

Outline

- Introduction
- Background
- Worst-case Optimal Two-Qubit Circuits
- CNOT Counting
- Synthesis in the Context of Measurement
- Open Questions

- Except for the red 7 and 10, can't do better

Our Methods, Any Case

- Yield circuits with optimal cNOT count \square Recall: Спот gates expensive in practice
- However, may have excess 1-qubit gates

Circuit Identities

- Used to cancel, combine, and rearrange gates in a circuit
- For example:

Elementary vs. Basic Gates

- A "smaller" gate library will suffice -Express one-qubit operators as a product $\square \mathrm{e}^{\mathrm{i} \varphi} \mathrm{R}_{\mathrm{z}}(\mathrm{a}) \bullet \mathrm{R}_{\mathrm{y}}(\mathrm{b}) \bullet \mathrm{R}_{z}(\mathrm{c})$
- The elementary-gate library ם\{смот, $\mathrm{R}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}$ \}
\square Parameterized gates $\mathrm{R}_{\mathrm{y}}, \mathrm{R}_{\mathrm{z}}$ - One dimensional

The Canonical Decomposition

- Any U in $\mathrm{U}(4)$ can be written as
$U=e^{i \varphi}[a \otimes b] \delta[f \otimes g]$
awhere $\mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{g}$ are in $\mathrm{SU}(2)$
\square And δ is diagonal in the magic basis
The Canonical Decomposition
- Any U in U(4) can be written as
$U=\mathrm{e}^{\mathrm{i} \varphi}[\mathrm{a} \otimes \mathrm{b}] \delta[\mathrm{f} \otimes \mathrm{g}]$

\square where $\mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{g}$ are in SU(2)
\square And δ is diagonal in the $\underline{\text { magic basis }}$

Outline

- Introduction
- Background
- Worst-case Optimal Two-Qubit Circuits
- CNOT Counting
- Synthesis in the Context of Measurement
- Open Questions

[^0]
The 18 Gate Construction

- Given U in SU(4)
- Use the canonical decomposition
$e^{i \pi / 4} X^{1,2} U=[a \otimes b] \delta[f \otimes g]$
$\square \mathrm{a}, \mathrm{b}, \mathrm{f}, \mathrm{g}$ are in $\mathrm{SU}(2)$
$\square \delta$ is diagonal in the magic basis

The 18 Gate Construction

- Change basis: $\delta=E \Delta E^{*}$
\square for Δ diagonal in the computational basis
- Implement E, Δ
E =

$\Delta=$

The 18 Gate Construction

- Concatenate circuits \& apply identities -The one-qubit gates associated with E vanish \square Since we began with eiri/4 $\mathrm{X}^{1,2} \mathrm{U}$, can remove a CNOT
- The resulting circuit requires $\square 3$ CNOT gates and $15 \mathrm{R}_{\mathrm{y}} / \mathrm{R}_{\mathrm{z}}$ gates $\square \mathrm{Or}, 3$ CNOT gates and 7 one-qubit gates

The 18 Gate Construction

FIG. 1: Our generic circuit with three CNOT gates that can implement an arbitrary two-qubit operator. It requires ten basic gates [2] or eighteen gates from the library $\left\{\mathrm{CNOT}, R_{y}, R_{z}\right\}$.

Other Gate Libraries

- One can use R_{x} instead of R_{z} \square Proof: Conjugate by Hadamard
- However, no worst-case optimal circuit using $\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{z}}$, CNOT "looks like" this circuit \square Because both $\mathrm{R}_{\mathrm{x}}, \mathrm{R}_{\mathrm{z}}$ can pass through сNот

| Outline |
| :--- | :--- |
| - Introduction |
| - Background |
| - Worst-case Optimal Two-Qubit Circuits |
| - CNOT Counting |
| - Openthesis in the Context of Measurement |
| |

Worst-case Optimality

- Proven by dimension counting
\square The dimension of SU(4) is 15
\square Need 15 parameterized gates
\square Need 3 CNOT gates to prevent cancellations

Counting CNOT Gates

- Define $\mathrm{y}(\mathrm{U})=\mathrm{U}\left[\sigma^{\gamma} \otimes \sigma\right] \mathrm{U}^{t}\left[\gamma^{y} \otimes \sigma^{y}\right]$
- Observe that for ua 2 by 2 matrix, u $\sigma^{x y} u^{\prime} \sigma^{y}=1 \bullet \operatorname{det}(u)$
- It follows that
$\mathrm{aif}=(\mathrm{a} \otimes \mathrm{b}) \mathrm{V}(\mathrm{c} \otimes \mathrm{d})$
$\square \mathrm{Y}(\mathrm{U})$ is similar to $\mathrm{Y}(\mathrm{V})$
- Thus the conjugacy class (or characteristic polynomial) of $\gamma(U)$ is constant on the equivalence classes of twoqubit computations up to one-qubit gates

Counting CNOT Gates

■ Theorem: if U requires at least $\square 3$ CNOT gates, $\operatorname{tr} \gamma(\mathrm{U})$ is not real $\square 2$ CNOT gates, $\gamma(U) \neq 1$ and $\gamma(U)^{2} \neq-I$ $\square 1$ CNOT gate, $\mathrm{Y}(\mathrm{U}) \neq 1$

- Only depends on conjugacy class of $\gamma(\mathrm{U})$

Counting CNOT Gates

- The proof builds a CNOT-optimal circuit computing the desired operator
- Fully constructive \& soon to be implemented and made web-accessible

CNOT Counting + Measurement

- To count the number of CNOTs needed to compute U in the context of measurement
\square Apply the CNOT counting theorem to all possible matrices ΔU
- Observation: $\gamma\left(A^{t} B\right) \approx \gamma(A)^{t} \gamma(B)$

CNOT Counting + Measurement

\square In fact, 2 CNOTs and 12 elementary gates suffice to simulate an arbitrary 2-qubit operator, up to measurement

- Dimension arguments show this is optimal
-I tollows that 18 gates from $\left\{R_{x}, R_{z}\right.$, CNOT $\}$ suffice to compute any 2 -qubit operator
- I can't show this without the CNOT counting formula

CNOT Counting + Measurement
\square Other measurements are possible
$\square(2+2)$ measurements
$\square(3+1)$ measurements
- Can characterize CNOT-optimal circuits
alf subspaces spanned by comp. basis vectors

[^1]
Open Questions

- It has been asserted that 6 two-qubit gates suffice to compute any 3 qubit gate.
- If this is true, we can give a circuit for an arbitrary three-qubit operator. \square Worst-case suboptimal by only 4 CNOT gates.
- But, no proof of this assertion in the literature, \square Numerical evidence supporting it is weak.
- Is this assertion true?

Open Questions

- A recent paper gives worst-case optimal 2qubit circuits for arbitrary c-U gates.
-Generalizes our 18-gate construction.
- Can the CNOT-counting formula be similarly generalized?
Open Questions
We have CNOT-optimal circuits given
measurement in the computational basis.
It is harder to use the counting formula for
measurements in other bases.
- What happens here?
In particular:
als there any basis B in which making a $(3+1)$
measurement

[^2]
[^0]: The Magic Basis

 - Given by the rows of

 $$
 E=\frac{\sqrt{2}}{2}\left(\begin{array}{cccc}
 1 & i & 0 & 0 \\
 0 & 0 & i & 1 \\
 0 & 0 & i & -1 \\
 1 & -i & 0 & 0
 \end{array}\right)
 $$

 - In the magic basis
 $\square \mathrm{SO}(4)$ operators look like tensor products

[^1]: Outline

 - Introduction
 - Background
 - Worst-case Optimal Two-Qubit Circuits
 - CNOT Counting
 - Synthesis in the Context of Measurement
 - Open Questions

[^2]: Thank You For Your Attention

