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Introduction

� Synthesis of logic circuits

– input: a function or computation

– output: a circuit that implements that function

– minimize gate count ; perhaps some gates are expensive

� Our focus: two-qubit quantum computation

– quantum states of qubit strings are complex vectors

– computation and gates are unitary matrices
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Quantum Computation

� Qubit: C 2 spanned by j0i and j1i

� Quantum state: C 2
C 2
 : : :
C 2 spanned by j00: : :0i; j00: : :1i; : : :

� Computation and n� qubit gates: unitary matrices U(2n)

� Gate connections: directed acyclic graphs

� Everything is reversible except for quantum measurement
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Quantum Computation cont.

� Quantum measurement applied after a quantum circuit

� Multiplying a q. state or a gate by scalar in C does not change result

� We often normalize unitary matrices det to SU(2n)�U(2n)

(X
1)Æ (topCNOT)Æ (X
1)

0
BB@

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

1
CCA X

��
��
} X
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Tensor (Kronecker) Products

� Suppose A and B are 2�2 one-line unitaries

� A acts on the top line and B acts on the bottom line

� This computation is captured by tensor (Kronecker) product A
B

� In terms of matrices, if A= αE11�βE12+ β̄E21+ ᾱE22 then

(A
B) =
�

αB �βB
β̄B ᾱB

�
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Universal Elementary Gates [Barenco et.al. ’95]

� Elementary one-qubit gates:

Ry(θ) =

�
cosθ=2 sinθ=2
�sinθ=2 cosθ=2

�

0� θ < 2π

Rz(α) =

 
e�iα=2 0

0 eiα=2

!
0� α < 2π

� Elementary two-qubit gates: CNOT, conditioned on any line

� Barenco et al.: CNOT, Ry(θ) and Rz(α) are universal

7



Small Quantum Circuits

� What are the worst-case shortest quantum circuits up to phase?

� One-qubit computation: 3 gates required, suffice

� Technique: matrix decompositions

U =
 

eiδ 0
0 eiδ

! 

e�iα=2 0
0 eiα=2

!�

cosθ=2 sinθ=2

�sinθ=2 cosθ=2
� 

e�iβ=2 0
0 eiβ=2

!
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One-qubit U Via Elementary Gates

� Force δ = 0 by global phase change

� Find β and θ by calculating

Ut

�

0 1
1 0

�

U =
 

�e�iβ sinθ cosθ
cosθ eiβ sinθ

!

� Find α by matrix division
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Summary of Results

� Same question harder for two qubits

algorithm decomp. # elem. gates # CNOTs # var 1-qubit gates
Cybenko 2000 QR 61 18 39
Our #1 u. KAK 23 4 19
Our #2 u. KAK 28 8 15 (sharp)

Our lower bounds 17 2 15

� No ancilla qubits, a.k.a. work qubits, are ever used
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Circuit Synthesis by QRDecomposition

� Cybenko 2000: implements arbitrary U with elementary gates

� Cybenko 2000: heavily uses QRdecomposition; no gate counts

– In general, Q is unitary and R is upper-triangular

– Q is made of Givens rotations

– In our case, R must be diagonal

� Sample Givens rotation G3;4 acts on j10i and j11i via a 2�2 matrix V

G3;4= topC- V =
�

1 0
0 V

�
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QR reduction of 4�4 unitary
0

BB@
� � � �

� � � �

� � � �

� � � �
1

CCAG3;4�!
0

BB@
� � � �

� � � �

� � � �

0 � � �
1

CCAG2;3�!

0
BB@
� � � �

� � � �

0 � � �

0 � � �
1

CCAG3;4�!
0

BB@
� � � �

� � � �

0 � � �

0 0 � �
1

CCAG1;2�!

0
BB@
� � � �

0 � � �

0 � � �

0 0 � �
1

CCAG3;4ÆG2;3�!
0

BB@
� � � �

0 � � �
0 0 � �

0 0 0 �
1

CCA
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Givens Rotations

� Barenco et al.: G3;4 = 4 CNOTs + 6 (variable) one-qubit gates
D

A ��
��
}

B ��
��
}

C

– A;B;C and D are computed from V

– A and B require 2 elem. gates each, C and D — one each

� Givens rotation G1;2 on j00i, j01i is the conjugation of G3;4 by X
1

G1;2= (X
1)Æ topC- V Æ (X
1) =
�

V 0
0 1

�
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Givens Rotations cont.

� G3;4: 8 elementary gates, including 2 CNOTs

� G1;2: 12 elementary gates, including 2 CNOTs and 4 fixed rotations

� Similar techniques allow for synthesis of G2;3

G2;3 = botCNOTÆtopC�(XVX)ÆbotCNOT

� G2;3 : 4 CNOTs and 6 variable one-qubit elementary gates
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Discussion of Synthesis Algorithm

� Each G�;� is unitary ) Q is unitary ) R is diagonal unitary

� The six Givens rotations above entail 56 elementary two-qubit gates

� How to implement the diagonal R?

Lemma: diag(z1;z2;z3;z4) = diag(w1;w2)
diag(w3;w4)

() (z1z�1
2 z�1

3 z4= 1). Here, jz?j= jw?j= 1.

Sketch: Study the linear relations required by the tensor equality
on the complex logarithms of each term. �
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Worst Case Gate Counts For QRDecomp.

� Any two-qubit diagonal unitary can be implemented in five elem. gates

– Two CNOTs and three Rz(α)
– First three gates make z1z�1

2 z�1
3 z4= 1

��
��

}

n ��
��

}

n
n

� Cybenko 2000: needs up to 61 elementary gates and 18 CNOTs

– 56 from Givens rotations (the Qcomponent)

– 5 from the diagonal R component
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The Magic Basis

� The magic basis of phase shifted Bell states is8>>><
>>>:

jm1i = (j00i+ j11i)=p2
jm2i = (ij00i� ij11i)=p2

jm3i = (ij01i+ ij10i)=p2

jm4i = (j01i� j10i)=p2

These are maximally-entangled states. Global phases are important.

Theorem (Lewenstein, Kraus, Horodecki and Cirac 2001)
Consider a two-qubit computation U with det(U) = 1

� Compute matrix elements in the magic basis jm1i, jm2i, jm3i, jm4i

� (All matrix elements are real)() (U = A
B)
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The Entangler and Disentangler

� The entangler gate E takes computational basis to the magic basis:

j00i 7! jm1i, j01i 7! jm2i, j10i 7! jm3i, and j11i 7! jm4i

E =
p

2
2

0
BB@

1 i 0 0
0 0 i 1
0 0 i �1
1 �i 0 0

1
CCA

� The inverse gate E� is called the disentangler

Corollary Consider U a 4�4 unitary with det(U) = 1. Then

(U = A
B)() (EUE� is real orthogonal)
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SU(2)
SU(2)$ SO(4) Via Entangler

Take an orthogonal U , det(U) = 1

U =
p

2
2

0
BB@
1 0 0 1
0 1 �1 0
0 1 1 0

�1 0 0 1

1
CCA

Then EUE� is a tensor of one-qubit computations:

EUE� =

p

2
2

0
BB@

1 0 �1 0
0 1 0 �1
1 0 1 0
0 1 0 1

1
CCA =

p
2

2
�

1 �1
1 1

�

1

21



Entangler Circuit
��
��

}

S ��
��

}

H

��
��
} ��
��

}

� S= diag(1; i) counts as one elementary gate

� Hadamard gate H counts as two, for a total of eight

� E� is implemented by reversing this diagram
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Notation For Matrix (Lie) Groups

� Mathematical notation for continuous matrix groups

– GL(n) = fM n�n complex j det(M) 6= 0g

– U(n) = fM n�n complex j UU� =UŪt = 1g

– O(n) =U(n)\fM j M = M̄g

� Subgroups SO(n)�O(n), SU(n)�U(n): subgroups w/ det(M) = 1
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SVD Is KAK For GL(n)

� SVD or singular-value decomposition for square n�n M:

M =U∆V�; where U 2U(n);V 2U(n); ∆ real diagonal

� So GL(n) =U(n)AU(n), A= f real diagonals g

� For G= GL(n), K =U(n) and A diagonal real, G= KAK

� QRalso arises as decomposition of GL(n)

– decompositions intrinsic to U(2n)?

– more structure; shorter circuits?
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Canonical Decomposition or Unitary KAK

� Unitary KAK decomposition : SU(4) = SO(4) A SO(4)

– A= fdiag(z1;z2;z3;z4) j jz?j= 1g

– O2 SO(4) converts via E to one-qubit tensor

� Canonical decomposition (Khaneja, Nielsen, etc.) is related:

– U = (A
B)Æ∆Æ (C
D)

– ∆ acts diagonal w/ respect to magic basis

– transform each term of unitary KAK via M 7! EME�
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Constructive Proof Of Unitary KAK

� Uses two well-known preliminary results from Lie group theory

Proposition Consider U 2 U(n). Then U = PZ for some P = Pt 2 U(n),
Z 2O(n).

Lemma For real n�n matrices A and B with A= At, B= Bt, AB= BA, there
exists some O2O(4) with OAOt and OBOt diagonal.

� Our #1 and our #2 algorithms share first five steps

– use above results

– explicitly compute unitary KAK and can. decomp. for computation
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Five Steps to Unitary KAK

Step #1 In theory, E�UE = PZ for P= Pt and Z 2O(4)

� compute P2= PPt = PZZtPt = (E�UE)(EtUtĒ)

Step #2 Say P= A+ iB, A, B real

� 1+ i0=PP�=PP̄= (A+ iB)(A� iB)= (A2+B2)+ i(BA�AB), so AB=BA

� in theory, some K2 2 SO(4) has K2P2K�1
2 = D diagonal

� compute K2 and D
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Five Steps to Unitary KAK cont.

Step #3 Choose

p
D entrywise so det

p

D = det U

Step #4 Compute P= K2
p

DK�1
2 and Z = PtE�UE

� Z 2 SO(4)

� P= Pt 2U(4)

Step #5 Compute U1
U2= EK2E� and U5
U6= EKt
2ZE�

Result: U = (U5
U6)Æ (E

p

DE�)Æ (U1
U2)
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Our #1 Algorithm For 23 Gates

� Our #1 and #2 algorithms both begin as last slide; differ in E

p

DE�

� For our #1,

p

D = diag(a;b;c;d) with complex entries:

E

p

DE� =

1
2

0
BB@

a+b 0 0 a�b
0 c+d c�d 0
0 c�d c+d 0

a�b 0 0 a+b

1
CCA

� botCNOT on left flips rows 2,4; botCNOT on right flips columns 2,4:

botCNOTÆ (E

p

DE�)ÆbotCNOT=
�

U4 0
0 B

�
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Our #1 Algorithm For 23 Gates cont.

� Choose U3 so that U3= BU�1
4

� U4�B= (1�BU�1
4 )Æ (1
U4) = (topC�U3)Æ (1
U4)

� U4 costs three variable gates

� topC -U3 is implemented as

D

A ��
��
}

B ��
��
}

C
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Our #1 Algorithm Counts Vs. Lower Bounds

� Our #1 algorithm has 23 elementary two-qubit gates, 4 CNOTs

� Cybenko algorithm: 61 gates, 18 CNOTs

� dim SU(4) = 15: 15 one-qubit variable elementary gates required

� Two extra CNOTs needed to avoid one-line cancellations: 17 total
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Our #2 Algorithm and Variable 1-qubit Gates

� Our #2 algorithm implements E

p

DE� via circuit E, diagonal

��
��

}

n ��
��

}

n
n

� pD circuit holds three variable Rz(α) gates

� 12 variable one-qubit gates in U1
U2, U5
U6

� dim SU(4) = 15; 15 variable one-qubit gates is sharp!
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Example: A
B

� U = H
H be the two-qubit Hadamard gate

– E�(H
H)E 2 SO(4)

– P2= (E�UE)(E�UE)t = 1

– choose P=
p

D = 1, Z = 1, etc.

– H
H implemented as H
H and cancelling CNOTs

� Any A;B2 SU(2): A
B are similar

� Other algorithms often produce noncancelling CNOTs
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Example: Uf For f (n) = n+1

� f : F2 ! F2 by f (n) = n+1; Uf extends

Uf jxijyi= jxijy+ f (x)i

� Uf swaps j00i $ j01i

� 5 gate diagram below is a simple implementation of Uf

X

��
��
} X

36



Example: Uf For f (n) = n+1 cont.

� Algorithm # 1, step #1 produces

P2=
0

BB@
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

1
CCA

� Following K2 diagonalizes

K2=
p

2
2

0
BB@

1 0 0 1
0 1 �1 0
0 1 1 0

�1 0 0 1

1
CCA
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Example: Uf For f (n) = n+1 cont.

� EK2E� as tensor from earlier slide:

EK2E� =
p

2
2

�
1 �1
1 1

�

1

� D = diag(�1;1;�1;1); say

p

D = (i;1; i;1)

� Compute P= K2

p

DK�1
2 and Z= PtE�Uf E
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Example: Uf For f (n) = n+1 cont.

� EK�1
2 ZE� is a complicated tensor:

EK�1
2 ZE� = eiπ=4 � 1

2
0

BB@
i 1 1 �i
1 i �i 1

�i �1 1 �i

�1 �i �i 1

1
CCA

� Factor into elementary one-qubit gates:

EK�1
2 ZE� = eiπ=41

2

�

i 1

�i 1

�


�

1 �i
�i 1

�
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Example: Uf For f (n) = n+1 cont.

U5
U6

��
��

} U4

��
��

}

U1

� Our # 1 for Uf ; conditioned U3 gate is trivial

� U1= Ry(�π)

� U4= e�iπ=4Rz(�π=2)Ry(π)Rz(π=2)

� U5= iRy(π)Rz(�π=2)

� U6= Rz(�π=2)Ry(π)Rz(π=2)

� 10 gates, 2 CNOTs vs. comparing with 4+1 for standard
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Example: F the Two-quibt Fourier Transform

� Relabelling j00i; : : : j11i as j0i; : : : ; j3i, the discrete Fourier transform F :

j ji F�! 1
2

3

∑
k=0

(
p�1) jkjki or F =

1
2

0
BB@

1 1 1 1
1 i �1 �i
1 �1 1 �1
1 �i �1 i

1
CCA

� Standard circuit for F ; 12 gates, 5 CNOTs:

H S
} H ��
��
} ��
��

} ��
��
}
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Two-quibt Fourier Transform cont.

� For our#1, computing P2 produces this matrix:

E�F EEtF tĒ =
0

BBB@
eiπ=4 0 0 e�iπ=4

0 eiπ=4 e3iπ=4 0
0 e3iπ=4 eiπ=4 0

e�iπ=4 0 0 eiπ=4

1
CCCA

� It may be diagonalized by K2:

K2=
p

2
2

0
BB@

1 0 0 1
0 1 �1 0
0 1 1 0

�1 0 0 1
1

CCA
As before, EK2E� = Ry(�π)
1
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Two-quibt Fourier Transform cont.

� D = diag(i; i;1;�1). As det F =�i, choose

p

D = diag(eiπ=4;eiπ=4;1;�1)

� Compute P= K2

p

DK�1
2 , Z=PtE�F E, and write EK�1

2 ZE� as a tensor
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Two-quibt Fourier Transform Via #1

U5
U6

��
��

} U3

} ��
��

}

U1

� Diagram for our#1 implementing F

� The 1
U4 gate is trivial in this instance

� U1= Ry(�π)

� U3= e�iπ=4X

� U5= TH = e�3π=8Rz(π=4�π)Ry(π)

� U6=�T = (�1)eiπ=8Rz(π=4)

� 14 gates, 4 CNOTs vs. 12, 5 CNOTs for standard circuit
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Conclusions

� Unitary KAK methods produce short two-qubit circuits

� Algorithm often requires fewer qubit interactions

� Examples show not optimal

� Generic case: suboptimal by � 6 gates, 2 CNOTs
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Unanswered Questions

� Other decompositions intrinsic to U(4)

– QR is Iwasawa G= KAN for GL(n)

– Iwasawa for SU(4)?

� Improve theoretical lower bounds

� n� 3 qubits?

– 
n
1SU(2) too small for KAK

– entanglement: far more complicated for n= 3
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