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Ongoing Projects

• Simulation of quantum circuits
– BDD-based QuIDDPro simulator 

– Simulating Grover’s algorithm

• Synthesis of two-qubit circuits
– Bounds for gate counts in two-qubit circuits

• Quantum algos that improve memory usage
– Quantum counters

DARPADARPA

Quantum Circuit Simulation Using Quantum Circuit Simulation Using QuQuIDDsIDDs

• Motivation
– Need for a better way to simulate quantum circuits 

• Quantum Information Decision Diagram (QuIDD)
– Novel data representation that uses Binary Decision Diagrams 

(BDD) widely used in computer-aided circuit design 
– Captures some exponentially-sized matrices and vectors in a form 

that grows polynomially with the number of qubits
– Multiplies matrices and vectors in compressed form

• QuIDDPro Simulator
– Our QuIDD-based simulator implemented in C++
– Experiments with Grover’s algorithm demonstrate fast execution 

and  low memory utilization
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QuIDDQuIDD Data RepresentationData Representation
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QuIDDQuIDD Data RepresentationData Representation
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QuIDDProQuIDDPro Simulation of Grover’s AlgorithmSimulation of Grover’s Algorithm
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- Search for items in an unstructured database of N items 
- Contains n = log N qubits and has runtime ( )NO
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QuIDDPQuIDDProro Simulation ResultsSimulation Results
((GroverGrover’s search algorithm)’s search algorithm)
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QuIDDPQuIDDProro Simulation Simulation of of GroverGrover’s Algorithm’s Algorithm

Same results for any oracle that distinguishes a unique element
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O(p(n)(√2)n)

O(n)

QuIDDPQuIDDProro Simulation Simulation of of GroverGrover’s Algorithm’s Algorithm
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Work in Progress:
On The Power of Grover’s Algorithm

• Database search with a black-box predicate p(x)=1
– Classical evaluation of p(x) on one input (queries)

– Quantum (parallel) evaluation of p(x) facilitates an implementation with 
fewer queries

• We also assume that p(x) is given as a BDD/QuIDD
– BDDs are used to represent functions in practical CAD

– However, a BDD is not really a black-box 

– BDD operations evaluate p(x) on multiple inputs  at once
(no quantum computation is involved)

• Grover on QuIDDs: same query complexity as in the quantum case
– In practice this simulation is very fast and needs little memory

Non-trivial assumption
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Quantum Circuit Synthesis

• Synthesis of classical circuits
– Given a truth table, it is easy to find a circuit

– Gate-count minimization is trickier, 
but doable by hand for circuits with several inputs

• Synthesis of n-input quantum circuits
– Given a 2nx2n matrix, can find a circuit (known algorithm)

– Gate-count minimization doable by hand only for one input

– For two inputs, optimal constructions are less than one year 
old, involve taking square roots of 4x4 matrices…
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Two-qubit Computation
with Minimum Resources

1. Some elementary gates have 2 inputs;
our work allows to compare gate libraries

2. Most physical implementations of q. computers
are currently restricted to 2 qubits

3. Circuits for quantum communication
often have 2-3 inputs

4. Given a qantum circuit with >2 inputs, we can
look for 2-input subcircuits and re-optimize those
(peephole optimization)
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Elementary Gates Q. Computation
≠ “basic” gates
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Technology-Independent Synthesis

• Input: Unitary 4x4-matrix M
– Generic quantum computation on 2 qubits

• Output: circuit in terms of elem. gates that 
implements M up to a phase

• Minimize: circuit cost

– E.g., gate count or Σ (gate costs)

• Solutions exist iff the gate library is universal
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Phase  can
be ignored

Gate 1 Gate 2 Gate 3
Advanced Computer Architecture Laboratory

DARPADARPA

Example
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Previous Work

• Proof of universality is constructive
[Barenco et. al `95] in Phys. Rev. A

– Can be interpreted as a synthesis algorithm

– However, no attempt to minimize #gates

• Can be viewed as matrix factorization
– [Cybenko `01]

– M=QR with unitary Q & upper-triangular R
(M unitary ⇒ R diagonal)

– We count gates, and the answer is  …61
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Our Results

• New synthesis procedures
for 2 qubits
– Can implement any operator 

in 18 gates or less, at most 3 
of them are CNOTs

– Lower bounds: sometimes 18
gates and 3 CNOTs are 
required

– For a specific operator, we 
can tell when 0,1,2 or 3
CNOTs are required
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Our Work (2)

• Lower bounds
– There exist two-qubit computations (most of them)

that require at least 17 elementary gates
• At least 15 non-const gates

• At least 2 CNOTs

– Bounds are not constructive and not tight,
except for “15 input-dependent gates”

• We never use “temporary storage” qubits
but that could lead to smaller gate counts
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The Entangler and Disentangler

• “Computational basis”
– |00>,|01>,|10> and |11>

• The “entangler” computation maps
|00> to (|00>+|11>)/√2,
etc.

• The “disentangler”
is E-1=E*

• Key lemma
– If U=A⊗B, then EUE* has only real entries

– An efficient way to recognize tensor products
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Circuits For E and E*

• A specific circuit for the entangler E

• S=diag(1,i) counts as one elementary gate

• The Hadamard gate H counts as two

• E* is implemented by reversing the diagram
– Change S to S-1=diag(1,-i)

7 elem.
gates
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• The “canonical decomposition” for 2-qubit computations:

– ∀ U ∃ K1,K2 and ∆ such that U=K1∆K2

– E∆E* is diagonal (5 gates)

– K1,K2 have only real entries 

• The terms K1, K2 and ∆ can be found explicitly
– Numerical analysis: polar and spectral decompositions

• Reduce K1 and K2 to tensor products using entanglers

— EUE*=E(A⊗B)E*E∆E*E(C⊗D)E*

— A,B,C and D are one-qubit computations: 3 gates each

• Note that E and E* are the same for any input

Our (Key) Synthesis Procedure

Rz Rz

Rz
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Details (1)

• After the initial “divide-and-conquer”
many gate cancellations can be made

• This brings down max #gates to 28
– Only 15 of them depend on input,

which matches an a priori lower bound

• Further reductions based on the analysis
of E(A⊗B)E* and E(C⊗D)E*
– Max no. of gates reduced to    …
– However, 19 gates depend on the input

23
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Details (2)

The structure of our generic 23-gate circuit

• For additional details, see
– Physical Review A 68(1), July 2003, 012318

quant-ph/0211002
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Validation of Our Synthesis Algorithm

• Implementation in C++
– We plan to put it up on the Web as an ASP

• Can capture structure
– Several examples in quant-ph/0211002

– Optimal results for any A⊗B circuit
(QR decomposition → typically 61 gates)

– For 2-qubit Fourier transform: 
a circuit with minimal # of CNOT gates
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• First generic synthesis algorithm to capture circuit structure,
e.g., A⊗B

• Recent work (1)
– Lower and upper bounds of     ? gates (almost done)

– Solved the synthesis of n-qubit diagonal computations 

quant-ph/0303039 (asymptotically optimal circuits)

Summary

18
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Recent Work (2)

• z
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Recent Work

• V. V. Shende, I. L. Markov and S. S. Bullock, 
``On Universal Gate Libraries and Generic 
Minimal Two-qubit Circuits,'' quant-ph/0308033

• V. V. Shende, S. S. Bullock and I. L. Markov, 
``Recognizing Small-Circuit Structure in Two-
Qubit Operators,'' quant-ph/0308045

• George F. Viamontes, Igor L. Markov and John P. 
Hayes, ``Improving Gate-Level Simulation of 
Quantum Circuits,'' quant-ph/0309060


