An Error Model for Quantum Circuits Using Ion Traps

Manoj Rajagopalan

Outline

- Motivation
- Quantum computing
- Linear ion traps
- Challenges to implementation
- Previous work
- Proposed error model
- Summary
- Future work

Motivation

- Practical success of quantum computing hinges on error-correcting codes
- Error-correction based on error model
- Standard error model makes many assumptions
- Practical error models derive from technology
- Ion traps among most promising hardware technologies

Motivation

- Detailed physical simulation of noisy phenomena computationally infeasible
- Logic level error model more tractable
 - Stuck-at fault model adequate for VLSI testing
 - Correspondence between logical and physical errors exists for most defects
- Quantum systems
 - Physics-driven simulation: quantum mechanics
 - Is an adequate logic-level characterization of errors possible?

Quantum Computing

Qubit state

$$|\Psi\rangle = \alpha|0\rangle + \beta|1\rangle, \qquad \alpha, \beta \in \mathbb{C}, \qquad |\alpha|^2 + |\beta|^2 = 1$$

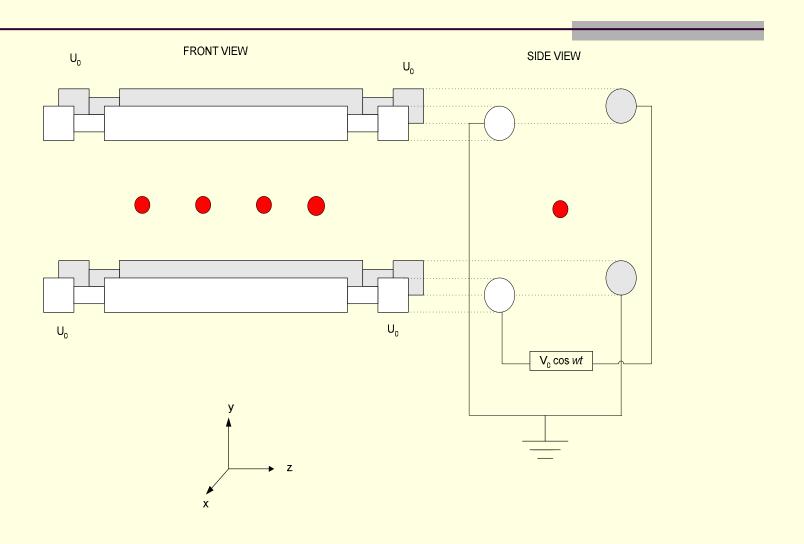
$$|\Psi\rangle_{AB} = |\Psi\rangle_{A} \otimes |\Psi\rangle_{B}$$

- Quantum gates
 - Unitary operators in $\mathbb{C}^{\otimes n} \times \mathbb{C}^{\otimes n}$
 - Reversible evolution
- Measurements collapse superpositions to an eigenstate of measurement operator

Quantum Computing

- Asymptotic speedup of certain problems
 - Memory grows exponentially with qubits!
 - Entanglement: not observed in classical case
 - Shoris algorithm
 - Number factoring, n bits
 - O(n² logn loglogn)
 - Classical (number-field sieve) exp(Θ(n^{1/3} log^{2/3}n))
 - Groverís algorithm
 - Search through unstructured database, size N
 - Θ(√N)
 - Classical O(N)

Outline


- Motivation
- Quantum computing
- Linear ion traps
- Challenges to implementation
- Previous work
- Proposed error model
- Summary
- Future work

Linear Ion Traps

- Requirements from quantum hardware *
 - Robust representation of quantum information
 - Universality of logical transformations
 - Initial state preparation with high fidelity
 - Easy high-performance measurements

Nielsen and Chuang, Chp. 7

Linear Ion Traps

Linear Ion Traps: Apparatus

- Four cylindrical electrodes
 - Two earthed
 - Two connected to sinusoidal potential
 - Radial confinement
 - These also have static potentials at ends
 - Axial confinement of ions ñ balance between
 Coulombic repulsion from electrode and each other.
 - Radial forces >> axial forces => linear

Linear Ion Traps: Logic

- Quantum states
 - Atomic spin (⁹Be+): internal state
 - Axial COM motion: motional state
 - Means of coupling for controlled gates
 - $|\Psi\rangle = \cos\theta |0\rangle + e^{i\varphi}.\sin\theta |1\rangle$
- Quantum gates
 - Single qubit: zap ion with 1 laser pulse
 - Duration governs θ, phase governs φ
 - Controlled NOT [j,k]: 3 laser pulses
 - Couple spin of ion j with motional mode
 - Transform spin of ion k if phonon in motional mode
 - Decouple spin of ion j from motional mode
 - Universal quantum logic can be implemented

Linear Ion Traps: Logic

- Initial state preparation: laser cooling
 - Doppler cooling: ion-momentum loss to recoil of colliding photon
 - Sideband cooling: photons absorb energy from lower harmonic of fundamental vibration frequency.
- Measurement: light of 313 nm wavelength
 - |0> flouresces due to special transitions
 - |1> remains dark

Outline

- Motivation
- Quantum computing
- Linear ion traps
- Challenges to implementation
- Previous work
- Proposed error model
- Summary
- Future work

Individual Ion Addressing

- Ion separation \propto (# ions)^{-0.56}
- Beam focusing
 - Tightly focused beams ñ high transverse gradients => high spatial precision required
 - Focus beam through sharp aperture and image onto ion using lens ñ good gradients
- Destructive interference of counter-propagating Raman beams.
- Magnetic field gradients to shift position
- RF-field induced micromotion

Multimode interference

- n qubits cause 3n modes of vibration
 - 1 axial COM mode of interest
 - 3n-1 spectator modes
- 1. Spectator-motion effect on logic gates
 - Some operations sensitive to frequency that is a function of all modes of motion
- 2. Static electric field imperfections
 - Non-quadratic potentials with jitter causes mode cross-coupling
 - Net gain/loss of energy →redefinition of frequencies

Multimode interference [contd]

- 3. Logic gate induced mode-cross coupling
 - Spectator modes with frequency-sum or difference ~ transition frequency get coupled to transition states.

Decoherence

- Spontaneous emission
- Motional decoherence
 - Heating from RF fields in trap
 - Collisions with background atoms
 - Fluctuating electrode potentials
 - Thermal noise from lossy elements in electrodes
 - Electron field emission from electrodes
 - Coupling of moving charge chain with spurious external EM fields

- Decoherence [contd.]
 - 3. Noise from applied field
 - n Inaccuracy in targeting ion
 - n Laser pulse timing imprecision
 - n Intensity fluctuations

Outline

- Motivation
- Quantum computing
- Linear ion traps
- Challenges to implementation
- Previous work
- Proposed error model
- Summary
- Future work

Previous work

Standard error model [Nielsen & Chuang]

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

 $Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ With I, these form basis for space of 2×2 matrices

Previous Work

Continuum of Operational Errors

- Obenland and Despain, Univ. S. California
- Single qubit rotations

• W(
$$\theta$$
, ϕ) =
$$\begin{bmatrix} \cos \frac{\theta}{2} & -ie^{i\varphi} \sin \frac{\theta}{2} \\ -ie^{-i\varphi} \sin \frac{\theta}{2} & \cos \frac{\theta}{2} \end{bmatrix}$$

- Errors: over-rotations or under-rotations
 - $W(\theta + \Delta \theta, \varphi + \Delta \varphi)$
 - Error angles $\Delta\theta$, $\Delta\varphi$ chosen as per probability distribution
 - Fixed magnitude and sign ñ mis-calibration, bad equipment
 - Fixed magnitude, random sign ñ control imprecision
 - Pseudo-gaussian with given variance ñ random noise phenomena

Previous Work

- Continuum of Operational Errors [contd.]
 - Controlled-NOT implemented as three 1qubit rotations (third logic level used as intermediate state)
 - Each step accumulates errors

Outline

- Motivation
- Quantum computing
- Linear ion traps
- Sources of error
- Previous work
- Proposed error model
- Summary
- Future work

Over-rotations and under-rotations

- Due to inaccuracy and imprecision in controlling various parameters of radiation
 - Timing
 - Intensity (jitter, targeting)
- Intended Transformation

$$W(\theta, \varphi) = \begin{bmatrix} \cos \theta & -ie^{i\varphi} \sin \theta \\ -ie^{-i\varphi} \sin \theta & \cos \theta \end{bmatrix}$$

Resulting transformation

$$W(\theta + \Delta\theta, \varphi + \Delta\varphi)$$

2. Qubit coupling

- Correlated error
- Wide laser pulse can illuminate neighbor ion
- Intended transformation at target ion

$$W(\theta, \varphi) = \begin{bmatrix} \cos \theta & -ie^{i\varphi} \sin \theta \\ -ie^{-i\varphi} \sin \theta & \cos \theta \end{bmatrix}$$

Transformation at affected neighbor

$$W(\Delta\theta,\Delta\varphi)$$

- ullet $\Delta\theta$, $\Delta\varphi$ fractions of θ and φ respectively.
- Like coupling faults in semiconductor memories

Stuck-at faults

- Stray EM fields in environment
- Interaction with background particles
- Thermal noise from electrodes
- RF heating within trap
- Qubit measured in some basis, or
- Qubit behaves like a basis state but isnít in it.

3. Benign stuck-at faults

- Measurement by environment
- Not necessarily in computational basis
- Logical transformations continue afterwards
- Not truly stuck-at: qubit not a physical wire
- Resulting transformation
 - Projective measurement operator
 - Depends on basis
 - Depends on state of qubit (normalization)

4. Catastrophic stuck-at faults

- Qubit transition to non-computational-basis state
- No further reaction to subsequent pulses
 - Invariant to further transformations
- No flourescence in 313 nm light
 - Measurement yields |1> (qubit remains dark)
- No coupling of internal and motional states
 - Controlled logic:
 - If control qubit, behaves as classical |0>!
 - If target qubit, invariant to transformation

Outline

- Motivation
- Quantum computing
- Linear ion traps
- Sources of error
- Previous work
- Proposed error model
- Summary
- Future work

Summary

- Ion trap quantum computation explored
- Sources of error identified
 - Operational faults
 - Decoherence by environment
- Previously proposed error model extended
 - Qubit coupling
 - Measurement
 - Depolarization

Future Work

- Modeling spectator mode coupling effect
 - Characterized by an interaction Hamiltonian
- Simulations of quantum algorithms
 - This error model to be used
 - Comparison with standard error model
 - Effectiveness of known error-correcting codes
- Implications to error-detection and correction