
1

Use of Simulated Annealing in
Quantum Circuit Synthesis

Manoj Rajagopalan

17 Jun 2002

Outline

• Overview
• Simulated Annealing: the idea used

• Implementation

• Results

• Conclusions and Future Work

Quantum Circuit Synthesis

• Input-output transformation specified

• Objective: Gates and their arrangement into a
circuit to achieve this transformation

• Methods:
– Factorization <vshende> (Cybenko)

– Enumeration <gmathew, akprasad> (exhaustive, B&B)

– Genetic Algorithms <smaddipa> (Williams+, Yabuki+)

– Simulated Annealing <rmanoj> ()

Synthesis by SA

• Choose whole circuit every time

• Use equivalent transformations
(optimization)

• Incremental modification (ends of circuit)
– Computationally efficient!

– But is it good enough?

• Hey, what is Simulated Annealing?

2

Optimization Problems

• State variables:
– Reflect the system state
– May not be directly modified

• Control variables (degrees of freedom):
– Affect the state
– Directly modified

• Constraints on state and control
(equality/inequality)

• Objective: Solve for optimum of scalar objective
function

Optimization Heuristics

• Search space is too large for exhaustive
enumeration, too complex to visualize

• Pick random solutions and evaluate
performance index (PI)

• Filter good/best solution(s)

• Perturb these and re-evaluate PI

• Incorporate means to avoid local minima

Simulated Annealing: Basic Idea
• Objective: minimize scalar function subject

to given constraints
• Select one initial solution and evaluate cost
• Perturb the solution and calculate new cost
• Improvement in cost?

– Yes: Copy perturbed solution to initial solution
– No: Probabilistically accept perturbed solution

(to avoid local minima)

Quantum Circuit Synthesis as an
Optimization Problem

• Select type, number and location of gates
(control)

• Evaluate equivalent unitary operator (state)

• Constraint: Operator == given unitary

• Objective: Minimize number of gates

3

Outline

• Overview

• Simulated Annealing: the idea used
– Incremental perturbation

• Implementation

• Results

• Conclusions and Future Work

SA: Quantum Circuit Synthesis

• Assume given operator can be synthesized
• Number of qubits known for given operator
• Choose entire circuits in each perturbation?

– How many gates?
– What location?
– Need to ‘multiply’ all gates to get equivalent operator

each time!

• Alternative: Incremental modification (at ends of
circuit each time): NOP, ADD, REM, REP

• Qubits handled independently

SA: Incremental Perturbation

H

T

S

H

H

#0

#1

#2

#3

ADD: Hadamard Gate to #1

H

T

S

H

H

H

ADD: Hadamard Gate to #1

#0

#1

#2

#3

SA: Incremental Perturbation

4

SA: Incremental Perturbation

• Equivalent Operator =

× OperatorOriginal

⊗

⊗

⊗

I

I

H

I
H

T

S

H

H

#0

#1

#2

#3

SA: Incremental Perturbation

REMove: Hadamard Gate from #0

SA: Incremental Perturbation
H

T

S

H

H

REMove: Hadamard Gate from #0

#0

#1

#2

#3

SA: Incremental Perturbation

• Equivalent Operator =

×

OperatorOriginal

⊗

⊗

⊗

↑

I

I

I

H

5

SA: Incremental Perturbation

H

T

S

H

H

#0

#1

#2

#3

REPlace: T Gate on #2 with X Gate

SA: Incremental Perturbation

H

T

S

H

H

#0

#1

#2

#3

REPlace: T Gate on #2 with X Gate

SA: Incremental Perturbation

• Equivalent Operator =

OperatorOriginal

⊗

⊗

⊗

⊗

⊗

⊗

××
↑

I

X

I

I

I

T

I

I

SA: Incremental Perturbation

H

T

S

H

H

#0

#1

#2

#3

REPlace: CNOT on #1-3 with CNOT on #3-2

6

SA: Incremental Perturbation

H

T

S

H

#0

#1

#2

#3

REPlace: CNOT on #1-3 with CNOT on #3-2

H

SA: Incremental Perturbation

H

T

S

H

#0

#1

#2

#3

REPlace: CNOT on #1-3 with CNOT on #3-2

H

SA: Incremental Perturbation

• Equivalent Operator =

OpOriginal×

⊗

⊗

⊗

×

⊗

⊗

⊗

×

⊗

⊗

⊗

×

⊗

⊗

⊗

×

⊗

⊗

⊗

×

⊗

⊗

⊗

↑

↑↑

↑

↑

I

NOT

C

I

I

I

H

I

NOT

I

C

I

C

NOT

I

I

I

I

H

I

I

NOT

C

I

Outline

• Overview
• Simulated Annealing: the idea used
• Implementation

– Data Structures
– Algorithm
– Annealer Configuration
– Hardware and Software Platforms

• Results
• Conclusions and Future Work

7

Data Structures

• Class qgate: Quantum gates & operators

• Qubit: list<qgate>

• Circuit: Array of qubits

• qgate instance for CNOTs duplicated on
control and target qubits

SA Algorithm

• Initial circuit = empty
• Initial operator = I
• For each qubit

– For head and tail of qubit, each
• Choose one out of 4 moves: NOP, ADD, REM, REP in a non-

conflicting manner.
• Choose gates required for these, if applicable

• Evaluate new operator, guarding special cases
• Calculate (frobenius) norm of deviation from

given unitary

SA Algorithm

• Out of a few (10) such moves, choose move
with minimum deviation norm

• Is this below tolerance (10-6) ?
– Yes: Synthesis complete! Return.

– No: Is this ‘cost’ better than that previously
accepted?

• Yes: Accept this move into circuit

• No: Accept this move with probability e(-∆ cost / T)

SA Algorithm

• Repeat this procedure for a few (10) trials.

• Change temperature according to schedule.

• Iterate whole procedure till temperature
lower limit is reached.

8

Annealer Configuration

• Moves:
– 4 equiprobable changes at each end of qubit: NOP, ADD, REM,

REP

• 1 or 10 moves per trial
• 1 or 10 trials per iteration
• 1001 iterations:

– Tstart = 1
– Tend = 0.001
– Temperature schedule = linear with step 0.001

• Objective: Simply minimize deviation norm (no circuit
size reduction yet) (tolerance = 10-6)

Platforms

• proton.eecs.umich.edu

• AMD Athlon @ 1194 MHz 256kB cache

• Debian linux (kernel v2.4.18)

• Coded in C++

• g++ 2.95.4 with –O3 optimization

• Timing and peak memory tracking using
getrusage()

Outline

• Overview

• Simulated Annealing: the idea used

• Implementation

• Results
– Single qubit circuits
– Circuits with CNOT gates

• Conclusions and Future Work

Results: simple {H,X,Z} circuits

• TEST I
– Randomly generated, 3 qubits, 30 gates

– Optimal equivalent:

X

X

Z

Z

9

Results(1/2): TEST I

0.76260.339Avg

61% success rate97% success rate

22

4

gates

Using {H, X, Z}

1.95721.57Max

0.0960Min

Time(s)# gatesTime(s)

Using {H, X}

Results(2/2): TEST I

0.66120.3510Avg

54% success rate17% success rate

47

6

gates

Using {H, Z}

1.71231.84Max

0.1150Min

Time(s)# gatesTime(s)

Using {H, X, S}

Results: Simple {H, X, Z} circuits

• TEST II
– Randomly generated

– 5 qubits, 300 gates

Results(1/3): TEST II

5.53270.6017Avg

82% success rate100% success rate

74

6

gates

Using {H, X, Z}

15.111273.54Max

0.0670.02Min

Time(s)# gatesTime(s)

Using {H, X, S}

10

Results(2/3): TEST II

3.48521.8223Avg

81% success rate99% success rate

58

8

gates

Using {H, Z}

13.9817811.54Max

0.05100.06Min

Time(s)# gatesTime(s)

Using {H, X}

Results(3/3): TEST II

19.86284.2329Avg

1 % success rate81% success rate

94

12

gates

Using {H, S}

19.862817.71Max

19.86280.46Min

Time(s)# gatesTime(s)

Using {H, T}

{H, X, Z}: Conclusions

• Easily synthesized

• Optimal equivalents detected

• Average number of gates is impressive!

• Versatility of annealer: wide variety of gate
libraries

• Fast!

Results: Circuits with CNOTs
• Brassard’s teleportation circuit

– Careful with the gates (especially S and T) !

R

L

S

T

S

Sender Receiver

11

Results(1/3): Send Circuit

23.177011.2353Avg

8 % success rate95 % success rate

213

4

gates

Using {L, CNOT, R}

84.1719999.68Max

1.1210Min

Time(s)# gatesTime(s)

Using {CNOT, H, SNC}

Results (2/3): Send Circuit

38.4616231.43125Avg

45 % success rate51 % success rate

301

20

gates

Using {CNOT, H, X}

107.00357100.38Max

0.0680.75Min

Time(s)# gatesTime(s)

Using {CNOT, H, Z}

Results(3/3): Send Circuit

--Avg

? % success rate0 % success rate

-

-

gates

Using {CNOT, H, X,
SNC, TNC}

-Max

-Min

Time(s)# gatesTime(s)

Using {R, S, T, L, X,
CNOT}

Send Circuit: Conclusions

• Difficult to synthesize with overspecified
gate library

• Using 10 trials per iteration instead of the
usual 1 improves chances of getting an
equivalent circuit and may even detect
optimal one but takes much more time and
may show worse average performance

12

Results(1/2): Receiver Circuit

0.1160.055Avg

100 % success rate

68% find optimum

100 % success rate

83% find optimum

20

4

gates

Using {S, CNOT, T}

0.72160.52Max

040Min

Time(s)# gatesTime(s)

Using {CNOT, H, SNC}

Results(2/2): Receiver Circuit

0.225Avg

? % success rate

? % find optimum

100 % success rate

44% find optimum

16

3

gates

Using {SNC, CNOT,
TNC, X, H}

1.19Max

0Min

Time(s)# gatesTime(s)

Using {R, S, T, L, X,
CNOT}

Receiver Circuit: Conclusions

• A lot easier to synthesize than the send
circuit

• Variety of gate libraries can be used

• Overspecified gate library not a problem

• Annealer finds optimum quite often.

Teleportation circuit: Previous Work

• Williams and Gray
– Objective: minimize discrepancy, sum of

absolute value of matrix of differences
– Send and receive minimal circuits have 4 gates

each. Achieved. 3 using N&C gates

• Yabuki and Iba
– Receive circuit needs minimum of 3 gates. We

get 4 using given library and 3 using N&C
gates

13

Outline

• Overview

• Simulated Annealing: the idea used

• Implementation

• Results

• Conclusions and Future Work

Overall Conclusions

• Annealer is versatile over a range of
discrete gate sets using a very simple
configuration

• Incremental perturbation works very well
(Igor rules!)

Future Work

• Optimizations
– Compose single qubit gates into one operator

• Ideas
– Optimal synthesis: include # gates in PI
– Circuits equivalent upto a nonzero global phase
– Annealer configurations (types and probabilities of

moves, temperature schedule) based on plots of quality
of solution against iterations

– More challenging problems: Toffoli gates (increased
interqubit interaction) , single qubit rotations
(continuous values)

