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Motivation for Two Qubit Synthesis

Many implementation technologies limited
By two or three qubits

2-3 qubits enough for q. communication
Peephole circuit optimization
Two qubit problems are easy!

Before We Looked At This Problem

Algorithms known for n-qubit synthesis
Barenco et Al.
Cybenko
Tucci (?)
Many others

Worst-case performance 
O(n 4n) basic gates
61 elementary gates for 2-qubits
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Our Methods, Worst Case

18153Rz, Rx, CNOT

18153Rz, Ry, CNOT

18153Rx, Ry, CNOT

1073Basic Gates 
(1-qubit gates, CNOT)

Total # gates# 1-qubit gates# CNOT gatesGate Library

Except for the red 7 and 10, can’t do better

Our Methods, Any Case

Yield circuits with optimal CNOT count
Recall: CNOT gates expensive in practice

However, may have excess 1-qubit gates

Our Methods, Specific Cases

Automatically detect tensor products
Tensor-product circuits require no CNOT gates

Yield an optimal circuit for 2-qubit QFT
6 basic gates (3 CNOT gates)

What We Do Differently

Emphasize circuit identities
Think in elementary (not basic) gates
Compute circuit-structure invariants
Avoid cumbersome physics notation
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Circuit Identities

Used to cancel, combine, and rearrange 
gates in a circuit

For example: 

Circuit Identities Elementary vs. Basic Gates

The basic gate library 
One-qubit operators, plus the CNOT

Is universal

Many gate-counts given in basic gates
Eg., those in Barenco et. Al.
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Elementary vs. Basic Gates

A “smaller” gate library will suffice
Express one-qubit operators as a product
eiφRz(a) ● Ry(b) ● Rz(c)

The elementary-gate library
{CNOT, Ry, Rz}
Parameterized gates Ry , Rz

One dimensional
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The Canonical Decomposition

Any U in U(4) can be written as

U = eiφ [a ⊗ b] δ [f ⊗ g]

where a, b, f, g are in SU(2)
And δ is diagonal in the magic basis

The Magic Basis
Given by the rows of

In the magic basis
SO(4) operators look like tensor products
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The 18 Gate Construction

Given U in SU(4)
Use the canonical decomposition

eiπ/4 χ1,2 U = [a ⊗ b] δ [f ⊗ g]

a, b, f, g are in SU(2)
δ is diagonal in the magic basis

The 18 Gate Construction
Change basis: δ = E∆E* 

for ∆ diagonal in the computational basis

Implement E, ∆

E   =

∆ =

The 18 Gate Construction
Concatenate circuits & apply identities

The one-qubit gates associated with E vanish
Since we began with eiπ/4 χ1,2 U, can remove a CNOT

The resulting circuit requires
3 CNOT gates and 15 Ry / Rz gates
Or, 3 CNOT gates and 7 one-qubit gates

The 18 Gate Construction
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Other Gate Libraries

One can use Rx instead of Rz

Proof: Conjugate by Hadamard

However, no worst-case optimal circuit 
using Rx, Rz, CNOT “looks like” this circuit

Because both Rx, Rz can pass through CNOT

Worst-case Optimality

Proven by dimension counting
The dimension of SU(4) is 15 
Need 15 parameterized gates
Need 3 CNOT gates to prevent cancellations
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Counting CNOT Gates

Define γ(U) = U [σy ⊗ σy] Ut [σy ⊗ σy]

Observe that for u a 2 by 2 matrix, u σy ut σy = I ● det(u)

It follows that 
if U = (a ⊗ b) V (c ⊗ d)
γ(U) is similar to γ(V) 

Thus the conjugacy class (or characteristic polynomial) 
of γ(U) is constant on the equivalence classes of two-
qubit computations up to one-qubit gates
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Counting CNOT Gates

Theorem: if U requires at least
3 CNOT gates, tr γ(U) is not real
2 CNOT gates, γ(U) ≠ I and γ(U)2 ≠ - I
1 CNOT gate,   γ(U) ≠ I

Only depends on conjugacy class of γ(U)

Counting CNOT Gates

The proof builds a CNOT-optimal circuit 
computing the desired operator

Fully constructive & soon to be 
implemented and made web-accessible
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Measurement

Measurement kills phase

The following concepts are the same 
Knowing that you will measure 

In the computational basis 

Having a synthesis don’t care
Left multiplication by a diagonal operator ∆
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CNOT Counting + Measurement

To count the number of CNOTs needed to 
compute U in the context of measurement

Apply the CNOT counting theorem to all 
possible matrices ∆U

Observation: γ(AtB) ≈ γ(A)t γ(B) 

CNOT Counting + Measurement

In fact, 2 CNOTs and 12 elementary gates 
suffice to simulate an arbitrary 2-qubit 
operator, up to measurement

Dimension arguments show this is optimal

It follows that 18 gates from {Rx, Rz, CNOT} 
suffice to compute any 2-qubit operator

I can’t show this without the CNOT counting formula

CNOT Counting + Measurement

Other measurements are possible
(2+2) measurements
(3+1) measurements

Can characterize CNOT-optimal circuits
If subspaces spanned by comp. basis vectors
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Open Questions

It has been asserted that 6 two-qubit gates 
suffice to compute any 3 qubit gate. 
If this is true, we can give a circuit for an 
arbitrary three-qubit operator.

Worst-case suboptimal by only 4 CNOT gates. 

But, no proof of this assertion in the literature, 
Numerical evidence supporting it is weak. 

Is this assertion true?

Open Questions

A recent paper gives worst-case optimal 2-
qubit circuits for arbitrary c-U gates. 

Generalizes our 18-gate construction.

Can the CNOT-counting formula be 
similarly generalized?

Open Questions

We have CNOT-optimal circuits given 
measurement in the computational basis. 
It is harder to use the counting formula for 
measurements in other bases.
What happens here?
In particular: 

Is there any basis B in which making a (3+1) 
measurement 

Thank You For Your Attention


