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Quantum lower bounds: Why?

Understanding the limitations of guantum com-
puting.

Rule out some approaches for designing effi-
cient quantum algorithms.

E.g.: Lower bound on unstructured search —
quantum comp. cannot solved NP-complete
problems without exploring problem structure.

Results are not necessary disappointing news:
existence of cryptography resilient to quantum
cryptanalysis.



Quantum lower bounds: What?

Black-box model (Query model/Decision Tree
model ...)

— Oracle function: f.
— Wants to compute: I'(f).

— Complexity: # evaluations of f.

Decision trees: f:[N] — {0,1}.

Comparison-based order statistics: sorting, find-
ing mMinimum,...

Cryptography: f: encryption, I': cryptanalysis.

Can prove: classical/quantum lower bounds.



Quantum Computation

State space H: C2 for 1 quantum bit:
(C2)®n = 2" for n qubits.

Computational basis: { |z ) : =€ {0,1}" }.

State |¢): a unit vector in H:

®) = Y azlz), az€C, ) |af*=1.

xe{0,1}"
Operation U: unitary operator on H.

Measurement M: on n qubits applied to |¢):
(1) Ve € {0,1}"™,

Prob[Observing outcome z] = |az|?,

(2) If the outcome is x, the state becomes |z).



Quantum black-box computation
Oracle: f:[N] — [M].
State space: H:=CVNoCM g L.

Computational basis:

{ |i,j4,a) : i €[N],j € [M],a € [L]}.

Query: Vi € [N],7 € [M],a € [L],
Oy li,j,a) =i, 5 + f(i),a).
Algorithm:

(1) Start with a constant vector |¢g) € H.
(2) Apply

Up— O —Uy — - — Of = Up;

(3) Measure and output F'(f) (with high prob-
ability).

Quantum complexity Q(IN): minimum # queries.



Quantum lower bounds: How?

Adversary argument: [Bennett, Bernstein, Brassard, Vazi-
rani '97;Ambainis '00; Hgyer, Neerbeck, Shi '01; - -]
Idea: hard to distinguish similar inputs in
one query.

Successful on almost all problems, except
for...

Polynomial method: [Beals, Buhrman, Cleve, Mosca,
de Wolf '98]



Collision and Element Distinctness
Given f : [N] — [M] as an oracle.
Def: A collisionis (i,5), 1 # j, s.t. f(i) = f(y).
Element Distinctness: Is there a collision?
Well studied in classical (algebraic) decision
trees.

2—1Collision: f is 2—1. Find a collision.

2—1/1—1: f is either 2—1or 1—1. Distinguish
these two cases.

Cryptanalysis: finding collision
Random 2-to-1 functions: models collision in-
tractable hash functions.



What do we know about them?
Collision classically: ©(v/N) evaluations.

Quantum upper bound: O(N/3) (srassard, Hayer,
Tapp '97].

(1) Choose random k = ©(N1/3);
(2) Do Grover's search /N/k = ©(N1/3).

Quantum lower bound: Q(Nl/S) [Aaronson '02]

Reduction from 2—1/1—1to E.D.:

(1) Pick a random ©(+/N)-subset,
(2) Run E.D. algorithm.

O(N®) for E.D. = O(N%/2) for 2—1/1—1.



Results

Thm 1: Any quantum algorithm for 2—1/1—1
for f : [N] — [M], where M > 3%, requires
Q(N1/3) evaluations.

Thm 2: Any quantum algorithm for 2—1/1—1
for f : [N] — [N] requires Q(N1/%) evaluations.

Col: Any quantum algorithm for Element Dis-
tinctness of N numbers requires Q(N2/3) queries
to the numbers.



Polynomial method

Def: Given f, Vi € [N], and j € [M]:

S: . = 1 fG@) =
bsJ 0O otherwise.

Observation: Oy is a linear function of ¢, ;:

M
O¢li,jya) = > 6 i 3,5 4 4, a).
j'=1

Lm:[BBCMW, A] AccProb(f) = Polynomial of
deg < 2T over {6; j}.

Problem becomes lower bounding polynomial
degree of any P(f)[d01,1,91,2,---,dn p] Such that
(1) For all f, P(f) € [0,1];
(2) If fis 1—=1, P(f) ~ 1;
(3) If fis 2—1, P(f) = O.



How to lower bound polynomial degrees?

Def: A polynomial g[z1,z5,---,xx] approxi-
mates f:{0,1}N — {0,1} if Ve = zqz0-- -z €
{0,1}%,

l9(z) — f(=)] < 1/3.

Def:. Approximation degree of f,

deg(f) := min { deg(g) : g approx. f}.

All known method: Multivariate — uni-variate.
Apply Markov Inequality or Bernstein Inequal-

Ity



Polynomial h: R — R, |[hf[[_1 1] = 1.

Markov’s Inequality:

|R'|| < (deg(h))?.

Bernstein’s Inequality:
deg(h)

\/1-—-x2’

R/ (x)] < Vo e (—1,1).




Discrete version:[Paturi '94] If
(1) |h(2)| < ¢, for all i € [0...N];
(2) [h([€—11) —h(&)| = ¢, for some £ € (O, N].

T hen

deg(h) = Q(/¢- (N + 1 —¢)).

In particular

deg(h) = Q(VN).

Example: symmetric functions:

(1) symmetrization: g¢g(i) = Ey:|x|=i [ f(x) ]
uni-variate; deg(g) < deg(f).

(2) If g(i) #g(i + 1),

deg(f) = Q(/(i+1) - (N —i+1)).




Aaronson’s Averaging approach.

Ideally:

1. Run algorithm on a random ¢g—1 function
fo, g =1,2,--- N’

2. Prove

P(g) := E [ AccProb(fg) |.
is a polynomial of deg O(T).
3. Apply Markov's Inequ. on P(g).

Problem:

1. gtN, for most g;
2. P(g) not a polynomial (but closed to one);

3. The range of g, N/, is small
— week lower bound.



Q(N1/%) lower bound
Idea: Run algorithm on partial functions.

Def: (m,g) is valid if m € [0..N], g € [1..N],
and g|N.

Def: A (m,g) function is a partial function
f : [N] — [N], such that f is g—1 on m inputs,
and not defined elsewhere.

Modify Algorithm:If f(i) not defined, Reject!
How do you know f(7) is not defined?

What I meant is: Evaluate AccProb(Gy).



Proof for Q(N1/4)

P(m.g) .= Efm7g[AccProb(fm,g)]
IS a poly. of deg < 27T': counting subgraphs.

Case 1. If |P(N,g)| <2, for g € [1../N].

Case 2. 3Jgg < VN, |P(N,gp)| > 2. Consider
P(m, go).



The Q(N1/3) lower bound:
Use Bernstein’'s Inequality

Suppose we have P(m,g) s.t.

0 < P(m,g) <1 V(m,g) valid,
N N
P<§’ 1)~ 1, and, P(E’Q) ~ 0.

— Q(N1/3).

Case 1: Vg € [0..N?/3], |P(5,9)| < 1.
Apply Markov = Q(N1/3).

Case 2: |P(5,g0)| > 2 for some gg < N2/3.
Consider P(m,gp), m = 0,go,290,---,[N/g0] -
go.- Apply Bernstein Inequality.



Def: 3-2—1 v.s. 2—1 Problem.

Oracle: f:[N] — [N].

Promise: f is

(1) 2—1 mapped to [%—l— 1...N] on half inputs;
(2) Either 1—1 or 2—1 mapped to [g] on the
other half.

Distinguish these two cases.

Algorithm A for 3-2—1/2—1 == Algorithm A’
for 2—1/1—-1.

A: Symmetrize A.

Randomly choose permutations o on [N] and
T on [M].

Replace query i by o(3);

Replace answer 5 by 7(4).

Run A on any instance
— AccProb = Average AccProb.



A works =
P11 ‘= Ef.1_,1[AccProb(f)] = 1,

po_,1 ‘= E¢.o_,1[AccProb(f)] =~ O.

Consider
p%_2_>1 = Ef:%_Qﬁl[AccProb(f)].
Case 1: If pq > 1/2.

2-2—>1 —
Done: A is good.



Case 2: p%_2_>1 < 1/2.
Idea:transform

%_2_>1 to 1-1 == AccProb=1;

2—1 to 3-2—1 == AccProb < 1/2.

How? UN-collide f=1([% + 1...N]):

“Run” A on f
. : N
Fiy — { £ FG) e ]

1+ % otherwise.



Q(N1/3) for 3-2—1/2—1

Def: A (m,g)-function f satisfies:

1) fis g—1 mapped to [%] on m inputs;

2) On the remaining input, f is 2—1 mapped
to [ + 1...N].

Valid (m,g): g € [N], m € [0...N], glm, 2|N —m.

Lm: P(m,g) := AccProb[random (m, g)-function]
is a polynomial of deg < 2T

1) P(m,q) € [0, 1] for valid (m,g),
2) P(5,1) =1, P(5,2) =~ 0.



Conclusion

Results:
Matching lower bound for Collision; im-
proved lower bound for Collision with small
range;

Improved lower bound for Element Distinct-
ness.

Technique: Extend and refine Aaronson’s av-
eraging approach in proving polynomial de-
gree lower bound.



Open Problems

Is Polynomial Method universal?

o Cjct: Q(f) ~ deg(f).

o Cjct: deg(ViLi ALy ) = Q(N).

Known: Q(-) = Q(N), deg(:) = Q(v/NlogN).

Set Equality: Given 1—1 oracles f,g : [N] —
[M],

Either f([N]) = g([N]) or f([N]) ng([N]) = 0.
Distinguish these two cases. O(N1/3) v.s. €(1).

Quantum Space-Time trade-off: Does quan-
tum computer run much faster and at the same
time save much space? E.D., Collision...



