Use of Simulated Annealing in
Quantum Circuit Synthesis

Manoj Rgjagopalan
17 Jun 2002

Outline

* Overview

Simulated Annealing: the idea used
Implementation

* Results

» Conclusions and Future Work

Quantum Circuit Synthesis

* Input-output transformation specified

 Objective: Gates and their arrangement into a
circuit to achieve this transformation
» Methods:
— Factorization <vshende> (Cybenko)
— Enumeration <gmathew, akprasad> (exhaustive, B& B)
— Genetic Algorithms <smaddipa> (Williams+, Y abuki+)
— Simulated Annealing <rmanoj> ()

Synthesis by SA

» Choose whole circuit every time

» Use equivdent transformations
(optimization)

« Incremental modification (ends of circuit)
— Computationally efficient!
— But isit good enough?

» Hey, what is Simulated Annealing?

Optimization Problems Optimization Heuristics

State variables:
— Réflect the system state

 Search spaceistoo large for exhaustive

— May not be directly modified enumeration, too complex to visualize
« Control variables (degrees of freedom): * Pick random solutions and evaluate
— Affect the state performance index (Pl)
— Directly modified . .
» Constraints on state and control » Filter good/best solution(s)
(equality/inequality) Perturb these and re-evaluate Pl
" Qbjective: Solve for aptimum of scalar cbjective « Incorporate meansto avoid local minima

Simulated Annealing: Basic Idea Quantum Circtit Synthes's as an

Optimization Problem
 Objective: minimize scalar function subject
to given congtraints _
* Select oneinitial solution and evaluate cost * Select type, number and location of gates
« Perturb the solution and calculate new cost (control)
« Improvement in cost? « Evaluate equivalent unitary operator (state)
— Yes: Copy perturbed solution to initial solution Congtraint: Operator == given unitary
— No: Probabilistically accept perturbed solution « Objective: Minimize number of gates

(to avoid local minima)

Outline

Overview
Simulated Annealing: theidea used
— Incremental perturbation

Implementation
Results
Conclusions and Future Work

SA: Quantum Circuit Synthesis

Assume given operator can be synthesized

Number of qubits known for given operator
Choose entire circuits in each perturbation?
— How many gates?
— What location?

— Need to ‘multiply’ all gatesto get equivalent operator

each time!

Alternative: Incremental modification (at ends of
circuit each time): NOP, ADD, REM, REP

Qubits handled independently

SA: Incremental Perturbation

~
N \V

————eo—H
. M
T a N,
M
N

ADD: Hadamard Gate to #1

#1

#2

#3

SA: Incremental Perturbation

L G AN W/

(M (M

" S

LV

ADD: Hadamard Gate to #1

#1

#2

#3

SA: Incremental Perturbation

» Equivaent Operator =

X| Original Operator

- o -—-—0xIx0 —

SA: Incremental Perturbation

el TN TN
H—s—OU #0
——H #1
—T H <> #2
() 43

REM ove: Hadamard Gate from #0

SA: Incremental Perturbation

S I
N \V

————eo—H
o M
T a N,
M
N

REM ove: Hadamard Gate from #0

#1

#2

#3

SA: Incremental Perturbation

» Equivalent Operator =

y
O
Original Operator| % é
:
|

SA: Incremental Perturbation

ol ™
hH—s—

——— e —H
o o
T H o
T
N

REPlace: T Gate on #2 with X Gate

#1

#2

#3

SA: Incremental Perturbation

(M (M

B NN #0
—— 00— H #1
H C) #2

REPlace: T Gate on #2 with X Gate

SA: Incremental Perturbation

» Equivaent Operator =

| |
O O
| |
Original Operator| X| o |X|o
T X
O O
| |

SA: Incremental Perturbation

e DD w
————— ¢ —H #1
—T H C) #2

() w

REPIlace: CNOT on #1-3 with CNOT on #3-2

SA: Incremental Perturbation SA: Incremental Perturbation

“n—s—DD " s PP

—H—— #

—H—e— #

,”; V‘

Tr\Hﬂ% D = gl - HHH@ —(D =

N s "
REPIlace: CNOT on #1-3 with CNOT on #3-2 REPIlace: CNOT on #1-3 with CNOT on #3-2
SA: Incremental Perturbation Outline
« Equivalent Operator = * Overview
e Simulated Annealing: the idea used
YY) « Implementation
oo o o a U — Data Structures
CIHI| || C||H||C o — Algorithm
OMONM O OMNON O X Orlgl na_l Op — Annealer Configuration
NOT| 1| [NOT| | I | |INOT — Hardwar e and Softwar e Platfor ms
o|lgl|l o o (ol o * Results
AUANFAU CUAN DA « Conclusions and Future Work

Data Structures

Class ggate: Quantum gates & operators
Qubit: list<qgate>

Circuit: Array of qubits

ggate instance for CNOTs duplicated on
control and target qubits

SA Algorithm

* Initial circuit = empty
* Initial operator = |
 For each qubit

— For head and tail of qubit, each

» Choose one out of 4 moves: NOP, ADD, REM, REP in anon-
conflicting manner.

» Choose gates required for these, if applicable
 Evaluate new operator, guarding special cases

 Calculate (frobenius) norm of deviation from
given unitary

SA Algorithm

Out of afew (10) such moves, choose move
with minimum deviation norm

Is this below tolerance (10°) ?

—Yes. Synthesis complete! Return.

—No: Isthis‘cost’ better than that previously
accepted?
 Yes: Accept this move into circuit
» No: Accept this move with probability g4 cost/T)

SA Algorithm

 Repeat this procedure for afew (10) trials.
» Change temperature according to schedule.

* |terate whole proceduretill temperature
lower limit is reached.

Annealer Configuration

Moves:

— 4 equiprobable changes at each end of qubit: NOP, ADD, REM,
REP

1 or 10 moves per trial
1or 10 trials per iteration
1001 iterations:
— Tstart=1
- Tend =0.001
— Temperature schedule = linear with step 0.001
Objective: Simply minimize deviation norm (no circuit
sizereduction yet) (tolerance = 10%)

Platforms

* proton.eecs.umich.edu

AMD Athlon @ 1194 MHz 256kB cache

Debian linux (kernel v2.4.18)

Coded in C++

g++ 2.95.4 with —O3 optimization

» Timing and peak memory tracking using
getrusage()

Outline

Overview

Simulated Annealing: the idea used
Implementation

Results

— Single qubit circuits

— Circuitswith CNOT gates
Conclusions and Future Work

Results: simple {H,X,Z} circuits

e TESTI
— Randomly generated, 3 qubits, 30 gates
— Optimal equivalent:

X

X Z

z

Results(1/2): TEST |

Results(2/2): TEST |

Using {H, X, Z} Using {H, X} Using {H, Z} Using {H, X, S}
#gates | Time(s) | #gates | Time(s) #gates | Time(s) | #gates | Time(s)
Min 4 0 6 0.09 Min 6 0 5 0.11
Max 22 157 72 1.95 Max 47 1.84 23 171
Avg 9 0.33 26 0.76 Avg 10 0.35 12 0.66
97% successrate 61% successrate 17% success rate 54% successrate
Results: Simple {H, X, Z} circuits Results(1/3): TEST I
Using {H, X, Z} Using {H, X, S}
* TEST Il
— Randomly generated #gates | Time(s) | #gates | Time(s)
— 5 qubits, 300 gates Min 6 0.02 7 0.06
Max 74 354 127 15.11
Avg 17 0.60 27 5.53

100% success rate 82% success rate

Results(2/3): TEST Il Results(3/3): TEST Il
Using {H, Z} Using {H, X} Using{H, S} Using{H, T}
#gates | Time(s) | #gates | Time(s) #gates | Time(s) | #gates | Time(s)
Min 8 0.06 10 0.05 Min 12 0.46 28 19.86
Max 58 11.54 178 13.98 Max 94 17.71 28 19.86
Avg 23 1.82 52 3.48 Avg 29 4.23 28 19.86
99% success rate 81% success rate 81% successrate 1 % success rate
{H, X, Z}: Conclusions Results: Circuitswith CNOTs
_ _ * Brassard’ steleportation circuit
Easily synthesized — Careful with the gates (especially Sand T) !
Optimal equivalents detected
Average number of gatesisimpressive! ——e R~ —s{PH-s—P
Versatility of annealer: wide variety of gate L ()
libraries
East! C) C) T—e—
Sender Receiver

Results(1/3): Send Circuit

Using {L, CNOT, R}

Using {CNOT, H, Sy}

Results (2/3): Send Circuit

#gates | Time(s) # gates Time(s)
Min 4 0 21 11
Max 213 99.68 199 84.17
Avg 53 11.23 70 23.17

95 % success rate 8 % successrate

Using {CNOT, H, X} | Using{CNOT, H, Z}
#gates | Time(s) # gates Time(s)
Min 20 0.75 8 0.06
Max 301 100.38 357 107.00
Avg 125 31.43 162 38.46
51 % success rate 45 % successrate

Results(3/3): Send Circuit

Using {CNOT, H, X, | Using{R, S, T, L, X,
Swer Tnet CNOT}
#gates | Time(s) # gates Time(s)
Min - -
Max - -
Avg - -
0 % successrate ? % successrate

Send Circuit: Conclusions

* Difficult to synthesize with overspecified
gate library

» Using 10 trials per iteration instead of the
usua 1 improves chances of getting an
equivalent circuit and may even detect
optimal one but takes much more time and
may show worse average performance

11

Results(1/2): Receiver Circuit

Using {S, CNOT, T}

Using {CNOT, H, Syd

#gates | Time(s) # gates Time(s)
Min 4 0 4 0
Max 20 0.52 16 0.72
Avg 5 0.05 6 011

100 % success rate 100 % success rate

83% find optimum

68% find optimum

Results(2/2): Receiver Circuit

Using { Syc, CNOT,

Using{R, S, T, L, X,

44% find optimum

Tne X, H} CNOT}
#gates | Time(s) # gates Time(s)
Min 3 0
Max 16 1.19
Avg 5 0.22
100 % success rate ? % success rate

? % find optimum

Receiver Circuit; Conclusions

A lot easier to synthesize than the send
circuit
Variety of gate libraries can be used
Overspecified gate library not a problem
Anneadler finds optimum quite often.

Teleportation circuit: Previous Work

» Williams and Gray
— Objective: minimize discrepancy, sum of
absolute value of matrix of differences
— Send and receive minimal circuits have 4 gates
each. Achieved. 3 using N& C gates
* Yabuki and Iba

— Receive circuit needs minimum of 3 gates. We
get 4 using given library and 3 using N&C
gates

12

Outline

» Overview

Simulated Annealing: the idea used
Implementation

* Results

» Conclusionsand Future Work

Oveall Conclusions

» Annedler isversatile over arange of
discrete gate setsusing avery simple
configuration

* Incremental perturbation works very well
(Igor rules!)

Future Work

» Optimizations
— Compose single qubit gatesinto one operator

* ldeas
— Optimal synthesis: include # gatesin Pl
— Circuits equivalent upto anonzero globa phase

— Annealer configurations (types and probabilities of
moves, temperature schedule) based on plots of quality
of solution against iterations

— More challenging problems: Toffoli gates (increased
interqubit interaction) , single qubit rotations
(continuous values)

13

