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8.1 Introduction

o |C layout must satisfy geometric constraints and timing constraints
— Setup (long-path) constraints
— Hold (short-path) constraints

e Chip designers must complete timing closure
— Optimization process that meets timing constraints

— Integrates point optimizations discussed in previous chapters, e.g.,
placement and routing, with specialized methods to improve circuit performance



8.1 Introduction

Components of timing closure covered in this lecture:

e Timing-driven placement (Sec. 8.3) minimizes signal delays
when assigning locations to circuit elements

e Timing-driven routing (Sec. 8.4) minimizes signal delays
when selecting routing topologies and specific routes

e Physical synthesis (Sec. 8.5) improves timing by changing the netlist.

— Sizing transistors or gates: increasing the width:length ratio of transistors
to decrease the delay or increase the drive strength of a gate

— Inserting buffers into nets to decrease propagation delays
— Restructuring the circuit along its critical paths

Performance-driven physical design flow (Sec. 8.6)



8.1 Introduction

e Timing optimization engines must estimate circuit delays quickly and accurately
to improve circuit timing

e Timing optimizers adjust propagation delays through circuit components,
with the primary goal of satisfying timing constraints, including

— Setup (long-path) constraints, which specify the amount of time a data input signal
should be stable (steady) before the clock edge for each storage element
(e.q., flip-flop or latch)

— Hold-time (short-path) constraints, which specify the amount of time a data input
signal should be stable after the clock edge at each storage element

4 +1

cycle =t combDelay setup +1 skew 4 combDelay =1 hold T 4 skew



8.1 Introduction

e Timing closure is the process of satisfying timing constraints
through layout optimizations and netlist modifications

e Industry jargon: “the design has closed timing”



W Timing Analysis and Performance Constraints

==P 8.2 Timing Analysis and Performance Constraints
8.2.1 Static Timing Analysis
8.2.2 Delay Budgeting with the Zero-Slack Algorithm



W Timing Analysis and Performance Constraints
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W Timing Analysis and Performance Constraints

e Main delay concerns in sequential circuits
— Gate delays are due to gate transitions
— Wire delays are due to signal propagation along wires

— Clock skew is due to the difference in time the sequential elements activate

e Need to quickly estimate sequential circuit timing
— Perform static timing analysis (STA)

— Assume clock skew is negligible, postpone until after clock network synthesis



8.2.1 Static Timing Analysis

e STA: assume worst-case scenario where every gate transitions

e Given combinational circuit, represent as directed acyclic graph (DAG)

— Every edge (node) has weight = wire (gate) delay

e Compute the slack = RAT — AAT for each node
— RAT is the required arrival time, latest time signal can transition
— AAT is the actual arrival time, latest possible transition time

— By convention, AAT is defined at the output of every node

— Negative slack at any output means the circuit does not meet timing

— Positive slack at all outputs means the circuit meets timing



8.2.1 Static Timing Analysis

Combinational circuit as DAG
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8.2.1 Static Timing Analysis

Compute AATs at each node:

AAT (v) = max (AAT(u) +t(u,v))
ueFl(v)

where FI(v) is the fanin nodes, and f(u,v) is the delay between u and v
(AATs of inputs are given)
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8.2.1 Static Timing Analysis

Compute RATSs at each node:

RAT(v) = min (RAT(u) —t(u,V))
ueFOo(v)

where FO(v) are the fanout nodes, and f(u,v) is the delay between u and v
(RATSs of outputs are given)
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8.2.1 Static Timing Analysis

Compute slacks at each node:

slack(v) = RAT (v) — AAT (v)
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8.2.2 Delay Budgeting with the Zero-Slack Algorithm

e Establish timing budgets for nets
— Gate and wire delays must be optimized during timing driven layout design
— Wire delays depend on wire lengths

— Wire lengths are not known until after placement and routing

e Delay budgeting with the zero-slack algorithm
— Let v, be the logic gates
— Let e, be the nets
— Let DELAY(v) and DELAY (e) be the delay of the gate and net, respectively
— Define the timing budget of a gate TB(v) = DELAY(v) + DELAY (e)



8.2.2 Delay Budgeting with the Zero-Slack Algorithm

Input: timing graph G(V,E)
Output: timing budgets 7B foreach v € V
1. do
2. (AAT,RAT,slack) = STA(G)
foreach (v, € V)
TB[v] = DELAY(v,) + DELAY(e)
slack,, = >
foreach (v € V)
if ((slack[v] < slack_,;.) and (slack[v] > 0))
slack,,, = slack[v]
9. Viin =V
10. if (slack,,, # )
1.  path=v,,
12. ADD_TO_FRONT(path,BACKWARD_PATH(v,,.,G))

13. ADD_TO_BACK(path,FORWARD_PATH(v, ..,G))

14.  s=slack,. | |path|

&L for (i =1 to |path|)

16. node = pathi] Il evenly distribute
17. TB[node] = TB[node] + s /I slack along path

18. while (slack,,;, # <)



8.2.2 Delay Budgeting with the Zero-Slack Algorithm

Forward Path Search (FORWARD_PATH(v, . ,G))

timing graph G

in’
Input: node v, .. with minimum slack slack, . ,

Output: maximal downstream path path from v, .. such that no node v e V affects
the slack of path

—_—

.path=v_.
do
flag = false
node = LAST_ELEMENT (path)
foreach (fanout node fo of node)
if (RAT[fo] == RAT[node] + TB[fo]) and (AAT[fo] == AAT[node] + TBlfo]))
ADD_TO_BACK(path,fo)
flag = true

break

© ©®© N o g A~ 0D

10. while (flag == true)
11. REMOVE_FIRST_ELEMENT (path) /l remove v, ;.



8.2.2 Delay Budgeting with the Zero-Slack Algorithm

Backward Path Search (BACKWARD_PATH(v,.. ,G))

timing graph G

in’
Input: node v, .. with minimum slack slack, . ,

Output: maximal upstream path path from v_.. such that no node v € V affects the
slack of path

—_—

path=v_.
do
flag = false
node = FIRST_ELEMENT (path)
foreach (fanin node fi of node)
if ((RATIfi] == RAT[node] — TBIfi]) and (AATIfi] == AAT[node] — TBIfi]))
ADD_TO_FRONT (path,fi)
flag = true

© ©®© N o g A~ 0D

break
10. while (flag == true)
11. REMOVE_LAST_ELEMENT (path) /l remove v,



8.3 Timing-Driven Placement

== 8.3 Timing-Driven Placement
8.3.1 Net-Based Techniques
8.3.2 Embedding STA into Linear Programs for Placement



8.3 Timing-Driven Placement

e Timing-driven placement optimizes circuit delay

e Let T be the set of all timing endpoints

o Circuit delay is measured by worst negative slack (\WWNS)

WNS = min(slack(t))

teT

e Or total negative slack (TNS)
ITNS = Zslack('c)

teT,slack(t)<0

e Classifications: net-based, path-based, integrated



8.3.1 Net-Based Techniques

e Net weights are added to each net — placer optimizes weighted wirelength

e Static net weights: computed before placement (never changes)

o, 1f slack >0

. where v, >0, w,>0,and w,>
o, if slack <0 L 2 2 1

— Discrete net weights: W ={

where t is the longest path delay

slack ja
and a is a criticality exponent

— Continuous net weights: w = (1 —
t

— Based on net sensitivity to TNS and slack

—slack)-s3H4K 4 g TV

w=w, +o(slack "

target



8.3.1 Net-Based Techniques

e Dynamic net weights: (re)computed during placement

DELAY
— Estimate slack at every iteration: slack; = slack,_; —s; AL

where AL is the change in wirelength

l(l)k_l + 1) if among the top 3% of critical nets
— Update net criticality: v, =1 %
2

V-1 otherwise
— Update net weight: W; = W, _,4 -(1 + Dk)

e Variations include updating every j iterations, different relations
between criticality and net weight



8.3.2 Embedding STA into Linear Programs for Placement

e Construct a set of constraints for timing-driven placement
— Physical constraints define locations of cells

— Timing constraints define slack requirements

e Optimize an optimization objective
— Improving worst negative slack (WNS)
— Improving total negative slack (TNS)

— Improving a combination of both WNS and TNS



8.3.2 Embedding STA into Linear Programs for Placement

e For physical constraints, let:
— X, and y, be the centerof cell v € V
— V, be the set of cells connected to nete € E

— left(e), right(e), bottom(e), and top(e) respectively be the coordinates
of the left, right, bottom, and top boundaries of e’s bounding box

- 6 (v,.e)and & (v,e) be pin offsets from x, and y, for v's pin connected to e



8.3.2 Embedding STA into Linear Programs for Placement

e Then,forallve V.

left(e) <x,+0.(v,e)
right(e) 2 x, +0.,.(v,e)
bottom(e) < y, +6 ,(v,e)

top(e) 2 y, +0,,(v,e)

e Define e’s half-perimeter wirelength (HPWL):

L(e) = right(e) — left(e) + top(e) — bottom(e)



8.3.2 Embedding STA into Linear Programs for Placement

e For timing constraints, let
— tga7e(v,v,) be the gate delay from an input pin v; to the output pin v, for cell v
— tyerle,u,,v;) be net e’s delay from cell u’s output pin u, to cell v’s input pin v;

— AAT(v)) be the arrival time on pin j of cell v



8.3.2 Embedding STA into Linear Programs for Placement

e Forevery input pin v; of cell v:

AAT (v;) = AAT (u, )+t ypr (u,,v;)

e For every output pin v, of cell v:

AAT(VO) 2 AAT(VZ) + tGATE (Vi9vo)
e Foreverypin 71 ,inasequential cell t:

slack(t,) < RAT(t,)— AAT (1)

e Ensure that every slack(t,) <0



8.3.2 Embedding STA into Linear Programs for Placement

e Optimize for total negative slack:

max : Z slack(t )

T, €Pins(t),1€T

e Optimize for worst negative slack:

max : WNS

e Optimize for both TNS and WNS:

min : ZL(e) —o-WNS
eck



8.4 Timing-Driven Routing
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8.4 Timing-Driven Routing

e Timing-driven routing seeks to minimize:
— Maximum sink delay: delay from the source to any sink in a net

— Total wirelength: routed length of the net

e For a signal net net, let
— S, be the source node
— Sinks = {s4, ... ,s,} be the sinks
— G = (V,E) be a corresponding weighted graph where:
- V={vyVv4, ... ,v,} represents the source and sink nodes of net, and

— the weight of an edge e(v,,v)) € E represents the routing cost between v; and v;



8.4 Timing-Driven Routing

For any spanning tree T over G, let:
— radius(T) be the length of the longest source-sink path in T

— cosi(T) be the total edge weight of T

Trade off between “shallow” and “light” trees

“Shallow” trees have minimum radius
— Shortest-paths tree
— Constructed by Dijkstra’s Algorithm

“Light” trees have minimum cost
— Minimum spanning tree (MST)

— Constructed by Prim’s Algorithm



8.4 Timing-Driven Routing
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8.4.1 The Bounded-Radius, Bounded-Cost Algorithm

Trades off radius for cost by setting upper bounds on both

In the bounded-radius, bounded-cost (BRBC) algorithm, let:
— Tg be the shortest-paths tree

— T, be the minimum spanning tree

Tsr5c 1S the tree constructed with parameter ¢ that satisfies:

radius (T'zppc) < (1+¢€)-radius (1)
and

2
cost (Tgppe) < (1 +—j -cost (Ty,)
€

When ¢ =0, Tgrgec has minimum radius

When ¢ = oo, Tgrge has minimum cost



8.4.2 Prim-Dijkstra Tradeoff

e Prim-Dijkstra Tradeoff based on Prim’s algorithm and Dijkstra’s algorithm

e From the set of sinks S, iteratively add sink s based on different cost function

— Prim’s algorithm cost function: cast(sl- ,S]-
— Dijkstra’s algorithm cost function: cost(Sg,S; )+ cost(s;,s ;

— Prim-Dijkstra Tradeoff cost function: vy - cost(so , Sl-) + cost(Sl- , Sj

e VY is aconstant between 0 and 1



8.4.2 Prim-Dijkstra Tradeoff
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8.4.3 Minimization of Source-to-Sink Delay

e lteratively forms a tree by adding sinks, and optimizes for critical sink(s)

e In the critical-sink routing tree (CSRT) problem, minimize:

n

Za(i) -1(8g,S;

i=1

where a(/) are sink criticalities for sinks s;, and {(s,,s;) is the delay from s, to s;



8.4.3 Minimization of Source-to-Sink Delay

e In the critical-sink Steiner tree problem, construct a
minimum-cost Steiner tree T for all sinks except for the most critical sink s,

e Add in the critical sink by:

— H,: a single wire from s, to s,

— H,: the shortest possible wire that can join s, to T, so long as the path
from s, to s, is the shortest possible total length

— Hp.4: try all shortest connections from s, to edges in T and from s, to s;.
Perform timing analysis on each of these trees and pick the one
with the lowest delay at s,



8.5 Physical Synthesis

== 8.5 Physical Synthesis
8.5.1 Gate Sizing
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8.5 Physical Synthesis

Physical synthesis is a collection of timing optimizations to fix negative slack

Consists of creating timing budgets and performing timing corrections

Timing budgets include:

— allocating target delays along paths or nets

— often during placement and routing stages

— can also be during timing correction operations

Timing corrections include:
— gate sizing

— buffer insertion

— netlist restructuring



8.5.1 Gate Sizing

e Letagate vhave 3 sizes A, B, C, where: size (v.) > size (vy) > size (v )

e Gate with a larger size has lower output resistance

e When load capacitances are large:
t(ve) <t(vg) <t(vy)

e Gate with a smaller size has higher output resistance

e When load capacitances are small:
t(ve) >t(vp) > t(vy)



8.5.1 Gate Sizing

e Letagate vhave 3 sizes A, B, C, where: size (v.) > size (vy) > size (v )
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8.5.1 Gate Sizing

— d C(d)=15

z:_vA}—— e C(e)=1.0

— f C(f) =0.5

t(v,) = 40

—d Cld)=15

z: v)o_._e C(e) = 1.0

— f  C(f) =05

|

—d Cd)=15

Z’:Do—— e Ce)=1.0

f C(f) =05

t(v,) = 28



8.5.2 Buffering

e Buffer: a series of two serially-connected inverters

e Improve delays by
— speeding up the circuit or serving as delay elements
— changing transition times

— shielding capacitive load

e Drawbacks:
— Increased area usage

— Increased power consumption



8.5.2 Buffering

d C(d) =1
e C(e)=1
p- pu—
b — f C(f) =1
g C(9) =1
C(vg) =5fF h C(h) =1
f(vg) =45 ps

d C(d)=1
e C(e)=1

2= f C(f) =1
Ay g C(g)=1
C(vg) = 3 F h C(h) =1
f(vg) = 33 ps
C(y) = 3 fF

t(y) = {(vg) *+ t(y) = 66 ps



8.5.3  Netlist Restructuring

e Netlist restructuring only changes existing gates, does not change functionality

e Changes include
— Cloning: duplicating gates
— Redesign of fanin or fanout tree: changing the topology of gates
— Swapping communicative pins: changing the connections
— Gate decomposition: e.g., changing AND-OR to NAND-NAND

— Boolean restructuring: e.g., applying Boolean laws to change circuit gates

e Can also do reverse transformations of above, e.g., downsizing, merging



8.5.3  Netlist Restructuring

e Cloning can reduce fanout capacitance

d C(d)=1 N d C(d)=1
e C(e)=1 . Do—‘:e C(e) = 1
9 — e
| Vs f C(f =1 » e =1
g Clo)=1 "ED_EQ Clg) = 1
h C(h)=1 h C(h)=1

and reduce downstream capacitance

d
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8.5.

3  Netl

ist Restructuring

Redesigning the fanin tree can change AATs

a <4>

b <3>
c <1>=—

d <0>—



8.5.3  Netlist Restructuring

Redesigning fanout trees can change delays on specific paths

wlc]e
slo]e

path,

path,
Dt - M e
D>

path, path,




8.5.3

Netlist Restructuring

Swapping commutative pins can change the final delay

a <0>

b <1>

c <2>




8.5.3  Netlist Restructuring

Gate decomposition can change the general structure of the circuit
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8.5.3  Netlist Restructuring

Boolean restructuring uses laws or properties,
e.g., distributive law, to change circuit topology

(@a+b)a+tc)=a+bc

a <4> —eg
a <4> (1) }— x <5>
b<1>=— b <1> =——tmgm—

(1) X <6> o <2>—tt o (1)
C<2>—@{ » -
x(a,b,c) = (a + b)(a + ¢) x(a,b,c) =a + bc

y(a,b,c) = (a +c)(b +c) y(a,b,c)=ab + ¢



8.6 Performance-Driven Design Flow

==p 8.6 Performance-Driven Design Flow



8.6 Performance-Driven Design Flow

Baseline Physical Design Flow

1. Floorplanning, I/O placement, power planning

Logic synthesis and technology mapping

Global placement and sequential element legalization
Clock network synthesis

Global routing and layer assignment
Congestion-driven detailed placement and legalization

Detailed routing

© N o O bk~ W DN

Manufacturing, electrical verification, and mask generation



8.6 Performance-Driven Design Flow

Floorplanning Example
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8.6 Performance-Driven Design Flow

Global Placement Example
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8.6 Performance-Driven Design Flow

Clock Network Synthesis Example
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8.6 Performance-Driven Design Flow

Global Routing Congestion Example




8.6 Performance-Driven Design Flow
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(see full flow chart in Figure 8.26)



8.6 Performance-Driven Design Flow
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8.6 Performance-Driven Design Flow
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8.6 Performance-Driven Design Flow
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8.6 Performance-Driven Design Flow
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Summary of Chapter 8 — Timing Constraints and Timing Analysis

Circuit delay is measured on signal paths
— From primary inputs to sequential elements; from sequentials to primary outputs
— From sequentials to sequentials

Components of path delay

— Gate delays: over-estimated by worst-case transition per gate
(to ensure fast Static Timing Analysis)

— Wire delays: depend on wire length and (for nets with >2 pins) topology

e Timing constraints
— Actual arrival times (AATs) at primary inputs and output pins of sequentials
— Required arrival times (RATSs) at primary outputs and input pins of sequentials

Static timing analysis

— Two linear-time traversals compute AATs and RATSs for each gate (and net)

— At each timing point: slack = RAT-AAT

— Negative slack = timing violation; critical nets/gates are those with negative slack

Time budgeting: divides prescribed circuit delay into net delay bounds



Summary of Chapter 8 — Timing-Driven Placement

Gate/cell locations affect wire lengths, which affect net delays

Timing-driven placement optimizes gate/cell locations to improve timing

— Interacts with timing analysis to identify critical nets, then biases placement opit.
— Must keep total wirelength low too, otherwise routing will fail

— Timing optimization may increase routing congestion

Placement by net weighting
— The least invasive technique for timing-driven placement
— Performs tentative placement, then changes net weights based on timing analysis

Placement by net budgeting
— Allocates delay bounds for each net; translates delay bounds into length bounds
— Performs placement subject to length constraints for individual nets

Placement based on linear programming
— Placement is cast as a system of equations and inequalities
— Timing analysis and optimization are incorporated using additional inequalities



Summary of Chapter 8 — Timing-Driven Routing

Timing-driven routing has several aspects
— Individual nets: trading longer wires for shorter source-to-sink paths

— Coupling capacitance and signal integrity: parallel wires act as capacitors
and can slow-down/speed-up signal transitions

— Full-netlist optimization: prioritize the nets that should be optimized first

Individual net optimization

— One extreme: route each source-to-sink path independently (high wirelength)
— Another extreme: use a Minimum Spanning Tree (low wirenegth, high delay)
— Tunable tradeoff: a hybrid of Prim and Dijkstra algorithms

Coupling capacitance and signal integrity
— Parallel wires are only worth attention when they transition at the same time
— Identify critical nets, push neighboring wires further away to limit crosstalk

Full-netlist optimization
— Run trial routing, then run timing analysis to identify critical nets
— Then adjust accordingly, repeat until convergence



Summary of Chapter 8 — Physical Synthesis

Traditionally, place-and-route have been performed after the netlist is known

However, fixing gate sizes and net topologies early
does not account for placement-aware timing analysis

— Gate locations and net routes are not available

Physical synthesis uses information from trial placement to modify the netlist

Net buffering: splits a net into smaller (approx. equal length) segments
— Along net has high capacitance, the driver may be too weak

Gate/buffer sizing: increases driver strength & physical size of a gate

— Large gates have higher input pin capacitance, but smaller driver resistance
— Larger gates can drive larger fanouts, longer nets; faster trasitions

— Large gates require more space, larger upstream drivers

Gate cloning: splits large fanouts
— Cloned gates can be placed separately, unlike with a single larger gate



