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Computational Limits

• Some important computational problems 
seem to be permanently intractable
> Their complexity grows exponentially with problem 

size, e.g. factoring large numbers—the basis for 
“unbreakable” Internet codes

• Performance improvements in “classical” 
computer circuits may be approaching a limit
> This is described by Moore’s Law



Computational Limits

• Question: Is there a faster and more 
compact way to compute?

• Answer:  Yes !
Quantum mechanics can form the basis for 
an entirely new type of computation—

quantum  computing — if some huge 
practical implementation problems can be 
solved 



Quantum Information

• A classical logic state can be 0 or 1,
but not both

• A quantum state can be 0 and 1 at the
same time!

• More precisely, a quantum state is a 
superposition of the zero and one states called 
a qubit 

The coefficients c0 and c1 are complex numbers
called (probability) amplitudes

c0 0 + c1 1



Quantum Information

0+110



Quantum Information

• The Good News
> N qubits can store 2N binary numbers 

simultaneously, suggesting massive parallelism 

N = 2:   |Ψ〉 = c0|00〉 + c1|01〉 + c2|10〉 + c3|11〉
or, in general, 

> Quantum states have wavelike properties
that allow powerful nonclassical operations 
(interference, entanglement)

Ψ = ci bi, n−1bi,n− 2 …bi,0
i = 0

2n −1

∑
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Quantum Information

• The Bad News
> Measurement yields just one of the 2N

superimposed numbers |bi,n–1 bi, n–2…bi,0〉
and destroys the superposition

> Quantum states are very fragile due to 
- Tiny (nano) scale and low energy levels
- Interaction with the environment (decoherence)

• Implications
> Physical quantum circuits are extremely hard to build
> Fault-tolerant design is believed to be essential



Quantum Computing

Qubit 
register

Basic (gate) 
operation 1

Qubit 
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Basic (gate) 
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A Little History

• 1982: Richard Feynman suggested quantum 
mechanics could provide an exponential speed-up
in simulation

• 1985: David Deutsch described a simple algorithm  
exhibiting quantum parallelism

• 1994: Peter Shor showed how to factor integers into 
primes in  polynomial time using quantum methods, 
thus “breaking”  RSA encryption

• 1996-now:  First quantum computing devices built
at LANL, Oxford, etc. employing a few (≤ 10) qubits
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Classical Logic Circuits

• Behavior is governed implicitly by classical physics: 
no restrictions on copying or measuring signals

• Signal states are simple bit vectors,
e.g. X = 01010111

• Signal operations are defined by Boolean algebra
• Small well-defined sets of universal gate types exist , 

e.g. {NAND}, {AND, OR, NOT}
• Circuits use fast, scalable and macroscopic 

technologies such as transistor-based CMOS 
integrated circuits



Quantum Circuits

• Behavior is governed by quantum mechanics
• Signal states are qubit vectors  
• Operations are defined by linear algebra over Hilbert 

space and represented by unitary matrices
> Gates and circuits must be reversible (information-lossless)
> Number of output lines = Number  of input lines
> States cannot be copied so fan-out (“cloning”) is not allowed

• Many universal gate sets and physical implementation 
technologies exist (the best ones are not obvious)



Classical vs. Quantum Circuits

• Example: Classical Half Adder
> Compute the sum and carry for two bits x1,x0

=

&

x1

XOR
gate

AND
gate

1

0
1

0

0

1 sum
x0

carry



Classical vs. Quantum Circuits

• Example: Quantum Half Adder
> Compute the sum and carry for two qubits x1,x0

carry

x1

x0 sum

Toffoli
gate

CNOT
gate

0

x1
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Quantum Gates

• One-Input  gate: NOT 
> Input state: c0|0〉 + c1|1〉

> Output state: c1|0〉 + c0|1〉

> Graphic symbol:

> Basic states |0〉 and  |1〉 are mapped thus:  
|0〉 → |1〉

|1〉 → |0〉

X



Quantum Gates

• NOT gate (contd.)
> Vector notation for states:

> Matrix notation for gate operation:

> Gate connection corresponds to matrix 
multiplication:

0 1
1 0
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⎜ ⎞ 
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1
0

⎛ 
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=
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⎛ 
⎝ 
⎜ ⎞ 

⎠ XX = ––
Identity matrix
NOT matrix



Quantum Gates
• Hadamard Gate

> Maps  |0〉 → 1/√2 |0〉 + 1/√2 |1〉 and |1〉 → 1/√2 |0〉 – 1/√2 |1〉
so it “randomizes” the basic states

1
2

1 1
1 −1

⎛ 
⎝ 
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⎠ H

1
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1 1
1 −1
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1 −1
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⎠ 
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1 0
0 1

⎛ 
⎝ 
⎜ ⎞ 

⎠ 

HH = ––



Quantum Gates
• Phase-Shift Gate

> Maps  |0〉 → |0〉 and |1〉 → eiφ |1〉 so it “twists”
the 1 state by an angle φ

> If  = π, it maps |1〉 → – |1〉
> Note that the entries of a gate matrix can be 

complex numbers 

1 0
0 eiφ

⎛ 
⎝ 
⎜ ⎞ 

⎠ φ



Quantum Gates

• Two-Input Gate: Controlled NOT (CNOT)
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 

|x〉

|y〉

|x〉

|x ⊕ y〉
CNOT

|x〉

|y〉

|x〉

|x ⊕ y〉

> CNOT maps 
|x〉|0〉 → |x〉||x〉

and
|x〉|1〉 → |x〉||NOT(x)〉



Quantum Gates

“Standard” Universal Gate Set
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0
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H P T

CNOT          Hadamard      Phase       T (π/8 ) gate 
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Quantum Circuits

• A quantum “circuit” is a sequence of quantum  “gates” 
• The signals (qubits) may be static while the

gates are dynamic
• The circuit has fixed “width” corresponding to the 

number of qubits being processed
• Logic design (classical and quantum) attempts to find 

circuit structures for needed operations that are
> Functionally correct
> Independent of physical technology
> Low-cost, e.g. uses the minimum number of qubits or gates



Quantum Circuits

• Example 1: Quantum Half Adder
> Compute the sum and carry for two qubits x1,x0

|y〉 ⊕ carry

|x1〉

|x0〉

|y〉

|x1〉

sum

Toffoli
gate

CNOT
gate

Data in 

Data in 

Control in Data out 

Data out 

Control out 



Quantum Circuits

Example 2: Implementing Deutsch’s Algorithm
• Problem:  Determine whether a one-variable Boolean 

function f(x) is constant, i.e. f(0)= f(1), or balanced,
i.e. f(0) ≠ f(1). 

• Classical algorithms require two evaluations of  f.
• This algorithm uses just one quantum evaluation by,

in effect, computing f(0) and  f(1)simultaneously
• Circuit:

MH

H

H

y ⊕f(x)y

x x
Uf



Quantum Circuits

• Deutsch’s Algorithm (contd.)

MH

H

H

y ⊕f(x)y

x x
Uf

• Initialize with |Ψ0〉 = |01〉

|0〉

|1〉
|Ψ0〉

• Create superposition of x states using the first 
Hadamard (H) gate. Set y control input using
the second H gate

|Ψ1〉

• Compute f(x) using the special unitary circuit Uf

|Ψ2〉

• Interfere the |Ψ2〉 states using the third H gate

|Ψ3〉

• Measure the x qubit

|0〉 = constant; |1〉 = balanced



Quantum Computation

• Generic Structure to Compute F(X)

Super-
impose 
input

vectors {Xi} Compute
F(X)

Interfere
the results

Measure
the

outcome

on

om
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Physical Implementation

Main Contenders
• Nuclear magnetic resonance (NMR)
• Ion traps
• Semiconductor quantum dots
• Optical lattices

etc.

Main Deficiency
• Poor scalability



Ion Traps

• String of charged particles is trapped by a combination 
of static and oscillating electric fields in a high-vacuum 
device

• Each ion has two long-lived electrical states 
representing ⏐0〉 and ⏐1〉

• The individual ions can be addressed by laser beams
• Means exist for initializing (optical pumping and laser 

cooling) and measuring the quantum state



Ion Traps

2 µm

Chris Monroe, 
University of 
Michigan



Summary: State of the Art

• Quantum circuits can solve some important problems 
with exponentially fewer operations than classical 
algorithms

• Small quantum circuits have been demonstrated in the 
lab using various physical technologies 

• Quantum cryptography has been demonstrated over 
long distances

• Current technologies are fragile, and appear to be 
limited to tens of qubits and hundreds of gates

• Big gaps remain in our understanding of quantum circuit 
and algorithm design, as well as the necessary 
implementation techniques


