Polynomial approximations and quantum lower bounds

Yaoyun Shi

University of Michigan

Quantum lower bounds on Collision and Element Distinctness

Yaoyun Shi

University of Michigan

Quantum lower bounds: Why?

Understanding the limitations of quantum computing.

Rule out some approaches for designing efficient quantum algorithms.

E.g.: Lower bound on unstructured search \implies quantum comp. cannot solved NP-complete problems without exploring problem structure.

Results are not necessary disappointing news: existence of cryptography resilient to quantum cryptanalysis. Quantum lower bounds: What?

Black-box model (Query model/Decision Tree model ...)

- Oracle function: f.

- Wants to compute: $\Gamma(f)$.

- Complexity: # evaluations of f.

Decision trees: $f : [N] \rightarrow \{0, 1\}$.

Comparison-based order statistics: sorting, finding minimum,...

Cryptography: f: encryption, Γ : cryptanalysis.

Can prove: classical/quantum lower bounds.

Quantum Computation

State space \mathcal{H} : \mathbb{C}^2 for 1 quantum bit; $(\mathbb{C}^2)^{\otimes n} \cong \mathbb{C}^{2^n}$ for n qubits.

Computational basis: $\{ | x \rangle : x \in \{0, 1\}^n \}.$

State $|\phi\rangle$: a unit vector in \mathcal{H} :

$$|\phi\rangle = \sum_{x \in \{0,1\}^n} a_x |x\rangle, \quad \alpha_x \in \mathbb{C}, \ \sum_x |\alpha|^2 = 1.$$

Operation U: unitary operator on \mathcal{H} .

Measurement \mathcal{M} : on n qubits applied to $|\phi\rangle$: (1) $\forall x \in \{0, 1\}^n$,

 $Prob[\text{Observing outcome } x] = |\alpha_x|^2,$ (2) If the outcome is x, the state becomes $|x\rangle$.

Quantum black-box computation

Oracle: $f : [N] \rightarrow [M]$.

State space: $\mathcal{H} := \mathbb{C}^N \otimes \mathbb{C}^M \otimes \mathbb{C}^L$.

Computational basis:

 $\{ |i, j, a\rangle : i \in [N], j \in [M], a \in [L] \}.$

Query: $\forall i \in [N], j \in [M], a \in [L]$,

$$O_f |i, j, a\rangle = |i, j + f(i), a\rangle.$$

Algorithm:

(1) Start with a constant vector $|\phi_0\rangle \in \mathcal{H}$. (2) Apply

$$U_0 \rightarrow O_f \rightarrow U_1 \rightarrow \cdots \rightarrow O_f \rightarrow U_T;$$

(3) Measure and output $\Gamma(f)$ (with high probability).

Quantum complexity $Q(\Gamma)$: minimum # queries.

Quantum lower bounds: How?

Adversary argument: [Bennett, Bernstein, Brassard, Vazirani '97;Ambainis '00; Høyer, Neerbeck, Shi '01; ···] Idea: hard to distinguish similar inputs in one query. Successful on almost all problems, except for...

Polynomial method: [Beals, Buhrman, Cleve, Mosca,

de Wolf '98]

Collision and Element Distinctness

Given $f : [N] \rightarrow [M]$ as an oracle.

Def: A collision is (i, j), $i \neq j$, s.t. f(i) = f(j).

Element Distinctness: Is there a collision? Well studied in classical (algebraic) decision trees.

 $2 \rightarrow 1$ **Collision:** f is $2 \rightarrow 1$. Find a collision.

 $2 \rightarrow 1/1 \rightarrow 1$: f is either $2 \rightarrow 1$ or $1 \rightarrow 1$. Distinguish these two cases.

Cryptanalysis: finding collision Random 2-to-1 functions: models collision intractable hash functions. What do we know about them?

Collision classically: $\Theta(\sqrt{N})$ evaluations.

Quantum upper bound: $O(N^{1/3})$ [Brassard, Høyer, Tapp '97].

(1) Choose random $k = \Theta(N^{1/3})$; (2) Do Grover's search $\sqrt{N/k} = \Theta(N^{1/3})$.

Quantum lower bound: $\Omega(N^{1/5})$ [Aaronson '02]

Reduction from $2 \rightarrow 1/1 \rightarrow 1$ to E.D.:

(1) Pick a random $\Theta(\sqrt{N})$ -subset, (2) Run E.D. algorithm.

 $O(N^{\alpha})$ for E.D. $\Longrightarrow O(N^{\alpha/2})$ for $2 \rightarrow 1/1 \rightarrow 1$.

Results

Thm 1: Any quantum algorithm for $2 \rightarrow 1/1 \rightarrow 1$ for $f : [N] \rightarrow [M]$, where $M \ge 3\frac{N}{2}$, requires $\Omega(N^{1/3})$ evaluations.

Thm 2: Any quantum algorithm for $2 \rightarrow 1/1 \rightarrow 1$ for $f : [N] \rightarrow [N]$ requires $\Omega(N^{1/4})$ evaluations.

Col: Any quantum algorithm for Element Distinctness of N numbers requires $\Omega(N^{2/3})$ queries to the numbers. Polynomial method

Def: Given f, $\forall i \in [N]$, and $j \in [M]$: $\delta_{i,j} = \begin{cases} 1 & f(i) = j \\ 0 & \text{otherwise.} \end{cases}$

Observation: O_f is a linear function of $\delta_{i,j}$:

$$O_f|i,j,a\rangle = \sum_{j'=1}^M \delta_{i,j'} |i,j' + j,a\rangle.$$

Lm:[BBCMW, A] AccProb(f) = Polynomial of deg $\leq 2T$ over $\{\delta_{i,j}\}$.

Problem becomes lower bounding polynomial degree of any $P(f)[\delta_{1,1}, \delta_{1,2}, \cdots, \delta_{N,M}]$ such that (1) For all $f, P(f) \in [0, 1]$; (2) If f is $1 \rightarrow 1, P(f) \approx 1$; (3) If f is $2 \rightarrow 1, P(f) \approx 0$. How to lower bound polynomial degrees?

Def: A polynomial $g[x_1, x_2, \cdots, x_N]$ approximates $f: \{0, 1\}^N \rightarrow \{0, 1\}$ if $\forall x = x_1 x_2 \cdots x_N \in \{0, 1\}^N$,

$$|g(x) - f(x)| \le 1/3.$$

Def: Approximation degree of f,

 $d\tilde{e}g(f) := \min \{ deg(g) : g \text{ approx. } f \}.$

All known method: Multivariate \implies uni-variate. Apply Markov Inequality or Bernstein Inequality Polynomial $h : \mathbb{R} \to \mathbb{R}$, $||h||_{[-1,1]} = 1$.

Markov's Inequality:

 $\|h'\| \le (deg(h))^2.$

Bernstein's Inequality:

$$|h'(x)| \leq rac{deg(h)}{\sqrt{1-x^2}}, \quad \forall x \in (-1,1).$$

Discrete version: [Paturi '94] If (1) $|h(i)| \le c$, for all $i \in [0...N]$; (2) $|h(\lceil \xi - 1 \rceil) - h(\xi)| \ge c'$, for some $\xi \in (0, N]$.

Then

$$deg(h) = \Omega(\sqrt{\xi \cdot (N+1-\xi)}).$$

In particular

$$deg(h) = \Omega(\sqrt{N}).$$

Example: symmetric functions:

(1) symmetrization: $g(i) = E_{\mathbf{x}:|\mathbf{x}|=\mathbf{i}} [f(x)]$ uni-variate; $deg(g) \le deg(f)$. (2) If $g(i) \ne g(i+1)$,

$$d\tilde{e}g(f) = \Omega(\sqrt{(i+1)\cdot(N-i+1)}).$$

Aaronson's Averaging approach.

Ideally:

- 1. Run algorithm on a random $g \rightarrow 1$ function f_g , $g = 1, 2, \dots, N'$.
- 2. Prove

 $P(g) := E [AccProb(\mathbf{f}_g)].$

is a polynomial of deg O(T).

3. Apply Markov's Inequ. on P(g).

Problem:

- 1. $g \nmid N$, for most g;
- 2. P(g) not a polynomial (but closed to one);
- 3. The range of g, N', is small \implies week lower bound.

$\Omega(N^{1/4})$ lower bound

Idea: Run algorithm on partial functions.

Def: (m,g) is valid if $m \in [0..N]$, $g \in [1..N]$, and g|N.

Def: A (m,g) function is a partial function $f: [N] \rightarrow [N]$, such that f is $g \rightarrow 1$ on m inputs, and not defined elsewhere.

Modify Algorithm: If f(i) not defined, Reject!

How do you know f(i) is not defined?

What I meant is: Evaluate $AccProb(G_{f})$.

Proof for $\Omega(N^{1/4})$

 $P(m.g) := E_{f_{m,g}}[AccProb(f_{m,g})]$ is a poly. of deg $\leq 2T$: counting subgraphs. Case 1. If $|P(N,g)| \leq 2$, for $g \in [1..\sqrt{N}]$. Case 2. $\exists g_0 \leq \sqrt{N}, |P(N,g_0)| > 2$. Consider $P(m,g_0)$. The $\Omega(N^{1/3})$ lower bound: Use Bernstein's Inequality

Suppose we have P(m,g) s.t.

 $0 \leq P(m,g) \leq 1 \quad \forall (m,g) \text{ valid},$ $P(rac{N}{2},1) pprox 1, \quad ext{and}, \quad P(rac{N}{2},2) pprox 0.$ $\Longrightarrow \Omega(N^{1/3}).$

Case 1: $\forall g \in [0...N^{2/3}], |P(\frac{N}{2},g)| \leq 1.$ Apply Markov $\Longrightarrow \Omega(N^{1/3}).$

Case 2: $|P(\frac{N}{2}, g_0)| > 2$ for some $g_0 \leq N^{2/3}$. Consider $P(m, g_0)$, $m = 0, g_0, 2g_0, \dots, \lfloor N/g_0 \rfloor \cdot g_0$. Apply Bernstein Inequality. **Def:** $\frac{1}{2}$ -2 \rightarrow 1 **v.s.** 2 \rightarrow 1 **Problem.** Oracle: $f : [N] \rightarrow [N]$. **Promise**: f is (1) 2 \rightarrow 1 mapped to $[\frac{N}{2} + 1...N]$ on half inputs; (2) Either 1 \rightarrow 1 or 2 \rightarrow 1 mapped to $[\frac{N}{2}]$ on the other half.

Distinguish these two cases.

Algorithm \mathcal{A} for $\frac{1}{2}$ -2 \rightarrow 1/2 \rightarrow 1 \Longrightarrow Algorithm \mathcal{A}' for 2 \rightarrow 1/1 \rightarrow 1.

 $\tilde{\mathcal{A}}$: Symmetrize \mathcal{A} .

Randomly choose permutations σ on [N] and τ on [M].

Replace query *i* by $\sigma(i)$; Replace answer *j* by $\tau(j)$.

Run $\tilde{\mathcal{A}}$ on any instance $\implies AccProb = \mathsf{Average} \ AccProb.$

$$\begin{array}{l} \mathcal{A} \text{ works} \Longrightarrow \\ p_{1 \rightarrow 1} := E_{\mathbf{f}:1 \rightarrow 1}[AccProb(\mathbf{f})] \approx 1, \\ p_{2 \rightarrow 1} := E_{\mathbf{f}:2 \rightarrow 1}[AccProb(\mathbf{f})] \approx 0. \end{array}$$

Consider

$$p_{\frac{1}{2}-2\to 1} := E_{\mathbf{f}:\frac{1}{2}-2\to 1}[AccProb(\mathbf{f})].$$

Case 1: If $p_{\frac{1}{2}-2 \rightarrow 1} \ge 1/2$. Done: $\tilde{\mathcal{A}}$ is good.

Case 2:
$$p_{\frac{1}{2}-2 \to 1} < 1/2.$$

Idea:transform

$$\frac{1}{2} - 2 \rightarrow 1 \text{ to } 1 \rightarrow 1 \implies AccProb \approx 1;$$
$$2 \rightarrow 1 \text{ to } \frac{1}{2} - 2 \rightarrow 1 \implies AccProb < 1/2.$$

How? UN-collide $f^{-1}([\frac{N}{2} + 1...N])$:

"Run" $\tilde{\mathcal{A}}$ on \bar{f} $\bar{f}(i) = \begin{cases} f(i) & f(i) \in [\frac{N}{2}]\\ i + \frac{N}{2} & \text{otherwise.} \end{cases}$

$$\Omega(N^{1/3})$$
 for $\frac{1}{2}$ -2 \rightarrow 1/2 \rightarrow 1

Def: A (m,g)-function f satisfies: 1) f is $g \rightarrow 1$ mapped to $\left[\frac{N}{2}\right]$ on m inputs; 2) On the remaining input, f is $2 \rightarrow 1$ mapped to $\left[\frac{N}{2} + 1...N\right]$.

Valid (m, g): $g \in [N]$, $m \in [0...N]$, g|m, 2|N-m.

Lm: P(m,g) := AccProb[random (m,g)-function] is a polynomial of deg $\leq 2T$.

1) $P(m,g) \in [0,1]$ for valid (m,g), 2) $P(\frac{N}{2},1) \approx 1$, $P(\frac{N}{2},2) \approx 0$.

Conclusion

Results:

Matching lower bound for *Collision*; improved lower bound for Collision with small range;

Improved lower bound for Element Distinctness.

Technique: Extend and refine Aaronson's averaging approach in proving polynomial degree lower bound.

Open Problems

Is Polynomial Method universal?

- Cjct: $Q(f) \approx d\tilde{e}g(f)$.
- Cjct: $d\tilde{e}g(\bigvee_{i=1}^{N} \wedge_{j=1}^{N} x_{i,j}) = \Omega(N)$. Known: $Q(\cdot) = \Omega(N), d\tilde{e}g(\cdot) = \Omega(\sqrt{N \log N})$.

Set Equality: Given $1 \rightarrow 1$ oracles $f, g : [N] \rightarrow [M]$,

Either f([N]) = g([N]) or $f([N]) \cap g([N]) = \emptyset$. Distinguish these two cases. $O(N^{1/3})$ v.s. $\Omega(1)$.

Quantum Space-Time trade-off: Does quantum computer run much faster and at the same time save much space? E.D., Collision...