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Introduction

e Synthesis of logic circuits
— Input: a function or computation
— output: a circuit that implements that function

— minimize gate count ; perhaps some gates are expensive

e Our focus: two-qubit quantum computation
— guantum states of qubit strings are complex vectors

— computation and gates are unitary matrices



Quantum Computation
Qubit: C? spanned by [0) and |1)
Quantum state: C2® C2®...® C? spanned by [00...0),]00...1),...
Computation and n— qubit gates: unitary matrices U (2")
Gate connections: directed acyclic graphs

Everything is reversible except for guantum measurement



Quantum Computation cont.
e Quantum measurement applied after a quantum circuit
e Multiplying a g. state or a gate by scalar in C does not change result

e We often normalize unitary matrices det to SU(2") c U (2")
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(X®1) o (topCNOT) o (X ® 1)
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Tensor (Kronecker) Products
Suppose A and B are 2 x 2 one-line unitaries
A acts on the top line and B acts on the bottom line
This computation is captured by tensor (Kronecker) product A® B

In terms of matrices, if A= aEq1— BE12+ §E21+ aE>» then

a8=( 8 w )



Universal Elementary Gates [Barenco et.al. '95]

e Elementary one-qubit gates:

B cosB/2 sinB/2
R(8) = ( —sinB/2 cod/2 ) 0<8<2n
e—ia/2 0

e Elementary two-qubit gates: CNOT conditioned on any line

e Barenco et al.. CNOTRy(6) and R;(a) are universal



Small Quantum Circuits
e What are the worst-case shortest quantum circuits up to phase?
e One-qubit computation: 3 gates required, suffice

e Technique: matrix decompositions

U elo 0 e—10/2 0 cosB/2 sinB/2 e 1B/2
|\ 0 e° 0 eld/2 —sinB/2 coL/2 0

0
aiB/2

|



One-qubit U Via Elementary Gates
e Force 0 = 0 by global phase change
e Find 3 and 0 by calculating
Ut ( 01 ) U —e Psind  cosd
10 N cosf e'Psing

e Find a by matrix division



Summary of Results

e Same question harder for two qubits

algorithm decomp. | # elem. gates | # CNOB | # var 1-qubit gates

Cybenko 2000 QR 61 18 39

Our #1 u. KAK 23 4 19

Our #2 u. KAK 28 8 15 (sharp)
Our lower bounds 17 2 15

e No ancilla qubits, a.k.a. work qubits, are ever used
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Circuit Synthesis by QR Decomposition
e Cybenko 2000: implements arbitrary U with elementary gates

e Cybenko 2000: heavily uses QR decomposition; no gate counts
— In general, Q is unitary and R is upper-triangular
— Qis made of Givens rotations

— In our case, R must be diagonal

e Sample Givens rotation Gz 4 acts on |10) and |11) via a 2 x 2 matrix V

1 0
Gz 4 =1t0pC- V = ( 0V >
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QRreduction of 4 x 4 unitary
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Givens Rotations

e Barenco etal.: G34 =4 CNOTE + 6 (variable) one-qubit gates

—D

2

A

N

B

2

— A /B,C and D are computed from V

N

— A and B require 2 elem. gates each, C and D — one each

e Givens rotation G » on |00), |01) is the conjugation of G3 4 by X® 1

Gl,2: (X®1)otopC- Vo (X®1) = (

V O
0 1
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Givens Rotations cont.

Gz 4: 8 elementary gates, including 2 CNO'6

Gq 2: 12 elementary gates, including 2 CNO'E and 4 fixed rotations

Similar techniques allow for synthesis of G 3

Gp,3 = botCNOT o topC—(XV X) 0 botCNOT

Gz 3: 4 CNOB and 6 variable one-qubit elementary gates
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Discussion of Synthesis Algorithm
e Each G, « Is unitary = Qs unitary = Ris diagonal unitary
e The six Givens rotations above entail 56 elementary two-qubit gates
e How to implement the diagonal R?

Lemma: diag(zq,2»,23,24) = diag(wq,W») ® diag(wsg, Wy)
= (212, '25%24 = 1). Here, |z5| = |wy| = 1.

Sketch: Study the linear relations required by the tensor equality
on the complex logarithms of each term. [
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Worst Case Gate Counts For QRDecomp.

e Any two-qubit diagonal unitary can be implemented in five elem. gates
— Two CNOT and three R;(a)

— First three gates make 7z, 1237 124 =1

AR

e Cybenko 2000: needs up to 61 elementary gates and 18 CNOB

— 56 from Givens rotations (the Q component)

— 5 from the diagonal R component
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The Magic Basis

e The magic basis of phase shifted Bell states is

(100) +11))/v/2
(i[00) —i[11)) /v2
(i[01) +i]10)) /v2
| Im4) = (|01)—[10))/v2

These are maximally-entangled states. Global phases are important.

i

m1l)
m2)
m3)

Theorem (Lewenstein, Kraus, Horodecki and Cirac 2001)
Consider a two-qubit computation U with det(U) =1

e Compute matrix elements in the magic basis [m1),

m2), |[m3),

m4)

e (All matrix elements are real) «<—= (U = A® B)

19



The Entangler and Disentangler

e The entangler gate E takes computational basis to the magic basis:
|00) — |m1), |01) — |m2), |10) — |m3), and |11) — |m4)

1 i 00
e_vY2[0 0 i 1
210 0 i -1
1 -i0 0

e The inverse gate E* is called the disentangler
Corollary Consider U a 4 x 4 unitary with det(U) = 1. Then

(U =A®B) <= (EUE" is real orthogonal)

20



SU(2) ® SU(2) +» SQO4) Via Entangler

Take an orthogonal U, det(U) =1

O Oor
P RO

0
-1
1

o O

-1 0 0 1

Then EUE* is a tensor of one-qubit computations:

EUE" = Q
2

0
1
0

~1 0
0 —1 ﬁ(l —1>®1

1 o0 | 2\1 1

0O 1
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Entangler Circuit

@S@H;ﬁ

AP

N

e S=diag(1,i) counts as one elementary gate

e Hadamard gate H counts as two, for a total of eight

e E* is implemented by reversing this diagram
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Notation For Matrix (Lie) Groups

e Mathematical notation for continuous matrix groups
— GL(n) ={M nx ncomplex | det(M) # 0}
— U(n)={M nxncomplex |UU*=UU'=1}

— O(n)=Un)N{M | M =M}

e Subgroups SQn) C O(n), SU(n) C U(n): subgroups w/ det(M) =1
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SVD Is KAK For GL(n)

SVD or singular-value decomposition for square n x n M:

M=UAV*  whereU eU(n),V € U(n), A real diagonal
So GL(n) =U(n)AU(n), A= { real diagonals }
For G=GL(n), K=U(n) and A diagonal real, G= KAK

QRalso arises as decomposition of GL(n)
— decompositions intrinsic to U (2M)?

— more structure:; shorter circuits?
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Canonical Decomposition or Unitary  KAK

e Unitary KAK decomposition : SU(4) = SQ4) A SQ4)

— A={diag(z1,2p,23,2) | |25| = 1}

— O € SQ4) converts via E to one-qubit tensor

e Canonical decomposition (Khaneja, Nielsen, etc.) is related:
— U=(A®B)oAo(C®D)
— A acts diagonal w/ respect to magic basis

— transform each term of unitary KAK via M — EME*
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Constructive Proof Of Unitary KAK

e Uses two well-known preliminary results from Lie group theory

Proposition Consider U € U(n). Then U = PZ for some P = P! € U(n),
Z € O(n).

Lemma For real n x n matrices A and Bwith A= Al, B= B!, AB= BA, there
exists some O € O(4) with OAC and OBO diagonal.

e Our #1 and our #2 algorithms share first five steps

— use above results

— explicitly compute unitary KAK and can. decomp. for computation
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Five Steps to Unitary KAK

Step #1 In theory, E*'UE = PZ for P=P! and Z € O(4)
e compute P2 = PP = PZZP! = (E*UE)(EU'E)

Step #2 Say P=A+1B, A, B real
o 1+i0=PP*=PP=(A+iB)(A—iB) = (A+B2)+i(BA—AB), so AB=BA
e in theory, some K € SQ4) has KoP?K, ! = D diagonal

e compute Ko and D
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Five Steps to Unitary KAK cont.
Step #3 Choose /D entrywise so det v/D = det U

Step #4 Compute P = KZ\/5K2_1 and Z = P'LE*UE
e ZcSQ4)
e P=P cU(4

Step #5 Compute U ® Up = EK;E* and Us ® Ug = EKLZE*

Result: U = (Us®Ug) o (Ev/DE*) 0o (U1 ®@U>)
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Our #1 Algorithm For 23 Gates
e Our #1 and #2 algorithms both begin as last slide; differ in E+/DE*

e For our #1, /D = diag(a, b, c,d) with complex entries:
a+b O 0O a-—»b
EvDE* — % O c¢c+d c—d O

O ¢c—d c+d O
a—-b O O a+b

e botCNOT on left flips rows 2,4; botCNOT on right flips columns 2,4

botCNOT o (Ev/'DE*) 0 botCNOT = ( UO4 g >
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Our #1 Algorithm For 23 Gates cont.
Choose U3 so that Uz = BU4_l
Us@B=(1@BU; o (1®Uyg) = (topC—Uz) o (1@ Uy)
U4 costs three variable gates

topC -Ujz is implemented as
B2

e
&




Our #1 Algorithm Counts Vs. Lower Bounds

e Our #1 algorithm has 23 elementary two-qubit gates, 4 CNO'B

e Cybenko algorithm: 61 gates, 18 CNOB

e dim SU(4) = 15: 15 one-qubit variable elementary gates required

e Two extra CNOB needed to avoid one-line cancellations: 17 total
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Our #2 Algorithm and Variable 1-qubit Gates

e Our #2 algorithm implements E+/DE* via circuit E, diagonal

SR

e /D circuit holds three variable R,(a) gates
e 12 variable one-qubit gates in U1 ® Uy, Ug® Ug

e dim SU(4) = 15; 15 variable one-qubit gates is sharp!
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Example: AR B

e U = H ®H be the two-qubit Hadamard gate
- E*(H®H)E € SQ4)
~ P? = (E*UE)(E*UE)' =1
— choose P=+vD=1,Z=1, etc.

— H®H implemented as H ® H and cancelling CNOE
e Any A,B € SU(2): A® B are similar

e Other algorithms often produce noncancelling CNOB
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Example: Us For f(n)=n+1

o f:[Fo— Ty by f(n)=n+1; Us extends

Ut ly) = )1y + (%))
e U; swaps |00) <> |01)

e 5 gate diagram below is a simple implementation of U+

Xe Xt

N




Example: U For f(n) =n+1 cont.
e Algorithm # 1, step #1 produces

P2 =

R O OO
OoOpr OO
oMol e
O O o

e Following K5 diagonalizes

o

V2
K,— V<
2=

O o
OFr PFr O
|
o F
R O O
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Example: U For f(n) =n+1 cont.

e EK>E™ as tensor from earlier slide:

V2 /1 -1
*_
EK,E _—2<1 1)@1

e D=diag(—1,1,-1,1); say vD = (i,1,i,1)

e Compute P = KyvDK;t and Z = PPE*UE
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Example: U For f(n) =n+1 cont.

e EK,'ZE* is a complicated tensor:

i1 1 —i
1l 1 i —i 1
2|l —-i -1 1 —i
1 —i - 1

EK, 1ZE* = €4

e Factor into elementary one-qubit gates:

Aok Al (11 1 i
Sip 2R =€ 2<—i 1>®(—i 1
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Example: U For f(n) =n+1 cont.

_U5 1 1 Ul_
—Ug % Uy

Our # 1 for U¢; conditioned U3 gate is trivial
U =Ry(—1

Uy = e V4R,(—11/2)Ry(M)R(T1/2)

Us = IRy(T)R(—T1/2)

Us = Re(—T1/2)Ry(T)RZ(T11/2)

10 gates, 2 CNO'B vs. comparing with 4+ 1 for standard
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Example: F the Two-quibt Fourier Transform

e Relabelling |00),...|11) as |0),...,|3), the discrete Fourier transform F :

2 1 1 1 1
1 1 1 -1 —i
= jK =
2; (v—=1)"k) or F 1 1 1 _1

1 —1 -1 1

e Standard circuit for F ; 12 gates, 5 CNOE:

e

NI N

—H
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Two-quibt Fourier Transform cont.

e For our#l, computing P2 produces this matrix:

0
0

E*FEE'F'E =

e It may be diagonalized by K»:

As before, EK;E* = Ry(—) ® 1

( el /4

K e—in/4

0 0 e 4
ei/4  Q3iT/4 0
e3iT[/4 eiT[/4 0

0 0 eiT[/4 )
O 0 1
1 -1 0
1 1 O
O 0 1
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Two-quibt Fourier Transform cont.

e D =diag(i,i,1,—1). Asdet F = —i, choose

VD = diag(e'™4,e'4 1,-1)

e Compute P= Kz\/BKz_l, Z =PE*F E, and write EKz_le* as a tensor
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Two-quibt Fourier Transform Via #1

—Ug % Us

Diagram for our#1 implementing F

The 1® U4 gate is trivial in this instance

Uy = Ry(—)

Uz = e—iT/4x

Us=TH = e 38R (/4 - mR(T)

Ug=—T = (—1)e'V8R,(11/4)

14 gates, 4 CNOB vs. 12, 5 CNOB for standard circuit

44



Conclusions

Unitary KAK methods produce short two-qubit circuits

Algorithm often requires fewer qubit interactions

Examples show not optimal

Generic case: suboptimal by < 6 gates, 2 CNOB
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Unanswered Questions

e Other decompositions intrinsic to U (4)
— QRis Iwasawa G = KAN for GL(n)

— lwasawa for SU(4)?
e Improve theoretical lower bounds

e N> 3 qubits?
— ®7SU(2) too small for KAK

— entanglement: far more complicated for n =3
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