Quantum Error Correction

Ketan Patel

December 6, 2001

F produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Outline

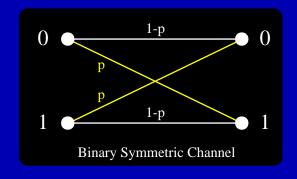
- Motivation
- Introduction to Classical Error Correction
- Examples of Quantum Codes
- Properties of Quantum Codes
- Stabilizer Codes
- Fault Tolerant Computing
- References

Motivation

- Decoherence
 In practice sustaining entangled state is difficult
- Error Build-up
 Quantum algorithms involve computations w/o intermediate measurements
- Faulty Gates
 Quantum gates tend to be "noisy"

e: PDE produced by PStill(c) F. Siegert - http://www.this.net/~frank/ostill.htm

Classical Error Correction Codes



$$P_e = p$$

Repetition Code
$$\left\{ egin{array}{ll} 0
ightarrow 000 \\ 1
ightarrow 111 \end{array}
ight.$$

Decode by majority vote

Bit flips in one out of three are correctable $\Rightarrow P_e \sim p^2$

...but rate reduced to $\frac{1}{3}$

Classical Codes (cont.)

A code maps information bits to codewords

Example:

Info		Codewords					
0	0	\longrightarrow	0	0	0	0	0
0	1	\longrightarrow	1	1	1	0	0
1	0	\longrightarrow	0	0	1	1	1
1	1	\longrightarrow	1	1	0	1	1

The farther apart (Hamming distance) the codewords, the more errors can be corrected

A code with minimum distance d corrects up to $t = \lfloor \frac{d-1}{2} \rfloor$ errors

This code has length 5, encodes 2 info bits, and has minimum distance 3 We say this is a [5,2,3] code

Linear Code Representations

A code is linear if the sum of any two codewords is also a codeword

Generator Matrix (G) Code is span of rows of G

$$C = \left\{ xG \text{ for all } x \in \{0,1\}^k \right\}$$

Parity Check Matrix (H) Code is null space of H

$$Hc = \underline{0}$$
 if and only if $c \in C$

Example: for repetition code

$$G = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} k \qquad H = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} k - k$$

DF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Error Correction via Syndrome

- c original codeword
- e error vector (bits flipped by channel)

Noisy codeword is c + e

$$H(c+e) = He \leftarrow Syndrome$$

Syndrome identifies error (which can then be corrected)

Note: Syndrome independent of codeword

Example: Repetition Code

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

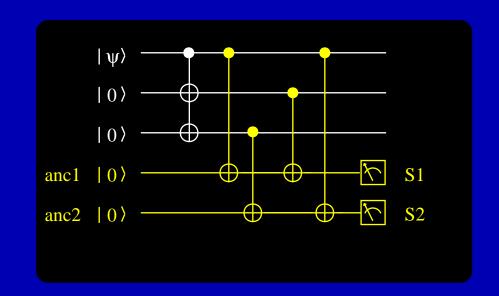
Quantum Issues

- No cloning $|\psi\rangle \not \Rightarrow |\psi\rangle \otimes |\psi\rangle \otimes |\psi\rangle$
- Continuum of Errors e.g. $\alpha |0\rangle + \beta |1\rangle \Rightarrow \alpha |0\rangle + e^{i\phi}\beta |1\rangle$
- No Peeking! Measurement can collapse superpositions

Quantum "Repetition" Code

$$\begin{array}{c} |0\rangle \rightarrow |000\rangle \\ |1\rangle \rightarrow |111\rangle \end{array}$$

S1	S2	action			
0	0	none			
0	1	flip Q3			
1	0	flip Q2			
1	1	flip Q1			

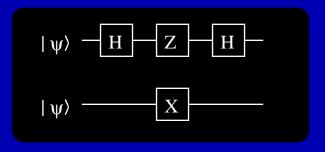


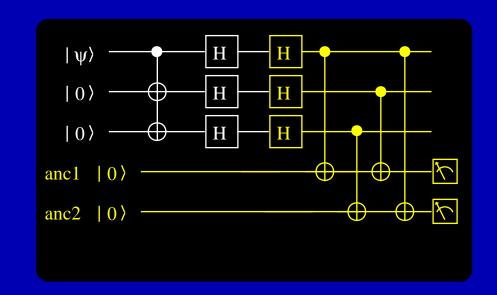
So we can correct one bit flip

But a single phase error
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 is uncorrectable:
$$\underbrace{\begin{bmatrix} 000 \rangle + |111 \rangle}_{|0 \rangle + |1 \rangle} \Rightarrow \underbrace{\begin{bmatrix} 000 \rangle - |111 \rangle}_{|0 \rangle - |1 \rangle}$$

Phase-Flip Code

Phase Flips in Hadamard domain





So we can correct one phase flip

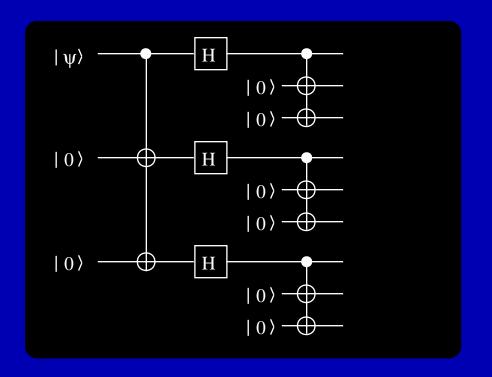
But now bit flip is uncorrectable!

Shor [[9, 1, 3]] Code

Concatenate Bit-flip and Phase-flip codes
Bit flips are corrected by inner code
Phase flips are corrected by outer code

Example:

Phase flip on Q1-3 \equiv Phase flip on Q1 This can be corrected by the outer code



But what about errors other than bit-flips & phase-flips...

PDF produced by PSrill (c) F. Siegert - http://www.this.net/~frank/nstill.htm

Error Discretization

Four operations form a basis for all 2×2 matrices:

- X Bit-Flips Z Phase-Flips
- Y Combined Bit/Phase-Flips I No Error

Therefore if we can correct these, we can correct any single qubit error Intuition: Measuring the error forces it to discretize!

Similarly $\{E_a\} \equiv \{I, X, Y, Z\}^{\otimes n}$ form a basis for errors on n qubits

The weight of an error is the number of qubits acted on by X,Y, or Z So a t-error correcting code corrects all weight $\leq t$ errors

PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.h

Conditions for a Quantum Code

- Must not confuse two codewords even in presence of errors $\langle c_1|E^\dagger F|c_2\rangle=0 \quad (\text{for } \langle c_1|c_2\rangle=0)$ Errors map orthogonal subspaces to orthogonal subspaces
- Measurement must not reveal info about codewords $\langle c_1|E^\dagger F|c_1\rangle = \langle c_2|E^\dagger F|c_2\rangle$ The error subspaces must "look" the same for all codewords

These conditions are both necessary and sufficient

e: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.hm

Stabilizers

Define G_n as the Pauli Group on n qubits

$$G_n \equiv \{\pm I, \pm iI, \pm X, \pm iX, \pm Y, \pm iY, \pm Z, \pm iZ\}^{\otimes n}$$

All elements of G_n either commute or anticommute

An operator $O \in G_n$ stabilizes a state ψ if

$$O|\psi\rangle = |\psi\rangle$$

Let $S \subset G_n$ and V_S set of states stabilized by every element in S

$$V_S = \{ \psi : s | \psi \rangle = | \psi \rangle \text{ for all } s \in S \}$$

S is the stabilizer of the vector space V_S Can consider V_S a stabilizer code

Independent set $\{g_1, \dots, g_i\}$ generates S

F produced by PStill (c) F. Siegert - http://www.this.net/~frank/bstill.html

Stabilizer Codes

Generators are analogous to rows of the parity check matrix

$$g_i|c\rangle = |c\rangle$$
 but $g_iE|c\rangle = -Eg_i|c\rangle = -E|c\rangle$

Measuring eigenvalues of generators gives syndrome

Example: [[9,1,3]] Shor Code

Phase flip in Q3 $(I \otimes I \otimes Z \otimes I \otimes I \otimes I \otimes I \otimes I \otimes I)$ has syndrome (Recall ZX = -XZ)

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & -1 & 1 \end{bmatrix}^t$$

Note: Phase flip in Q1 gives same syndrome

	Operator								
<i>g</i> 1	Z	Z	I	I	I	I	I	I	I
g2	I	Z	Z	I	I	I	I	I	I
<i>g</i> 3	I	I	I	\boldsymbol{Z}	\boldsymbol{Z}	I	I	I	I
<i>g</i> 4	I	I	I	I	Z	Z	I	I	I
<i>g</i> 5	I	I	I	I	I	I	Z	Z	I
<i>g</i> 6	I	I	I	I	I	I	I	Z	Z
g5g6g7	X	X	X	X	X	X	I	I	I
g8	I	\overline{I}	\overline{I}	X	X	X	X	\boldsymbol{X}	\overline{X}

Fault-Tolerant Computing

Errors can be introduced during computation

Fault-tolerance: Single failure in any component causes at most one error in each encoded block of qubits at output

Uncorrectable error occurs only if > 1 components fails

If probability of component failure is p, then overall error probability is $\sim cp^2$

FT elementary operations & FT error correction ⇒ FT circuit

DF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.html

Fault-Tolerant Logic

Sufficient set of fault-tolerant procedures

- FT Hadamard gate
- FT phase gate
- FT C-NOT gate
- FT $\pi/8$ gate
- FT Measurement
- FT State Preparation

Universal Set

Implementation of fault-tolerant procedures dependent on error correction code

For [[7, 1, 3]] Steane Code

Bitwise implementation of Hadamard, phase, and C-NOT gates is fault-tolerant

PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/nstill.htm

Concatenation

Recursively replace components with FT components & qubits with encoded qubits

Original circuit:

error occurs if single component fails: $P_f \sim p$

Apply procedure once:

error occurs if fault-tolerant component fails

 \Rightarrow two of its components fail: $P_f \sim cp^2$

Apply procedure twice:

error occurs if fault-tolerant fault-tolerant component fails

- ⇒two of its fault-tolerant components fail
- \Rightarrow two of their components fail: $P_f \sim c \cdot (cp^2)^2$

If we concatenate k times

Probability of Failure $\sim (cp)^{2^k}/c$

while circuit size scales by $\sim d^k$

e: PDF produced by PStill (c) F_Siegert - http://www.this.net/~frank/nstill

Threshold Theorem

If $p < p_{th} \equiv 1/c$, a circuit with N gates can be simulated with probability of error at most ϵ using only

 $O(\text{poly}(\log N/\epsilon)N) \leftarrow \text{polylogorithmically larger circuit}$

gates.

Threshold is $p_{th} \approx 10^{-5} - 10^{-6}$

se: PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/nstill.l

Application to Factoring

Factoring a 130 digit number (few months on classical)

Quantum algorithm takes ~ 2150 qubits and $\sim 3 \cdot 10^9$ Toffoli gates

[Preskill 97]: Estimates factor of \sim 343 increase for FT implementation

[Steane 98]: Estimates factor of ~ 10 increase

PDF produced by PStill (c) F. Siegert - http://www.this.net/~frank/pstill.htm

References

- Neilsen & Chuang Quantum Computation and Quantum Information
- MacWilliams & Sloan The Theory of Error-Correction Codes
- Gottesman An Introduction to Quantum Error Correction (2000)
 quant-ph/0004072
- Preskill Reliable Quantum Computers (1997)
 quant-ph/9705031
- Steane Efficient fault-tolerant quantum computing (1998)
 quant-ph/980954