
Polynomial approximations and

quantum lower bounds

Yaoyun Shi

University of Michigan

Quantum lower bounds on

Collision and

Element Distinctness

Yaoyun Shi

University of Michigan

Quantum lower bounds: Why?

Understanding the limitations of quantum com-

puting.

Rule out some approaches for designing effi-

cient quantum algorithms.

E.g.: Lower bound on unstructured search =⇒
quantum comp. cannot solved NP-complete

problems without exploring problem structure.

Results are not necessary disappointing news:

existence of cryptography resilient to quantum

cryptanalysis.

Quantum lower bounds: What?

Black-box model (Query model/Decision Tree

model ...)

– Oracle function: f .

– Wants to compute: Γ(f).

– Complexity: # evaluations of f .

Decision trees: f : [N]→ {0,1}.

Comparison-based order statistics: sorting, find-

ing minimum,...

Cryptography: f : encryption, Γ: cryptanalysis.

Can prove: classical/quantum lower bounds.

Quantum Computation

State space H: C2 for 1 quantum bit;

(C2)⊗n ∼= C
2n for n qubits.

Computational basis: { | x 〉 : x ∈ {0,1}n }.

State |φ〉: a unit vector in H:

|φ〉 =
∑

x∈{0,1}n
ax |x〉, αx ∈ C,

∑
x
|α|2 = 1.

Operation U : unitary operator on H.

Measurement M: on n qubits applied to |φ〉:
(1) ∀x ∈ {0,1}n,

Prob[Observing outcome x] = |αx|2,

(2) If the outcome is x, the state becomes |x〉.

Quantum black-box computation

Oracle: f : [N]→ [M].

State space: H := C
N ⊗ CM ⊗ CL.

Computational basis:

{ |i, j, a〉 : i ∈ [N], j ∈ [M], a ∈ [L]}.

Query: ∀i ∈ [N], j ∈ [M], a ∈ [L],

Of |i, j, a〉 = |i, j u f(i), a〉.

Algorithm:

(1) Start with a constant vector |φ0〉 ∈ H.

(2) Apply

U0 → Of → U1 → · · · → Of → UT ;

(3) Measure and output Γ(f) (with high prob-

ability).

Quantum complexity Q(Γ): minimum # queries.

Quantum lower bounds: How?

Adversary argument: [Bennett, Bernstein, Brassard, Vazi-

rani ’97;Ambainis ’00; Høyer, Neerbeck, Shi ’01; · · ·]

Idea: hard to distinguish similar inputs in

one query.

Successful on almost all problems, except

for...

Polynomial method: [Beals, Buhrman, Cleve, Mosca,

de Wolf ’98]

Collision and Element Distinctness

Given f : [N]→ [M] as an oracle.

Def: A collision is (i, j), i 6= j, s.t. f(i) = f(j).

Element Distinctness: Is there a collision?

Well studied in classical (algebraic) decision

trees.

2→1Collision: f is 2→1. Find a collision.

2→1/1→1: f is either 2→1or 1→1. Distinguish

these two cases.

Cryptanalysis: finding collision

Random 2-to-1 functions: models collision in-

tractable hash functions.

What do we know about them?

Collision classically: Θ(
√
N) evaluations.

Quantum upper bound: O(N1/3) [Brassard, Høyer,

Tapp ’97].

(1) Choose random k = Θ(N1/3);

(2) Do Grover’s search
√
N/k = Θ(N1/3).

Quantum lower bound: Ω(N1/5) [Aaronson ’02]

Reduction from 2→1/1→1to E.D.:

(1) Pick a random Θ(
√
N)-subset,

(2) Run E.D. algorithm.

O(Nα) for E.D. =⇒ O(Nα/2) for 2→1/1→1.

Results

Thm 1: Any quantum algorithm for 2→1/1→1

for f : [N] → [M], where M ≥ 3N2 , requires

Ω(N1/3) evaluations.

Thm 2: Any quantum algorithm for 2→1/1→1

for f : [N]→ [N] requires Ω(N1/4) evaluations.

Col: Any quantum algorithm for Element Dis-

tinctness of N numbers requires Ω(N2/3) queries

to the numbers.

Polynomial method

Def: Given f , ∀i ∈ [N], and j ∈ [M]:

δi,j =

{
1 f(i) = j
0 otherwise.

Observation: Of is a linear function of δi,j:

Of |i, j, a〉 =
M∑
j′=1

δi,j′ |i, j
′ u j, a〉.

Lm:[BBCMW, A] AccProb(f) = Polynomial of

deg ≤ 2T over {δi,j}.

Problem becomes lower bounding polynomial

degree of any P (f)[δ1,1, δ1,2, · · · , δN,M] such that

(1) For all f , P (f) ∈ [0,1];

(2) If f is 1→1, P (f) ≈ 1;

(3) If f is 2→1, P (f) ≈ 0.

How to lower bound polynomial degrees?

Def: A polynomial g[x1, x2, · · · , xN] approxi-

mates f : {0,1}N → {0,1} if ∀x = x1x2 · · ·xN ∈
{0,1}N ,

|g(x)− f(x)| ≤ 1/3.

Def: Approximation degree of f ,

˜deg(f) := min { deg(g) : g approx. f}.

All known method: Multivariate =⇒ uni-variate.

Apply Markov Inequality or Bernstein Inequal-

ity

Polynomial h : R→ R, ‖h‖[−1,1] = 1.

Markov’s Inequality:

‖h′‖ ≤ (deg(h))2.

Bernstein’s Inequality:

|h′(x)| ≤
deg(h)√
1− x2

, ∀x ∈ (−1,1).

Discrete version:[Paturi ’94] If

(1) |h(i)| ≤ c, for all i ∈ [0...N];

(2) |h(dξ− 1e)− h(ξ)| ≥ c′, for some ξ ∈ (0, N].

Then

deg(h) = Ω(
√
ξ · (N + 1− ξ)).

In particular

deg(h) = Ω(
√
N).

Example: symmetric functions:

(1) symmetrization: g(i) = Ex:|x|=i [f(x)]

uni-variate; deg(g) ≤ deg(f).

(2) If g(i) 6= g(i+ 1),

˜deg(f) = Ω(
√

(i+ 1) · (N − i+ 1)).

Aaronson’s Averaging approach.

Ideally:

1. Run algorithm on a random g→1 function

fg, g = 1,2, · · · , N ′.

2. Prove

P (g) := E [AccProb(fg)].

is a polynomial of deg O(T).

3. Apply Markov’s Inequ. on P (g).

Problem:

1. g-N , for most g;

2. P (g) not a polynomial (but closed to one);

3. The range of g, N ′, is small

=⇒ week lower bound.

Ω(N1/4) lower bound

Idea: Run algorithm on partial functions.

Def: (m, g) is valid if m ∈ [0..N], g ∈ [1..N],

and g|N .

Def: A (m, g) function is a partial function

f : [N]→ [N], such that f is g→1 on m inputs,

and not defined elsewhere.

Modify Algorithm:If f(i) not defined, Reject!

How do you know f(i) is not defined?

What I meant is: Evaluate AccProb(Gf).

Proof for Ω(N1/4)

P (m.g) := Efm,g
[AccProb(fm,g)]

is a poly. of deg ≤ 2T : counting subgraphs.

Case 1. If |P (N, g)| ≤ 2, for g ∈ [1..
√
N].

Case 2. ∃g0 ≤
√
N , |P (N, g0)| > 2. Consider

P (m, g0).

The Ω(N1/3) lower bound:

Use Bernstein’s Inequality

Suppose we have P (m, g) s.t.

0 ≤ P (m, g) ≤ 1 ∀(m, g) valid,

P (
N

2
,1) ≈ 1, and, P (

N

2
,2) ≈ 0.

=⇒ Ω(N1/3).

Case 1: ∀g ∈ [0...N2/3], |P (N2 , g)| ≤ 1.

Apply Markov =⇒ Ω(N1/3).

Case 2: |P (N2 , g0)| > 2 for some g0 ≤ N2/3.

Consider P (m, g0), m = 0, g0,2g0, . . . , bN/g0c ·
g0. Apply Bernstein Inequality.

Def: 1
2-2→1 v.s. 2→1 Problem.

Oracle: f : [N]→ [N].

Promise: f is

(1) 2→1 mapped to [N2 + 1...N] on half inputs;

(2) Either 1→1 or 2→1 mapped to [N2] on the

other half.

Distinguish these two cases.

Algorithm A for 1
2-2→1/2→1 =⇒ Algorithm A′

for 2→1/1→1.

Ã: Symmetrize A.

Randomly choose permutations σ on [N] and

τ on [M].

Replace query i by σ(i);

Replace answer j by τ(j).

Run Ã on any instance

=⇒ AccProb = Average AccProb.

A works =⇒

p1→1 := Ef :1→1[AccProb(f)] ≈ 1,

p2→1 := Ef :2→1[AccProb(f)] ≈ 0.

Consider

p1
2-2→1

:= E
f :1

2-2→1
[AccProb(f)].

Case 1: If p1
2-2→1

≥ 1/2.

Done: Ã is good.

Case 2: p1
2-2→1

< 1/2.

Idea:transform

1
2-2→1 to 1→1 =⇒ AccProb ≈ 1;

2→1 to 1
2-2→1 =⇒ AccProb < 1/2.

How? UN-collide f−1([N2 + 1...N]):

“Run” Ã on f̄

f̄(i) =

{
f(i) f(i) ∈ [N2]

i+ N
2 otherwise.

Ω(N1/3) for 1
2-2→1/2→1

Def: A (m, g)-function f satisfies:

1) f is g→1 mapped to [N2] on m inputs;

2) On the remaining input, f is 2→1 mapped

to [N2 + 1...N].

Valid (m, g): g ∈ [N], m ∈ [0...N], g|m, 2|N−m.

Lm: P (m, g) := AccProb[random (m, g)-function]

is a polynomial of deg ≤ 2T .

1) P (m, g) ∈ [0,1] for valid (m, g),

2) P (N2 ,1) ≈ 1, P (N2 ,2) ≈ 0.

Conclusion

Results:

Matching lower bound for Collision; im-

proved lower bound for Collision with small

range;

Improved lower bound for Element Distinct-

ness.

Technique: Extend and refine Aaronson’s av-

eraging approach in proving polynomial de-

gree lower bound.

Open Problems

Is Polynomial Method universal?

• Cjct: Q(f) ≈ ˜deg(f).

• Cjct: ˜deg(
∨N
i=1

∧N
j=1 xi,j) = Ω(N).

Known: Q(·) = Ω(N), ˜deg(·) = Ω(
√
N logN).

Set Equality: Given 1→1 oracles f, g : [N] →
[M],

Either f([N]) = g([N]) or f([N]) ∩ g([N]) = ∅.

Distinguish these two cases. O(N1/3) v.s. Ω(1).

Quantum Space-Time trade-off: Does quan-

tum computer run much faster and at the same

time save much space? E.D., Collision...

