certain wreath products (Rötteler & Beth 1998)

- Efficient FT over S_n known (Beals 1997)
References

 quant-ph/0012084

 quant-ph/9707033

 www.cs.caltech.edu/ hallgren/reps1.pdf

- Hallgren - Quantum Fourier Sampling, the Hidden Subgroup Problem, and Beyond (2000)