Quantum Circuits Seminar:
 ELEMENTARY GATES FOR QUANTUM COMPUTATION

 Aditya Prasad
 Thur Jul 5 at 5:30pm
 EECS 2120

I will demonstrate methods of elementary quantum gate synthesis.  First, I will show some 
properties of two-bit quantum gate networks that allow for quick synthesis in certain cases. 
I will present an upper bound for the number of "elementary" gates required to construct 
various two-bit quantum networks.  Then, I will describe similar properties for three-bit 
gates.  These results will be extrapolated to n-bit networks, and various constructions will 
be shown for creation of these networks.  Finally, I will describe methods for efficient 
general gate constructions, and explain why, for example, Theta(n^3*4^n) two-bit gates are 
sufficient to construct any unitary operator on n-bits with no work space.