METHOD 4. Composition method, from inputs to outputs of an inverse function. As method 3, but METHOD 2 is
used after completion to a reversible function and finding the inverse function.
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Example 7. A Full adder composed of two half adders is presented in Figure 15. C-in = C is the carry-in and C-out is the
carry-out. It can be observed in a Kmap of variables A4,B,C that two garbage functions are the minimum number to separate all
repeated values of outputs Sum and C-out, because there are for instance 3 occurrences of combination 10. Thus, a total of
outputs is 2 +2 = 4. Since there are three inputs, at least one constant input is necessary. Therefore, the circuit from Figure 15 is
optimal in a sense of the minimum number of additional inputs and outputs. This kind of analysis of separations with minimal
number of functions is fundamental to reversible logic design and leads to some new combinatorial optimization problems.

A—f il Figure 15. A full adder
Feynman
B — Toffoli composed from two half adders
- s —‘ AGH (the version with Toffoli’s gate).
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C-out= (A ®B)C ® AB

7. A Levelized Variable Decomposition Method

Sometimes it is difficult for a composer/decomposer from previous sections to find a good choice of input or output gate. In such
case some kind of brute-force method is needed to simplify the synthesis problem, at the cost of introducing more constant
inputs and garbage outputs. This method, presented in this section, creates, however, always simpler subfunctions, usually ones
that have a smaller number of input variables. For instance, this method can be used for a 4-variable function by decomposing it
to two 3-variable reversible functions that can be next synthesized by NPN matching to library cells. The method described in
this section, called levelized variable decomposition, is based on basic expansions and recursive ideas of binary logic synthesis.
It is used in conjunction with other methods.

The fundamental role of Shannon Expansion in binary logic is well known. Shannon Expansion is used in recursive algorithms,
Binary Decision Diagrams and minimization of SOP expressions. Shannon Expansion corresponds to a multiplexer gate. In
reversible logic, an equivalent of multiplexer is the Fredkin gate. In this paper an equivalent of Shannon Expansion for
reversible logic is investigated. The standard Shannon Expansion, which we will call Forward Shannon Expansion is used to



create decision diagrams and thus also to design multilevel logic structures that use multiplexers, in particular multiplexers with
two data inputs and one control input. Let us observe that this expansion can be treated as a way to determine the two functions
on data inputs of a multiplexer, knowing the output function f{x;, x3 ,....X j ..., X,,) of the multiplexer and the selected control
variable x; connected to the control input of the multiplexer. Shannon Expansion can be visualized by creating two Kmaps of
the data functions being the positive cofactor f(x;, x,, ..x; = 1,..., x,) and the negative cofactor f(x; x3 .x; = 0,..., x,) of
function f{x;, X3 .., X,) , respectively, from the Kmap of this function and a choice of variable x; . The Kmap of the positive
cofactor is created by rewriting the Kmap of f for its half where x; = I and filling all cells with don’t cares for its half where x;
= 0. The map of the negative cofactor is created by rewriting the map of f for x; = 0 and filling all cells with don’t cares for x; =
1. This graphical method can be easily extended to MV logic; for instance for the ternary logic the Kmap is splitted into three
Kmaps; for x; =0, for x; = 1, and for x; = 2, respectively. (Each of these maps has one-third cares and two-thirds don’t cares).

(@ .f
0y [

Figure 16. Comparison of
expansions Expansion for

fy f, binary logic and standard
3*3 Fredkin gate, (a)
fandd —p fadf | lghamia—> garh-a | Forward Shannon, (b)
Forward Shannon Reverse Shannon Reverse Shannon, (c)

Reversible Shannon.

h (c)

g
T_‘ ’_T
IA_IM | g, hand A= g —A+h A and g A+h; A |

Reversible Shannon
gD | ﬂ"’hIA g1A+hCI | ﬁ

In [50,51,52] we introduced the concept of Reverse Shannon Expansion. While in binary logic the Forward Shannon
Expansion splits the Kmap into two Kmaps, the Reverse Shannon Expansion does the opposite — it joins two Kmaps into a
single Kmap. When one of the corresponding cells is a care and another a don’t care, the resultant value is always that of a
care. In case of two don’t cares the result will be the don’t care. Because in our methodology the Reverse Shannon Expansion
is applied always to two Kmaps that have disjoint sets of cares, it never leads to a conflict. Figure 16 compares the Forward,
Reverse and Reversible Expansions for binary logic and 3 * 3 gates (the arrows are related to the flow of information in the
circuit, for the purpose of illustrating functional expansions the direction of arrows should be reversed). While Forward
Shannon is used to create BDDs, both the Forward and Reverse Shannon expansions are used to create classical Lattice
Diagrams [53]. Interestingly, only the Reversible Shannon Expansion is necessary to create Reversible Shannon Decision
Diagrams introduced below. Observe that the combined operations of splitting and joining cofactors in the Reversible
Shannon Expansion can be also called “permutting” or “shuffling”. Treating the Reversible Shannon Expansion as the
cofactor permuter is a useful heuristic to create algorithms.

The Levelized Variable Decomposition for k*k Fredkin Gate is performed as follows:

1. select any expansion variable (a primary input) and select the number k-1 of arbitrary data signals (by data signals we
understand output functions or intermediate functions, but not primary inputs).

2. calculate positive and negative cofactors for each of data functions, as in the Shannon expansion from left to right with
respect to the selected control variable.

3. join the cofactors shifting them by one, with wrapping around.

For 3*3 binary Fredkin Gate the rules from points 2 and 3 above simplify. The shift becomes just a flipping of two pairs of
cofactors, because there are only four cofactors (see the formalism and countings for more general families of gates in [1]).
The Reversible Shannon Expansion for standard Fredkin gate is shown in Figure 16 and the procedure of repetitive using this
expansion for 3*3 Fredkin gates is illustrated in Figure 17. When the Reversible Shannon Expansion is used repeatedly for
subsequent input variables as controls in multiplexers, a Reversible Shannon Decision Diagram (ORSDD) is created. When
the variables are ordered, this diagram is called Ordered RSDD. Otherwise, it is a free diagram, FRSDD. Observe, that the
ORSDD is not canonical, because arbitrary signals can be selected and permuted for any expansion. Thus, a general purpose
ORSDD and FRSDD are useful for synthesis but not for representation. When one imposes, however, some order of selecting
signals for permuting, for instance by ordering output functions and intermediate signals, the ORSDD can become canonical,




but such diagrams will not be considered below. For instance, the Lattice RSDDs introduced below are not canonical, because
incompletely specified garbage functions are used in their creation. However, one has to keep in mind, that only a small
number of possible types of RSDD diagrams are presented here.

Example 8. Figures 17 and 18 illustrate the systematic procedure of using the binary 3*3 Reversible Shannon Expansion to
create a Reversible Fredkin Lattice Diagram for a single-output function. Similar procedure exists for multi-output functions,
in which all output functions are ordered from left to right. When one creates an RSDD, a method to select data output signals
for permutting is needed. For example, these can be the most similar signals, which means those, that corresponding functions
on primary input variables differ in the smallest number of minterms. This is a generalization of standard BDDs, in which only
identical function nodes are combined (as isomorphic nodes correspond to tautological functions). The principle of selecting
pairs of next level data signals for RSE can be also based on some other property. For instance, symmetry, in order to reduce
the next level functions to simpler functions (As examples, one can select symmetric, unate, reversible, or simple functions
such as for instance variables). Finally, the pair of signals to be selected can come from some geometrical neighborhood, as in
standard lattices and their recent generalizations. Below the simplest method of selecting signals from a neighborhood is
discussed, the same as in standard Lattices. (Similar rules exist for selecting larger groups of data signals for k>3).

Figure 17 illustrates the use of garbage function g in the first expansion from top. From Kmaps of the primary output function
fand garbage function g as data signals, two new functions, fg, and gf, represented by the two lowest two Kmaps, are created.
Observe the permutation of cofactors that occurred in Kmaps. To fully understand the method, the careful reader should
analyze concurrently Figures 16, 17 and 18. The latter shows only functions realized by signals in respective points of the
reversible lattice diagram.
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The procedure is as follows:

- We start from the function f(X,Y,Z). Because a 3*3 gate is selected, and one of its inputs and one of its outputs is the
selected input variable X, we have to perform the 3*3 Reversible Shannon Expansion with 2 argument functions, as shown in
Figure 16¢. Thus, one more garbage function g is allocated to the expansion.

- Reversible Shannon expansion for the pair of data functions (f;g) and control variable X is executed which leads to
new functions fg and gf of the lower level. Analysis of example of this expansion helps to understand what we mean by
“permuting cofactors”. The upper cofactor (for —X) from the left upper map goes to the upper part of the lower left map, and
the lower cofactor of the right upper map goes to the lower part of the left lower map. Similarly, the upper cofactor of the
upper right map goes to the upper part of the lower right map and the lower cofactor of the upper left map goes to the lower
part of the right lower map (see Figure 18).

- Garbage function /4 is added to make a pair (h, fg) for next Reversible Shannon Expansion, and one more garbage
function i is added to create a pair of data functions (gf, i).

- The next level expansion variable Y is selected (randomly, based on a heuristic, or using look-ahead strategy).

- Expansions with respect to this variable are executed taking the argument data functions from left to right, and so on.

As a result, by selecting at every level such data signals (inputs of gates) as to create the given type of lattice structure (in this
case from left to right, omitting constants), the Reversible Fredkin Lattice from Figure 17 has been obtained. There remains
of course the problem in what order to select the variables at the successive levels of the reversible lattice — this problem is
known from BDDs and lattice diagrams (we do not have yet any solution better than those proposed in [12,13,53]). If at the
bottom of the lattice one obtains linear functions, it is cheaper to realize them using 2*2 Feynman rather than Fredkin gates.
Look again at Figure 18 that illustrates all Kmaps created during the successive Reversible Shannon Expansions. When certain
input is a constant, the expansion process is locally terminated. The total number of primary output signals is 8 and the
minimum number of outputs for 3 inputs in reversible logic is 3, so the additional garbage is 8 - 3 = 5. Of course, assuming
other reversible gates than Fredkin, a better result can be found.

It is known from the research on standard binary lattices [12,13,50,51,52,53] that arbitrary symmetric function can be realized
in a lattice without repeated variables. It is also known that an arbitrary (non-symmetric) function can be realized in a lattice
with repeated variables (using so-called symmetrization). Similar property exists for the presented method. This method
terminates for arbitrary function, assuming that the variables are repeated in levels. Thus, if the leafs of the lattice are not all
constants after expanding for all input variables, some of these variables are used again in new levels of expansions, which we
call “variable repetition”. Interestingly, the functions that do not require variable repetition in the Reversible Shannon Lattices
are not necessarily the symmetric functions. The characterization of the functions realizable in these structures without
repetitions and the respective exact synthesis algorithms are interesting open problems.

The levelized algorithm can be used as part of another decomposition method, and it can map to any selected regular or non-
regular structure, not only lattice. Finally, the Reversible Shannon Expansion can be used on equal terms with any other output
gate decomposition rule in output decomposition.

Example 9. We will design a Toffoli gate from Fredkin gate using output decomposition. This is a design of a reversible
function, so the synthesis without garbage is possible based on results in [71]. We synthesize from outputs using Feynman gate
applied to functions ¢ @ ab and b. This creates new functions ¢ @ ab and ¢ @ab &b = ¢ @ — ab. Now, because function a is
an output of Toffoli gate, RSE expansion with respect to variable a is selected in order not to create a garbage output of its
through variable (in this case, a.). This creates new functions x =b @ c and y = c¢. After applying Feynman again to y and x,
the primary inputs ¢ and b are created. All created signals are not duplicated so the procedure is complete, see Figure 19.
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other type of structure would be created if sufficient number of garbage outputs is assumed. For arbitrary structures, however,
the method requires small modification: if the structure is too constrained (by assuming no garbage added), the structural
equations may have no solutions or the algorithm loops. This happens, for instance, when a Maitra—Cascade-like structure is
assumed for a function that is not Maitra-realizable. It happens also when we assume a levelized circuit of a too small width).
Thus the algorithm must be modified to deal with these special cases. The methods like this can be applied to realize the
cascades [7,25,38,39,40,41,67,71]. Finally, our general approach will work also for irregular structures. In such case, any pair
of signals can be the inputs to the Reversible Shannon Expansion, regardless of their order. The signals are paired in a way to
obtain the smallest total complexity for the level. We analyzed also various planar and non-planar regular structures to realize
arbitrary functions in binary and multiple-valued reversible and quantum logic. Interestingly, because in quantum realization
every classical reversible logic gate can be composed of Feynman gates and 1*1 unitary quantum gates, all quantum circuits
can be built from regular 2*2 structures, since 1*1 gates, similarly to inverters in classical regular structure, do not change the
regularity patterns and can be inserted anywhere “for free”. The 2*2 regular structures are easier to analyze and synthesize than
the 3*3 structures.

8. Reversible Curtis Decomposition

Curtis Decomposition Mode is an adaptation of the well-known Ashenhurst/Curtis decompositions of Boolean functions.
However, because of the properties of reversible logic, these decompositions have been modified by us. For instance, standard
Curtis decomposition assumes that the number of outputs from the predecessor block G is smaller than the number of its inputs.
In our case, following [28], the number of outputs and inputs in a block G can be the same. Curtis decompositions are
illustrated in Figure 20.
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Let us discuss, for instance, the Curtis-like reversible decomposition from the left scheme in Figure 20a. The bound set are
input variables of a reversible block G. The decomposition of this structure exists when two conditions are concurrently
satisfied: (1) the incompatibility graph created for the bound set of input variables [28] has 2 2= 4 colors, and (2) every color
corresponds to exactly two triplets of bound variable values in the Kmap of the block G. This formulation leads to a new
combinational problem of balanced and minimal graph coloring that generalizes the graph coloring used traditionally in
functional decomposition [28]. If the above condition is satisfied, then block G is a 3*3 reversible function with its left output
being a garbage, selected in a way to separate all pairs of cells of the Kmap of block G. (This garbage function can be next re-
used in composition mode of synthesis). In addition, the reversible function G depends on the binary encoding of colors A, B,
C and D from graph coloring with pairs of bits, which affects the realization cost of block G using cascade of 3*3 gates. In any
case, this function is realizable without garbage if the respective cells exist in our cell library. As we have seen, the main
design task of decomposition is to decompose to such functions that at least one of them (in our case, G) is reversible — this is
the general principle of reversible Curtis and other functional decompositions.

9. MP-Decomposition Algorithm
1. Create a PKDD or PKDDCE of the multi-output function.
2. Map it to Toffoli, Fredkin ,and other gates and inverters as in section 3.



3. Based on groups of gates that have small garbage outputs (as presented in section 3), find natural partitioning to
smaller blocks.

4. For each block separately apply each of the decomposition types in both directions and select the best solution. The
algorithm is recursive, so at every level any of the types and modes can be called to find the solution. The algorithm
creates new subfunctions performing search either forwards or backwards and using the NPN matching to standard
library of reversible cells. The search is greedy, at any stage the function evaluated as having the smallest cost function is
realized. If a solution with predicted cost or smaller than the cost of previous solution cannot be found, the program
backtracks.

This procedure is non-deterministic. It creates in certain order new subfunctions and can remove the functions considered to be
bad choices. Its software realization requires efficient problem representation, applications of information theory measures
[31,32,33] to select best subfunction candidates in look-ahead searches, additional heuristics for special functions and
technology matching, and the so-called Al method of “intelligent non-chronological backtracking” based on costs and
constraints.
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Example 10. Forward versus backward search. We will design a Kerntopf gate from Fredkin, Toffoli, Feynman gates and
inverters. Because of NPN-equivalence-based similarity of function P of Kerntopf gate and mux output of a Fredkin gate, the
algorithm starts from output Q, realizing it with one Fredkin gate. As byproducts, subfunctions b and gl =a = b + b — c are
created on other outputs of this Fredkin gate (see Figure 21, left upper corner). This is a forward direction of search. Assuming
Feyman gate with output P, new signal H = — ¢ + b is generated in backward direction. It is realized by next Fredkin gate with
inputs — ¢ and 1, and byproduct outputs b and G2 = — b + — c. Propagating forwards, and using library matching, output function
R is realized with garbage G3 and G4. Next the circuit is completed by adding fan-out gate for signal @ and two fan-out gates for
signal — ¢. Observe, that G3 and G4 cannot be used as source of signals @ and — ¢, since it would lead to a circuit with a loop,
which is not allowed for reversible logic. Thus realization of Kerntopf gate required four constant inputs and four garbage
outputs.

10. Conclusions and Future Work

The paper introduces the concept of multi purpose decomposition of reversible logic that includes several types and modes. It
is applicable to multi-output binary functions and it has been hand-simulated on several small functions from [70] and
functions from other papers on reversible logic. The program IRMA2FPGAS can be run with no modification as its input
mode [37]; in two ways, from inputs to outputs and from outputs to inputs after finding an inreverse function in a
preprocessing stage. This program can be further improved by better adjusting its evaluation functions to reversible logic
properties. The generalization of presented method to multiple-valued logic is relatively simple and it follows the lines of
generalizing the Curtis and bi-decompositions to multiple-valued logic [49]. New reversible MV gates (other than Picton’s
gates and gates from [1]) can be realized using techniques that adapt methods from [15,62]. Not presented here are the
methods for synthesis of reversible logic to generalized Maitra cascades [46] and Tandem networks of Butler [6,7,8,9], as well
as bi-decomposition [48,49] and new decompositions which we plan also to incorporate into the decomposer. Both modes and
all types of our decomposition, as well as the preprocessing stage, have been also formulated by us for multiple-valued logic.



Similarly, the software will be written for multiple-valued logic; for instance, a separate BDD is used for every logic value of
any function (Using one BDD for one value of a function allows also for the representation of incompletely specified
functions and multiple-valued relations as the input data to our decomposer [39]). However, for simplification, only the binary
case was presented in this paper. Some aspects of MV extensions can be found in [1,41,54,55]. Finally, we found strong links
of all these methods to realizations of quantum logic circuits from “gates” [16]. Of course, creating theories of designing
quantum circuits with many gates may seem premature when only few gates are possible in recent quantum computers. We
believe, however, that because of recent breakthroughs in technology, quantum computers will be built in coming 30 years.
Observe that in the history of classical computing the results of logic synthesis theory were not immediately applicable for
designing computers, but ultimately were found very useful to develop next generation EDA tools. We work on reversible
logic synthesis theory early enough to be ready with complete theory and efficient tools when their time will come.

The authors acknowledge help of Professor Tsutomu Sasao from Kyushu University of Technology and Dr. Antoni Michalski
from Informatics Department of Finance Ministry of Poland.
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