Superposition, Entanglement, and Quantum Computation

Aditya Prasad 3/31/02

Introduction - Feynman

- An N-particle quantum system can't be simulated on a classical machine whose resources don't grow exp with N.
- Would be possible on a 'quantum computer'
 - Not a Turing machine Both have been proven true

Introduction, cont'd

- Quantum parallelism quantum superposition of distinct states
 - Doesn't immediately lead to speedup
- Shor showed how info could be extracted usefully
 - Polynomial factoring algo.

- On a classical computer, unsorted database search takes O(n) time
- In 1997, Grover showed a quantum algo that takes O(sqrt N)

Superposition and entaglement

- Quantum systems can exhibit superpositions of eigensolutions
 Not specifically quantum – classical too
- Ekert and Josza consider a multi-qubit system: apply gate U to qubits (i,j) n times
 - \bullet Quantum system: measurement in O(n)
 - Classical system: measurement in O(2ⁿ)

Classical and quantum: a difference

- Classical waves allow superposition
 - Qubit could be represented by classical strings?
- Superposition can always be described by Cartesian product of states
- Quantum superposition may be 'entangled'
 - 1/2(|0> + |1> + |2> + |3>) can be factored
 1/sqrt2(|0> + |1>) cannot be: it is entangled
- Difference is Cartesian vs. tensor products

Entanglement, cont'd

- Schroedinger says quantum entanglement is defining characteristic
- Entanglement depends on basis
 - $\frac{1}{2}(|0> + |1> |2> + |3>)$ is entangled wrt C₂ x C₂, but not wrt C₄
- State of n qubits is 2ⁿ-dim, isomorphic to 1 particle with 2ⁿ levels.
 - Not useful for complexity consideration, as the 1 particle requires energy resources in O(2ⁿ)

Back to Grover

- Search through a phone book for name, only knowing telephone number
 - Takes O(n) time classically
 - O(sqrt n) time by Grover's algo

Basics

- There are N = 2^L states labelled S₀, S₁, S₂ ... S_{N-1}
 - Only one fulfills the condition C_J so that $C_J(S_J) = 1$ and $C_J(S_K) = 0$, K = J
- Goal is to find the solution S_J in the fewest evaluations of C_J

Grover's solution

- Start with an L-qubit register in state |0>
- Apply an L-qubit Hadamard gate, yields an equal superposition
- Perform the following two operations on the wires, O(sqrt N) times:

Grover's operations

- I) Apply oracle U_J defined by:
 - U_J |J> = -|J>
 - U_J |K> = |K>, K != J
- 2) Apply diffusion operator D:
 - $D = H U_0 H$
 - U₀|0> = -|0>
 - U₀|K> = -|K>, K != 0

Result

- After O(sqrt N) iterations, the outcome is the state |J> with high probability
- Grover explains D to be an 'inversion about the average' of the coefficients

Example

- Apply Hadamard to get
 - |M> = ½(|0> + |1> + |2> + |3>)
- Now apply the oracle U_J
- UJ|M> = |M> 2<J| |M> |J>
- Apply Grover's diffusion operator:
 - D U_J H|)> = -|J>
 - Found in one pass!

Classical implementation

- We map each integer 0...2^L-1 into another integer in the same range:
 - Define L qubits to be a 'control' register |J> and another L to be the 'target' register |K>
 - Let $|J> x |K> \rightarrow |J> x |K x f(J)>$
 - Starting with $|K\rangle = 0$, we get $|f(J)\rangle$

Classical, cont'd

- Consider an f(M) that maps an integer M to an integer F = f(M) (bijective)
- Want to force init state into |M> x |F(M)> so that we can measure f⁻¹(F) = M
 - Define $W = V_f H_c$
 - \bullet Let U_f be an oracle that flips the sign of the state iff it is |F>

An Electronic approach

- Use 2ⁿ signal paths, one for each base state
- L-qubit Hadamard device uses op-amps with 2ⁿ inputs and ouputs
- (Description of how they used motherboards with what color LEDs here)

Hadamard implementation

- A general L-qubit Hadamard operator can be written as a 2^L x 2^L matrix
- Split each of the 2^L input signals into 2^L separate signals, each with amplitude 1/sqrt(2^L)
- Use an inverting op-amp for phase-shift

Electronic Hadamard

Fig. 1. Schematic diagram for the single certit Balanced gate.

A photograph

Hadamard conclusion

- Is reversible: two applications always restores input
- Is not *physically* reversible
- Use of op-amps and resistors ensures correct operation with AC signals
- Requires 2^{2L} signals (analogous to Deutsch's 'extra universes')
- This is just a demonstration

- Entanglement depends on the representation
- Their electronic implementation shows that any implementation without multiparticle entanglement requires exp. resources (refer to Ekert and Josza)

Final conclusion

- "The number of signal paths increases exponentially and makes electronic implementations of large numbers of qubits impracticable"
- Therefore, multi-particle entanglement is the key property of quantum systems that gives rise to the remarkable power of quantum computers