Small Circuits for Arbitrary Two-qubit Computations

Stephen Bullock (Mathematics) and Igor Markov (EECS) University of Michigan

1

Outline

- I. Introduction and one-qubit computations
- II. Circuit synthesis by *QR* decomposition
- III. On two-qubit local unitaries
- IV. Circuit synthesis via unitary KAK
- V. Examples

Introduction

- Synthesis of logic circuits
 - input: a function or computation
 - output: a circuit that implements that function
 - minimize gate count ; perhaps some gates are expensive
- Our focus: two-qubit quantum computation
 - quantum states of qubit strings are complex vectors
 - computation and gates are unitary matrices

Quantum Computation

- Qubit: \mathbb{C}^2 spanned by $|0\rangle$ and $|1\rangle$
- Quantum state: $\mathbb{C}^2 \otimes \mathbb{C}^2 \otimes \ldots \otimes \mathbb{C}^2$ spanned by $|00\ldots 0\rangle, |00\ldots 1\rangle, \ldots$
- Computation and n qubit gates: unitary matrices $U(2^n)$
- Gate connections: directed acyclic graphs
- Everything is reversible except for quantum measurement

Quantum Computation cont.

- Quantum measurement applied after a quantum circuit
- Multiplying a q. state or a gate by scalar in $\mathbb C$ does not change result
- We often normalize unitary matrices det to $SU(2^n) \subset U(2^n)$

$$(X \otimes \mathbf{1}) \circ (\texttt{topCNOT}) \circ (X \otimes \mathbf{1})$$

Tensor (Kronecker) Products

- Suppose *A* and *B* are 2 × 2 one-line unitaries
- *A* acts on the top line and *B* acts on the bottom line
- This computation is captured by tensor (Kronecker) product $A \otimes B$
- In terms of matrices, if $A = \alpha E_{11} \beta E_{12} + \overline{\beta} E_{21} + \overline{\alpha} E_{22}$ then

$$(A \otimes B) = \begin{pmatrix} \alpha B & -\beta B \\ \bar{\beta} B & \bar{\alpha} B \end{pmatrix}$$

Universal Elementary Gates [Barenco et.al. '95]

• Elementary one-qubit gates:

$$R_{y}(\theta) = \begin{pmatrix} \cos \theta/2 & \sin \theta/2 \\ -\sin \theta/2 & \cos \theta/2 \end{pmatrix} \quad 0 \le \theta < 2\pi$$
$$R_{z}(\alpha) = \begin{pmatrix} e^{-i\alpha/2} & 0 \\ 0 & e^{i\alpha/2} \end{pmatrix} \quad 0 \le \alpha < 2\pi$$

- Elementary two-qubit gates: CNOT, conditioned on any line
- Barenco et al.: CNOT, $R_y(\theta)$ and $R_z(\alpha)$ are universal

Small Quantum Circuits

- What are the worst-case shortest quantum circuits up to phase?
- One-qubit computation: 3 gates required, suffice
- Technique: matrix decompositions

$$U = \begin{pmatrix} e^{i\delta} & 0\\ 0 & e^{i\delta} \end{pmatrix} \begin{pmatrix} e^{-i\alpha/2} & 0\\ 0 & e^{i\alpha/2} \end{pmatrix} \begin{pmatrix} \cos\theta/2 & \sin\theta/2\\ -\sin\theta/2 & \cos\theta/2 \end{pmatrix} \begin{pmatrix} e^{-i\beta/2} & 0\\ 0 & e^{i\beta/2} \end{pmatrix}$$

One-qubit U Via Elementary Gates

- Force $\delta = 0$ by global phase change
- Find β and θ by calculating

$$U^{t} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} U = \begin{pmatrix} -e^{-i\beta}\sin\theta & \cos\theta \\ \cos\theta & e^{i\beta}\sin\theta \end{pmatrix}$$

• Find α by matrix division

Summary of Results

• Same question harder for two qubits

algorithm	decomp.	# elem. gates	# CNOTS	# var 1-qubit gates
Cybenko 2000	QR	61	18	39
Our #1	u. <i>KAK</i>	23	4	19
Our #2	u. <i>KAK</i>	28	8	15 (<mark>sharp</mark>)
Our lower bounds		17	2	15

• No ancilla qubits, a.k.a. work qubits, are ever used

Outline

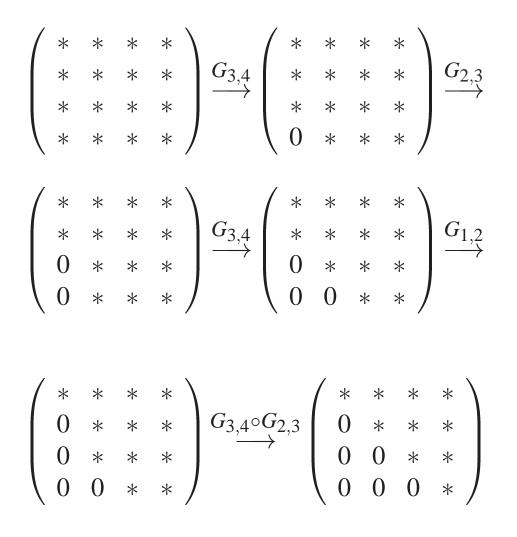
- I. Introduction and one-qubit computations
- II. Circuit synthesis by *QR* decomposition
- III. On two-qubit local unitaries
- IV. Circuit synthesis via unitary KAK
- V. Examples

Circuit Synthesis by *QR* **Decomposition**

- Cybenko 2000: implements arbitrary U with elementary gates
- Cybenko 2000: heavily uses *QR* decomposition; no gate counts
 - In general, Q is unitary and R is upper-triangular
 - -Q is made of Givens rotations
 - In our case, *R* must be diagonal
- Sample Givens rotation $G_{3,4}$ acts on $|10\rangle$ and $|11\rangle$ via a 2 × 2 matrix V

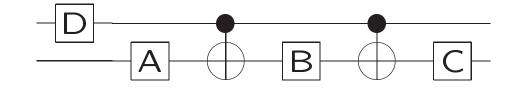
$$G_{3,4} = \texttt{topC-}V = \left(egin{array}{cc} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & V \end{array}
ight)$$

QR reduction of 4×4 unitary



Givens Rotations

• Barenco et al.: $G_{3,4} = 4 \text{ CNOTS} + 6$ (variable) one-qubit gates



- *A*,*B*,*C* and *D* are computed from *V*
- A and B require 2 elem. gates each, C and D one each
- Givens rotation $G_{1,2}$ on $|00\rangle$, $|01\rangle$ is the conjugation of $G_{3,4}$ by $X \otimes 1$

$$G_{1,2} = (X \otimes \mathbf{1}) \circ \texttt{topC-} V \circ (X \otimes \mathbf{1}) = \begin{pmatrix} V & 0 \\ 0 & \mathbf{1} \end{pmatrix}$$

Givens Rotations cont.

- *G*_{3,4}: 8 elementary gates, including 2 CNOTS
- $G_{1,2}$: 12 elementary gates, including 2 CNOTS and 4 fixed rotations
- Similar techniques allow for synthesis of $G_{2,3}$

 $G_{2,3} = \texttt{botCNOT} \circ \texttt{topC} - (XVX) \circ \texttt{botCNOT}$

• $G_{2,3}$: 4 CNOTS and 6 variable one-qubit elementary gates

Discussion of Synthesis Algorithm

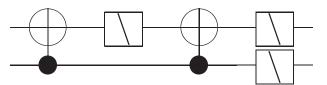
- Each $G_{*,*}$ is unitary $\Rightarrow Q$ is unitary $\Rightarrow R$ is diagonal unitary
- The six Givens rotations above entail 56 elementary two-qubit gates
- How to implement the diagonal *R*?

Lemma: diag $(z_1, z_2, z_3, z_4) = diag(w_1, w_2) \otimes diag(w_3, w_4)$ $\iff (z_1 z_2^{-1} z_3^{-1} z_4 = 1).$ Here, $|z_2| = |w_2| = 1.$

Sketch: Study the linear relations required by the tensor equality on the complex logarithms of each term. \Box

Worst Case Gate Counts For *QR* Decomp.

- Any two-qubit diagonal unitary can be implemented in five elem. gates
 - Two CNOTS and three $R_z(\alpha)$
 - First three gates make $z_1 z_2^{-1} z_3^{-1} z_4 = 1$



- Cybenko 2000: needs up to 61 elementary gates and 18 CNOTS
 - 56 from Givens rotations (the Q component)
 - 5 from the diagonal R component

Outline

- I. Introduction and one-qubit computations
- II. Circuit synthesis by *QR* decomposition
- III. On two-qubit local unitaries
- IV. Circuit synthesis via unitary KAK
- V. Examples

The Magic Basis

• The magic basis of phase shifted Bell states is

These are maximally-entangled states. Global phases are important.

Theorem (Lewenstein, Kraus, Horodecki and Cirac 2001) Consider a two-qubit computation U with det(U) = 1

- Compute matrix elements in the magic basis $|m1\rangle,\,|m2\rangle,\,|m3\rangle,\,|m4\rangle$
- (All matrix elements are real) $\iff (U = A \otimes B)$

The Entangler and Disentangler

• The entangler gate *E* takes computational basis to the magic basis: $|00\rangle \mapsto |m1\rangle, |01\rangle \mapsto |m2\rangle, |10\rangle \mapsto |m3\rangle, and |11\rangle \mapsto |m4\rangle$

$$E = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & i & 0 & 0 \\ 0 & 0 & i & 1 \\ 0 & 0 & i & -1 \\ 1 & -i & 0 & 0 \end{pmatrix}$$

• The inverse gate E^* is called the disentangler

Corollary Consider *U* a 4×4 unitary with det(*U*) = 1. Then

 $(U = A \otimes B) \iff (EUE^* \text{ is real orthogonal})$

$SU(2) \otimes SU(2) \leftrightarrow SO(4)$ Via Entangler

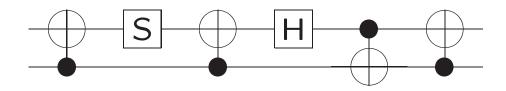
Take an orthogonal U, det(U) = 1

$$U = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

Then EUE^* is a tensor of one-qubit computations:

$$EUE^* = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{pmatrix} = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \otimes \mathbf{1}$$

Entangler Circuit



- S = diag(1, i) counts as one elementary gate
- Hadamard gate *H* counts as two, for a total of eight
- E^* is implemented by reversing this diagram

Outline

- I. Introduction and one-qubit computations
- II. Circuit synthesis by *QR* decomposition
- III. On two-qubit local unitaries
- IV. Circuit synthesis via unitary KAK
- V. Examples

Notation For Matrix (Lie) Groups

• Mathematical notation for continuous matrix groups

-
$$GL(n) = \{M \ n \times n \text{ complex} \mid \det(M) \neq 0\}$$

-
$$U(n) = \{M \ n \times n \text{ complex } | UU^* = U\overline{U}^t = \mathbf{1}\}$$

-
$$O(n) = U(n) \cap \{M \mid M = \overline{M}\}$$

• Subgroups $SO(n) \subset O(n)$, $SU(n) \subset U(n)$: subgroups w/ det(M) = 1

SVD Is KAK For GL(n)

• **SVD** or singular-value decomposition for square $n \times n M$:

 $M = U\Delta V^*$, where $U \in U(n), V \in U(n)$, Δ real diagonal

• So
$$GL(n) = U(n)AU(n)$$
, $A = \{ \text{ real diagonals } \}$

- For G = GL(n), K = U(n) and A diagonal real, G = KAK
- *QR* also arises as decomposition of *GL*(*n*)
 - decompositions intrinsic to $U(2^n)$?
 - more structure; shorter circuits?

Canonical Decomposition or Unitary *KAK*

- Unitary *KAK* decomposition : $SU(4) = SO(4) \land SO(4)$
 - $A = \{ diag(z_1, z_2, z_3, z_4) \mid |z_2| = 1 \}$
 - $O \in SO(4)$ converts via E to one-qubit tensor
- Canonical decomposition (Khaneja, Nielsen, etc.) is related:
 - $U = (A \otimes B) \circ \Delta \circ (C \otimes D)$
 - Δ acts diagonal w/ respect to magic basis
 - transform each term of unitary KAK via $M \mapsto EME^*$

Constructive Proof Of Unitary *KAK*

• Uses two well-known preliminary results from Lie group theory

Proposition Consider $U \in U(n)$. Then U = PZ for some $P = P^t \in U(n)$, $Z \in O(n)$.

Lemma For real $n \times n$ matrices A and B with $A = A^t$, $B = B^t$, AB = BA, there exists some $O \in O(4)$ with OAO^t and OBO^t diagonal.

- Our #1 and our #2 algorithms share first five steps
 - use above results
 - explicitly compute unitary *KAK* and can. decomp. for computation

Five Steps to Unitary *KAK*

Step #1 In theory, $E^*UE = PZ$ for $P = P^t$ and $Z \in O(4)$

• compute $P^2 = PP^t = PZZ^tP^t = (E^*UE)(E^tU^t\overline{E})$

Step #2 Say P = A + iB, A, B real

- $1+i0 = PP^* = P\bar{P} = (A+iB)(A-iB) = (A^2+B^2) + i(BA-AB)$, so AB = BA
- in theory, some $K_2 \in SO(4)$ has $K_2P^2K_2^{-1} = D$ diagonal
- compute K_2 and D

Five Steps to Unitary *KAK* **cont.**

Step #3 Choose \sqrt{D} entrywise so det \sqrt{D} = det U

Step #4 Compute $P = K_2 \sqrt{D} K_2^{-1}$ and $Z = P^t E^* U E$

- $Z \in SO(4)$
- $P = P^t \in U(4)$

Step #5 Compute $U_1 \otimes U_2 = EK_2E^*$ and $U_5 \otimes U_6 = EK_2^tZE^*$

Result: $U = (U_5 \otimes U_6) \circ (E\sqrt{D}E^*) \circ (U_1 \otimes U_2)$

Our #1 Algorithm For 23 Gates

- Our #1 and #2 algorithms both begin as last slide; differ in $E\sqrt{D}E^*$
- For our #1, $\sqrt{D} = \text{diag}(a, b, c, d)$ with complex entries:

$$E\sqrt{D}E^* = \frac{1}{2} \begin{pmatrix} a+b & 0 & 0 & a-b \\ 0 & c+d & c-d & 0 \\ 0 & c-d & c+d & 0 \\ a-b & 0 & 0 & a+b \end{pmatrix}$$

• botCNOT on left flips rows 2,4; botCNOT on right flips columns 2,4:

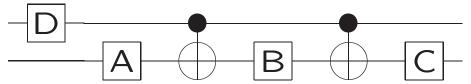
$$botCNOT \circ (E\sqrt{D}E^*) \circ botCNOT = \begin{pmatrix} U_4 & \mathbf{0} \\ \mathbf{0} & B \end{pmatrix}$$

Our #1 Algorithm For 23 Gates cont.

• Choose U_3 so that $U_3 = BU_4^{-1}$

•
$$U_4 \oplus B = (\mathbf{1} \oplus BU_4^{-1}) \circ (\mathbf{1} \otimes U_4) = (\texttt{topC} - U_3) \circ (\mathbf{1} \otimes U_4)$$

- *U*⁴ costs three variable gates
- topC- U_3 is implemented as

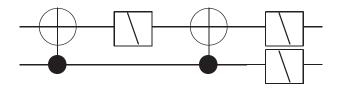


Our #1 Algorithm Counts Vs. Lower Bounds

- Our #1 algorithm has 23 elementary two-qubit gates, 4 CNOTS
- Cybenko algorithm: 61 gates, 18 CNOTS
- dim SU(4) = 15: 15 one-qubit variable elementary gates required
- Two extra CNOTS needed to avoid one-line cancellations: 17 total

Our #2 Algorithm and Variable 1-qubit Gates

• Our #2 algorithm implements $E\sqrt{D}E^*$ via circuit *E*, diagonal



- \sqrt{D} circuit holds three variable $R_z(\alpha)$ gates
- 12 variable one-qubit gates in $U_1 \otimes U_2$, $U_5 \otimes U_6$
- dim SU(4) = 15; 15 variable one-qubit gates is sharp!

Outline

- I. Introduction and one-qubit computations
- II. Circuit synthesis by *QR* decomposition
- III. On two-qubit local unitaries
- IV. Circuit synthesis via unitary KAK
- V. Examples

Example: $A \otimes B$

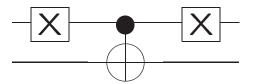
- $U = H \otimes H$ be the two-qubit Hadamard gate
 - $E^*(H \otimes H)E \in SO(4)$
 - $P^2 = (E^*UE)(E^*UE)^t = \mathbf{1}$
 - choose $P = \sqrt{D} = 1$, Z = 1, etc.
 - $H \otimes H$ implemented as $H \otimes H$ and cancelling CNOTS
- Any $A, B \in SU(2)$: $A \otimes B$ are similar
- Other algorithms often produce noncancelling CNOTS

Example: U_f For f(n) = n+1

•
$$f: \mathbb{F}_2 \to \mathbb{F}_2$$
 by $f(n) = n+1$; U_f extends

 $\mathbf{U_f} |x\rangle |y\rangle = |x\rangle |y + f(x)\rangle$

- U_f swaps $|00
 angle \leftrightarrow |01
 angle$
- 5 gate diagram below is a simple implementation of U_f



• Algorithm # 1, step #1 produces

$$P^2 = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

• Following *K*₂ diagonalizes

$$K_2 = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

• EK_2E^* as tensor from earlier slide:

$$EK_2E^* = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \otimes \mathbf{1}$$

•
$$D = diag(-1, 1, -1, 1); say \sqrt{D} = (i, 1, i, 1)$$

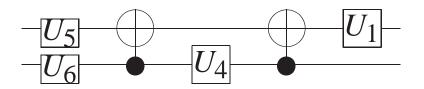
• Compute
$$P = K_2 \sqrt{D} K_2^{-1}$$
 and $Z = P^t E^* U_f E$

• $EK_2^{-1}ZE^*$ is a complicated tensor:

$$EK_2^{-1}ZE^* = \mathbf{e}^{i\pi/4} \cdot \frac{1}{2} \begin{pmatrix} i & 1 & 1 & -i \\ 1 & i & -i & 1 \\ -i & -1 & 1 & -i \\ -1 & -i & -i & 1 \end{pmatrix}$$

• Factor into elementary one-qubit gates:

$$EK_2^{-1}ZE^* = \mathbf{e}^{i\pi/4} \frac{1}{2} \begin{pmatrix} i & 1 \\ -i & 1 \end{pmatrix} \otimes \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix}$$



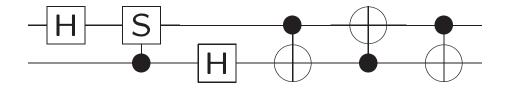
- Our # 1 for U_f ; conditioned U_3 gate is trivial
- $U_1 = R_y(-\pi)$
- $U_4 = e^{-i\pi/4} R_z(-\pi/2) R_y(\pi) R_z(\pi/2)$
- $U_5 = iR_y(\pi)R_z(-\pi/2)$
- $U_6 = R_z(-\pi/2)R_y(\pi)R_z(\pi/2)$
- 10 gates, 2 CNOTS vs. comparing with 4+1 for standard

Example: *F* the Two-quibt Fourier Transform

• Relabelling $|00\rangle, \dots |11\rangle$ as $|0\rangle, \dots, |3\rangle$, the discrete Fourier transform F:

$$|j\rangle \xrightarrow{F} \frac{1}{2} \sum_{k=0}^{3} (\sqrt{-1})^{jk} |k\rangle \quad \text{or} \quad F = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix}$$

• Standard circuit for F; 12 gates, 5 CNOTS:



Two-quibt Fourier Transform cont.

• For our#1, computing P^2 produces this matrix:

$$E^* F E E^t F^t \bar{E} = \begin{pmatrix} e^{i\pi/4} & 0 & 0 & e^{-i\pi/4} \\ 0 & e^{i\pi/4} & e^{3i\pi/4} & 0 \\ 0 & e^{3i\pi/4} & e^{i\pi/4} & 0 \\ e^{-i\pi/4} & 0 & 0 & e^{i\pi/4} \end{pmatrix}$$

• It may be diagonalized by *K*₂:

$$K_2 = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

As before, $EK_2E^* = R_y(-\pi) \otimes \mathbf{1}$

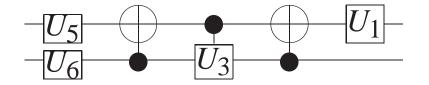
42

Two-quibt Fourier Transform cont.

•
$$D = \text{diag}(i, i, 1, -1)$$
. As det $F = -i$, choose
 $\sqrt{D} = \text{diag}(e^{i\pi/4}, e^{i\pi/4}, 1, -1)$

• Compute $P = K_2 \sqrt{D} K_2^{-1}$, $Z = P^t E^* F E$, and write $E K_2^{-1} Z E^*$ as a tensor

Two-quibt Fourier Transform Via #1



- Diagram for our#1 implementing F
- The $1 \otimes U_4$ gate is trivial in this instance
- $U_1 = R_y(-\pi)$
- $U_3 = e^{-i\pi/4}X$
- $U_5 = TH = e^{-3\pi/8}R_z(\pi/4 \pi)R_y(\pi)$
- $U_6 = -T = (-1)e^{i\pi/8}R_z(\pi/4)$
- 14 gates, 4 CNOTS vs. 12, 5 CNOTS for standard circuit

Conclusions

- Unitary *KAK* methods produce short two-qubit circuits
- Algorithm often requires fewer qubit interactions
- Examples show not optimal
- Generic case: suboptimal by ≤ 6 gates, 2 CNOTS

Unanswered Questions

- Other decompositions intrinsic to U(4)
 - *QR* is Iwasawa G = KAN for GL(n)
 - Iwasawa for SU(4)?
- Improve theoretical lower bounds
- $n \ge 3$ qubits?
 - $\otimes_1^n SU(2)$ too small for *KAK*
 - entanglement: far more complicated for n = 3