

Outline

- Introduction
- Background
- Worst-case Optimal Two-Qubit Circuits
- CNOT Counting
- Synthesis in the Context of Measurement
- Open Questions

Motivation for Two Qubit Synthesis

- Many implementation technologies limited
 By two or three qubits
- 2-3 qubits enough for q. communication
- Peephole circuit optimization
- Two qubit problems are easy!

Before We Looked At This Problem

- Algorithms known for n-qubit synthesis
 Barenco et Al.
 Cybenko
 Tucci (?)
 Many others
- Worst-case performance
 O(n 4ⁿ) basic gates
 G1 elementary gates for 2-qubits

Gate Library	# CNOT dates	# 1-aubit aates	Total # nates
	" chor galoo	# 1 qubit gates	Total # gates
R _x , R _y , CNOT	3	15	18
R _z , R _y , cnot	3	15	18
R _z , R _x , cnot	3	15	18
Basic Gates	3	7	10
(1-aubit gates, CNOT)			

Except for the red 7 and 10, can't do better

Our Methods, Any Case

- Yield circuits with optimal CNOT count □ Recall: CNOT gates expensive in practice
- However, may have excess 1-qubit gates

Our Methods, Specific Cases

- Automatically detect tensor products
 □Tensor-product circuits require no CNOT gates
- Yield an optimal circuit for 2-qubit QFT
 G basic gates (3 CNOT gates)

What We Do Differently

- Emphasize circuit identities
- Think in elementary (not basic) gates
- Compute circuit-structure invariants
- Avoid cumbersome physics notation

Outline

E de la compañía de l

- Introduction
- Background
- Worst-case Optimal Two-Qubit Circuits
- CNOT Counting
- Synthesis in the Context of Measurement
- Open Questions

Circuit Identities

- Used to cancel, combine, and rearrange gates in a circuit
- For example:

cuit identifies			
Circuit identities	Descriptions		
$C_j^k C_j^k = 1$ $\chi^{j,k} \chi^{j,k} = 1$ $C_j^k C_k^j = \chi^{j,k} C_j^k$	CNOT-gate cancellation SWAP-gate cancellation CNOT-gate elimination		
$\begin{split} C_{k}^{j} R_{x}^{k}(\theta) &= R_{x}^{j}(\theta)C_{k}^{j}, C_{k}^{j}S_{x}^{j} = S_{z}^{j}C_{k}^{j} \\ C_{k}^{j} R_{z}^{k}(\theta) &= R_{z}^{k}(\theta)C_{k}^{j}, C_{k}^{j}S_{z}^{k} = S_{z}^{k}C_{k}^{j} \\ C_{j}^{j}\chi^{j,k} &= \chi^{j,k}C_{k}^{j} \\ V^{j}\chi^{j,k} &= \chi^{j,k}V^{k} \end{split}$	moving R_x , S_x via CNOT target moving R_z , S_z via CNOT control moving CNOT via SWAP moving a 1-qubit gate via SWAF		
$R_n(\Theta)R_n(\phi) = R_n(\Theta + \phi)$ $\vec{n} \perp \vec{m} \implies S_nR_m(\Theta) = R_{n \times m}(\Theta)S_n$	merging R_n gates. changing axis of rotation		
$H^i H^j C^i_j H^i H^j = C^j_i$ $\sigma^i_z \sigma^j_z C^j_j \sigma^j_z = C^j_j$ $\sigma^i_z \sigma^j_z C^i \sigma^j_z = C^i_z$	Flipping CNOT via Hadamard Moving σ_z past CNOT Moving σ_v past CNOT		

Elementary vs. Basic Gates The basic gate library One-qubit operators, plus the CNOT Is universal

Many gate-counts given in basic gates
 Eg., those in Barenco et. Al.

■ The elementary-gate library □{CNOT, R_y, R_z} □ Parameterized gates R_y, R_z ■ One dimensional

Outline

- Introduction
- Background
- Worst-case Optimal Two-Qubit Circuits
- CNOT Counting
- Synthesis in the Context of Measurement
- Open Questions

The Canonical Decomposition

Any U in U(4) can be written as

$$U=e^{i\phi}[a\otimes b]\,\delta\,[f\otimes g]$$

 $\label{eq:started} \begin{array}{l} \Box \mbox{ where a, b, f, g are in SU(2)} \\ \Box \mbox{ And } \delta \mbox{ is diagonal in the } \underline{\mbox{ magic basis}} \end{array}$

a

 R_{t}

Other Gate Libraries

- One can use R_x instead of R_z □ Proof: Conjugate by Hadamard
- However, no worst-case optimal circuit using R_x, R_z, CNOT "looks like" this circuit □Because both R_x, R_z can <u>pass through</u> CNOT

Worst-case Optimality

Proven by dimension counting
 The dimension of SU(4) is 15
 Need 15 parameterized gates
 Need 3 CNOT gates to prevent cancellations

Outline

- Introduction
- Background
- Worst-case Optimal Two-Qubit Circuits
- CNOT Counting
- Synthesis in the Context of Measurement
- Open Questions

Counting CNOT Gates

- Define $\gamma(U) = U [\sigma^y \otimes \sigma^y] U^t [\sigma^y \otimes \sigma^y]$
- Observe that for u a 2 by 2 matrix, u σ^y u^t σ^y = I det(u)
- It follows that □ if U = (a ⊗ b) V (c ⊗ d) □ γ(U) is similar to γ(V)
- Thus the conjugacy class (or characteristic polynomial) of γ(U) is constant on the equivalence classes of twoqubit computations up to one-qubit gates

Counting CNOT Gates

- Theorem: if U requires at least
 □3 CNOT gates, tr γ(U) is not real
 □2 CNOT gates, γ(U) ≠ I and γ(U)² ≠ I
 □1 CNOT gate, γ(U) ≠ I
- Only depends on conjugacy class of γ(U)

Counting CNOT Gates

- The proof builds a CNOT-optimal circuit computing the desired operator
- Fully constructive & soon to be implemented and made web-accessible

Outline

- Introduction
- Background
- Worst-case Optimal Two-Qubit Circuits
- CNOT Counting
- Synthesis in the Context of Measurement
- Open Questions

Measurement

- Measurement kills phase
- The following concepts are the same
 Knowing that you will measure
 In the computational basis
 - □ Having a synthesis don't care
 - Left multiplication by a diagonal operator Δ

CNOT Counting + Measurement

 In fact, 2 CNOTS and 12 elementary gates suffice to simulate an arbitrary 2-qubit operator, up to measurement
 Dimension arguments show this is optimal

- □ It follows that 18 gates from {R_x, R_z, CNOT} suffice to compute any 2-qubit operator
 - \blacksquare I can't show this without the CNOT counting formula

CNOT Counting + Measurement

- Other measurements are possible
 (2+2) measurements
 (3+1) measurements
- Can characterize CNOT-optimal circuits
 If subspaces spanned by comp. basis vectors

Outline

- Introduction
- Background
- Worst-case Optimal Two-Qubit Circuits
- CNOT Counting
- Synthesis in the Context of Measurement
- Open Questions

Open Questions

- It has been asserted that 6 two-qubit gates suffice to compute any 3 qubit gate.
- If this is true, we can give a circuit for an arbitrary three-qubit operator.
 Worst-case suboptimal by only 4 CNOT gates.
- But, no proof of this assertion in the literature,
 Numerical evidence supporting it is weak.
- Is this assertion true?

Open Questions

- A recent paper gives worst-case optimal 2qubit circuits for arbitrary c-U gates.
 Generalizes our 18-gate construction.
- Can the CNOT-counting formula be similarly generalized?

Open Questions

- We have CNOT-optimal circuits given measurement in the computational basis.
- It is harder to use the counting formula for measurements in other bases.
- What happens here?
- In particular:
 - □ Is there any basis B in which making a (3+1) measurement

Thank You For Your Attention