Quantum Circuits Seminar: ELEMENTARY GATES FOR QUANTUM COMPUTATION Aditya Prasad Thur Jul 5 at 5:30pm EECS 2120 I will demonstrate methods of elementary quantum gate synthesis. First, I will show some properties of two-bit quantum gate networks that allow for quick synthesis in certain cases. I will present an upper bound for the number of "elementary" gates required to construct various two-bit quantum networks. Then, I will describe similar properties for three-bit gates. These results will be extrapolated to n-bit networks, and various constructions will be shown for creation of these networks. Finally, I will describe methods for efficient general gate constructions, and explain why, for example, Theta(n^3*4^n) two-bit gates are sufficient to construct any unitary operator on n-bits with no work space.