Polynomial approximations and

 quantum lower boundsYaoyun Shi

University of Michigan

Quantum lower bounds on Collision and Element Distinctness

Yaoyun Shi

University of Michigan

Quantum lower bounds: Why?

Understanding the limitations of quantum computing.

Rule out some approaches for designing efficient quantum algorithms.
E.g.: Lower bound on unstructured search \Longrightarrow quantum comp. cannot solved NP-complete problems without exploring problem structure.

Results are not necessary disappointing news: existence of cryptography resilient to quantum cryptanalysis.

Quantum lower bounds: What?

Black-box model (Query model/Decision Tree model ...)

- Oracle function: f.
- Wants to compute: $\Gamma(f)$.
- Complexity: \# evaluations of f.

Decision trees: $f:[N] \rightarrow\{0,1\}$.

Comparison-based order statistics: sorting, finding minimum,...

Cryptography: f : encryption, Г: cryptanalysis.

Can prove: classical/quantum lower bounds.

Quantum Computation

State space $\mathcal{H}: \mathbb{C}^{2}$ for 1 quantum bit; $\left(\mathbb{C}^{2}\right)^{\otimes n} \cong \mathbb{C}^{2^{n}}$ for n qubits.

Computational basis: $\left\{|x\rangle: x \in\{0,1\}^{n}\right\}$.

State $|\phi\rangle$: a unit vector in \mathcal{H} :

$$
|\phi\rangle=\sum_{x \in\{0,1\}^{n}} a_{x}|x\rangle, \quad \alpha_{x} \in \mathbb{C}, \sum_{x}|\alpha|^{2}=1 .
$$

Operation U : unitary operator on \mathcal{H}.

Measurement \mathcal{M} : on n qubits applied to $|\phi\rangle$:
(1) $\forall x \in\{0,1\}^{n}$,
$\operatorname{Prob}[$ Observing outcome $x]=\left|\alpha_{x}\right|^{2}$,
(2) If the outcome is x, the state becomes $|x\rangle$.

Quantum black-box computation

Oracle: $f:[N] \rightarrow[M]$.
State space: $\mathcal{H}:=\mathbb{C}^{N} \otimes \mathbb{C}^{M} \otimes \mathbb{C}^{L}$.
Computational basis:

$$
\{|i, j, a\rangle: i \in[N], j \in[M], a \in[L]\} .
$$

Query: $\forall i \in[N], j \in[M], a \in[L]$,

$$
O_{f}|i, j, a\rangle=|i, j \dot{+} f(i), a\rangle .
$$

Algorithm:
(1) Start with a constant vector $\left|\phi_{0}\right\rangle \in \mathcal{H}$.
(2) Apply

$$
U_{0} \rightarrow O_{f} \rightarrow U_{1} \rightarrow \cdots \rightarrow O_{f} \rightarrow U_{T}
$$

(3) Measure and output $\Gamma(f)$ (with high probability).

Quantum complexity $Q(\Gamma)$: minimum \# queries.

Quantum lower bounds: How?

Adversary argument: [Bennett, Bernstein, Brassard, Vazirani '97;Ambainis '00; Høyer, Neerbeck, Shi '01; ...]
Idea: hard to distinguish similar inputs in one query.
Successful on almost all problems, except for...

Polynomial method: [Beals, Buhrman, Cleve, Mosca, de Wolf '98]

Collision and Element Distinctness

Given $f:[N] \rightarrow[M]$ as an oracle.

Def: A collision is $(i, j), i \neq j$, s.t. $f(i)=f(j)$.

Element Distinctness: Is there a collision? Well studied in classical (algebraic) decision trees.
$2 \rightarrow 1$ Collision: f is $2 \rightarrow 1$. Find a collision.
$2 \rightarrow 1 / 1 \rightarrow 1: f$ is either $2 \rightarrow 1$ or $1 \rightarrow 1$. Distinguish these two cases.

Cryptanalysis: finding collision Random 2-to-1 functions: models collision intractable hash functions.

What do we know about them?

Collision classically: $\Theta(\sqrt{N})$ evaluations.
Quantum upper bound: $O\left(N^{1 / 3}\right)$ [Brassard, Høyer, Tapp '97].
(1) Choose random $k=\Theta\left(N^{1 / 3}\right)$;
(2) Do Grover's search $\sqrt{N / k}=\Theta\left(N^{1 / 3}\right)$.

Quantum lower bound: $\Omega\left(N^{1 / 5}\right)$ [Aaronson '02]

Reduction from $2 \rightarrow 1 / 1 \rightarrow 1$ to E.D.:
(1) Pick a random $\Theta(\sqrt{N})$-subset,
(2) Run E.D. algorithm.

$$
O\left(N^{\alpha}\right) \text { for E.D. } \Longrightarrow O\left(N^{\alpha / 2}\right) \text { for } 2 \rightarrow 1 / 1 \rightarrow 1 .
$$

Results

Thm 1: Any quantum algorithm for $2 \rightarrow 1 / 1 \rightarrow 1$ for $f:[N] \rightarrow[M]$, where $M \geq 3 \frac{N}{2}$, requires $\Omega\left(N^{1 / 3}\right)$ evaluations.

Thm 2: Any quantum algorithm for $2 \rightarrow 1 / 1 \rightarrow 1$ for $f:[N] \rightarrow[N]$ requires $\Omega\left(N^{1 / 4}\right)$ evaluations.

Col: Any quantum algorithm for Element Distinctness of N numbers requires $\Omega\left(N^{2 / 3}\right)$ queries to the numbers.

Polynomial method

Def: Given $f, \forall i \in[N]$, and $j \in[M]$:

$$
\delta_{i, j}= \begin{cases}1 & f(i)=j \\ 0 & \text { otherwise } .\end{cases}
$$

Observation: O_{f} is a linear function of $\delta_{i, j}$:

$$
O_{f}|i, j, a\rangle=\sum_{j^{\prime}=1}^{M} \delta_{i, j^{\prime}}\left|i, j^{\prime} \dot{+} j, a\right\rangle .
$$

Lm:[BBCMW, A] $\operatorname{AccProb}(f)=$ Polynomial of deg $\leq 2 T$ over $\left\{\delta_{i, j}\right\}$.

Problem becomes lower bounding polynomial degree of any $P(f)\left[\delta_{1,1}, \delta_{1,2}, \cdots, \delta_{N, M}\right]$ such that (1) For all $f, P(f) \in[0,1]$;
(2) If f is $1 \rightarrow 1, P(f) \approx 1$;
(3) If f is $2 \rightarrow 1, P(f) \approx 0$.

How to lower bound polynomial degrees?

Def: A polynomial $g\left[x_{1}, x_{2}, \cdots, x_{N}\right]$ approximates $f:\{0,1\}^{N} \rightarrow\{0,1\}$ if $\forall x=x_{1} x_{2} \cdots x_{N} \in$ $\{0,1\}^{N}$,

$$
|g(x)-f(x)| \leq 1 / 3
$$

Def: Approximation degree of f,

$$
\operatorname{de} g(f):=\min \{\operatorname{deg}(g): g \text { approx. } f\} .
$$

All known method: Multivariate \Longrightarrow uni-variate. Apply Markov Inequality or Bernstein Inequality

Polynomial $h: \mathbb{R} \rightarrow \mathbb{R},\|h\|_{[-1,1]}=1$.

Markov's Inequality:

$$
\left\|h^{\prime}\right\| \leq(\operatorname{deg}(h))^{2} .
$$

Bernstein's Inequality:

$$
\left|h^{\prime}(x)\right| \leq \frac{\operatorname{deg}(h)}{\sqrt{1-x^{2}}}, \quad \forall x \in(-1,1)
$$

Discrete version:[Paturi '94] If
(1) $|h(i)| \leq c$, for all $i \in[0 \ldots N]$;
(2) $|h(\lceil\xi-1\rceil)-h(\xi)| \geq c^{\prime}$, for some $\xi \in(0, N]$.

Then

$$
\operatorname{deg}(h)=\Omega(\sqrt{\xi \cdot(N+1-\xi)}) .
$$

In particular

$$
\operatorname{deg}(h)=\Omega(\sqrt{N}) .
$$

Example: symmetric functions:
(1) symmetrization: $g(i)=E_{\mathrm{x}:|\mathrm{x}|=\mathrm{i}}[f(x)]$
uni-variate; $\operatorname{deg}(g) \leq \operatorname{deg}(f)$.
(2) If $g(i) \neq g(i+1)$,

$$
d \tilde{e} g(f)=\Omega(\sqrt{(i+1) \cdot(N-i+1)})
$$

Aaronson's Averaging approach. Ideally:

1. Run algorithm on a random $g \rightarrow 1$ function $\mathbf{f}_{\mathbf{g}}, g=1,2, \cdots, N^{\prime}$.
2. Prove

$$
P(g):=E\left[\operatorname{AccProb}\left(\mathrm{f}_{\mathrm{g}}\right)\right] .
$$

is a polynomial of $\operatorname{deg} O(T)$.
3. Apply Markov's Inequ. on $P(g)$.

Problem:

1. $g \nmid N$, for most g;
2. $P(g)$ not a polynomial (but closed to one);
3. The range of g, N^{\prime}, is small \Longrightarrow week lower bound.

$\Omega\left(N^{1 / 4}\right)$ lower bound

Idea: Run algorithm on partial functions.

Def: (m, g) is valid if $m \in[0 . . N], g \in[1 . . N]$, and $g \mid N$.

Def: A (m, g) function is a partial function $f:[N] \rightarrow[N]$, such that f is $g \rightarrow 1$ on m inputs, and not defined elsewhere.

Modify Algorithm:If $f(i)$ not defined, Reject!

How do you know $f(i)$ is not defined?

What I meant is: Evaluate $\operatorname{AccProb}\left(G_{f}\right)$.

Proof for $\Omega\left(N^{1 / 4}\right)$

$$
P(m \cdot g):=E_{\mathrm{f}_{\mathrm{m}, \mathrm{~g}}}\left[\operatorname{AccProb}\left(f_{m, g}\right)\right]
$$

is a poly. of deg $\leq 2 T$: counting subgraphs.

Case 1. If $|P(N, g)| \leq 2$, for $g \in[1 . . \sqrt{N}]$.

Case 2. $\exists g_{0} \leq \sqrt{N},\left|P\left(N, g_{0}\right)\right|>2$. Consider $P\left(m, g_{0}\right)$.

The $\Omega\left(N^{1 / 3}\right)$ lower bound: Use Bernstein's Inequality

Suppose we have $P(m, g)$ s.t.

$$
\begin{aligned}
0 \leq P(m, g) \leq 1 \quad \forall(m, g) \text { valid }, \\
P\left(\frac{N}{2}, 1\right) \approx 1, \quad \text { and, } \quad P\left(\frac{N}{2}, 2\right) \approx 0 . \\
\Longrightarrow \Omega\left(N^{1 / 3}\right) .
\end{aligned}
$$

Case 1: $\forall g \in\left[0 \ldots N^{2 / 3}\right],\left|P\left(\frac{N}{2}, g\right)\right| \leq 1$. Apply Markov $\Longrightarrow \Omega\left(N^{1 / 3}\right)$.

Case 2: $\left|P\left(\frac{N}{2}, g_{0}\right)\right|>2$ for some $g_{0} \leq N^{2 / 3}$. Consider $P\left(m, g_{0}\right), m=0, g_{0}, 2 g_{0}, \ldots,\left\lfloor N / g_{0}\right\rfloor$. g_{0}. Apply Bernstein Inequality.

Def: $\frac{1}{2}-2 \rightarrow 1$ v.s. $2 \rightarrow 1$ Problem.
Oracle: $f:[N] \rightarrow[N]$.
Promise: f is
(1) $2 \rightarrow 1$ mapped to $\left[\frac{N}{2}+1 \ldots N\right]$ on half inputs; (2) Either $1 \rightarrow 1$ or $2 \rightarrow 1$ mapped to $\left[\frac{N}{2}\right]$ on the other half.
Distinguish these two cases.
Algorithm \mathcal{A} for $\frac{1}{2}-2 \rightarrow 1 / 2 \rightarrow 1 \Longrightarrow$ Algorithm \mathcal{A}^{\prime} for $2 \rightarrow 1 / 1 \rightarrow 1$.
$\widetilde{\mathcal{A}}$: Symmetrize \mathcal{A}.
Randomly choose permutations σ on [N] and τ on [M].
Replace query i by $\sigma(i)$;
Replace answer j by $\tau(j)$.

Run $\widetilde{\mathcal{A}}$ on any instance
$\Longrightarrow A c c P r o b=$ Average AccProb.
\mathcal{A} works \Longrightarrow

$$
\begin{aligned}
& p_{1 \rightarrow 1}:=E_{\mathbf{f}: 1 \rightarrow 1}[\operatorname{Acc\operatorname {Prob}(\mathbf {f})]\approx 1} \\
& p_{2 \rightarrow 1}:=E_{\mathbf{f}: 2 \rightarrow 1}[\operatorname{Acc\operatorname {Prob}(\mathbf {f})]\approx 0.}
\end{aligned}
$$

Consider

$$
p_{\frac{1}{2}-2 \rightarrow 1}:=E_{\mathrm{f}: \frac{1}{2}-2 \rightarrow 1}[\operatorname{AccProb}(\mathbf{f})] .
$$

Case 1: If $p_{\frac{1}{2}-2 \rightarrow 1} \geq 1 / 2$.
Done: $\tilde{\mathcal{A}}$ is good.

Case 2: $p_{\frac{1}{2}-2 \rightarrow 1}<1 / 2$.
Idea:transform

$$
\begin{array}{ll}
\frac{1}{2}-2 \rightarrow 1 \text { to } 1 \rightarrow 1 & \Longrightarrow \text { AccProb } \approx 1 \\
2 \rightarrow 1 \text { to } \frac{1}{2}-2 \rightarrow 1 & \Longrightarrow \text { AccProb }<1 / 2
\end{array}
$$

How? UN-collide $f^{-1}\left(\left[\frac{N}{2}+1 \ldots N\right]\right)$:
"Run" $\tilde{\mathcal{A}}$ on \bar{f}

$$
\bar{f}(i)= \begin{cases}f(i) & f(i) \in\left[\frac{N}{2}\right] \\ i+\frac{N}{2} & \text { otherwise } .\end{cases}
$$

$$
\Omega\left(N^{1 / 3}\right) \text { for } \frac{1}{2}-2 \rightarrow 1 / 2 \rightarrow 1
$$

Def: A (m, g)-function f satisfies:

1) f is $g \rightarrow 1$ mapped to $\left[\frac{N}{2}\right]$ on m inputs;
2) On the remaining input, f is $2 \rightarrow 1$ mapped to $\left[\frac{N}{2}+1 \ldots N\right]$.

Valid $(m, g): g \in[N], m \in[0 \ldots N], g|m, 2| N-m$.

Lm: $P(m, g):=A c c P r o b[r a n d o m(m, g)$-function] is a polynomial of deg $\leq 2 T$.

1) $P(m, g) \in[0,1]$ for valid (m, g),
2) $P\left(\frac{N}{2}, 1\right) \approx 1, P\left(\frac{N}{2}, 2\right) \approx 0$.

Conclusion

Results:
Matching lower bound for Collision; improved lower bound for Collision with small range;

Improved Iower bound for Element Distinctness.

Technique: Extend and refine Aaronson's averaging approach in proving polynomial degree lower bound.

Open Problems

Is Polynomial Method universal?

- Cjct: $Q(f) \approx d \tilde{e} g(f)$.
- Cjct: $\tilde{d e} g\left(\bigvee_{i=1}^{N} \wedge_{j=1}^{N} x_{i, j}\right)=\Omega(N)$. Known: $Q(\cdot)=\Omega(N), \tilde{e} g(\cdot)=\Omega(\sqrt{N \log N})$.

Set Equality: Given $1 \rightarrow 1$ oracles $f, g:[N] \rightarrow$ [M],

Either $f([N])=g([N])$ or $f([N]) \cap g([N])=\emptyset$. Distinguish these two cases. $O\left(N^{1 / 3}\right)$ v.s. $\Omega(1)$.

Quantum Space-Time trade-off: Does quantum computer run much faster and at the same time save much space? E.D., Collision...

