Chapter 5 – Global Routing

5.1 Introduction
5.2 Terminology and Definitions
5.3 Optimization Goals
5.4 Representations of Routing Regions
5.5 The Global Routing Flow
5.6 Single-Net Routing
 5.6.1 Rectilinear Routing
 5.6.2 Global Routing in a Connectivity Graph
 5.6.3 Finding Shortest Paths with Dijkstra’s Algorithm
 5.6.4 Finding Shortest Paths with A* Search
5.7 Full-Netlist Routing
 5.7.1 Routing by Integer Linear Programming
 5.7.2 Rip-Up and Reroute (RRR)
5.8 Modern Global Routing
 5.8.1 Pattern Routing
 5.8.2 Negotiated-Congestion Routing
5.1 Introduction

Circuit Design

Functional Design and Logic Design

Architectural Design

System Specification

Physical Design

Physical Verification and Signoff

Fabrication

Packaging and Testing

Chip

Chip Planning

Placement

Clock Tree Synthesis

Signal Routing

Timing Closure
Given a placement, a netlist and technology information,

- determine the necessary wiring, e.g., net topologies and specific routing segments, to connect these cells
- while respecting constraints, e.g., design rules and routing resource capacities, and
- optimizing routing objectives, e.g., minimizing total wirelength and maximizing timing slack.
Terminology:

- **Net**: Set of two or more pins that have the same electric potential
- **Netlist**: Set of all nets.
- **Congestion**: Where the shortest routes of several nets are incompatible because they traverse the same tracks.
- **Fixed-die routing**: Chip outline and routing resources are fixed.
- **Variable-die routing**: New routing tracks can be added as needed.
5.1 Introduction: General Routing Problem

Netlist:
\[N_1 = \{C_4, D_6, B_3\} \]
\[N_2 = \{D_4, B_4, C_1, A_4\} \]
\[N_3 = \{C_2, D_5\} \]
\[N_4 = \{B_1, A_1, C_3\} \]

Technology Information (Design Rules)

Placement result
Netlist:

\[N_1 = \{C_4, D_6, B_3\} \]
\[N_2 = \{D_4, B_4, C_1, A_4\} \]
\[N_3 = \{C_2, D_5\} \]
\[N_4 = \{B_1, A_1, C_3\} \]
Netlist:

\[N_1 = \{C_4, D_6, B_3\} \]
\[N_2 = \{D_4, B_4, C_1, A_4\} \]
\[N_3 = \{C_2, D_5\} \]
\[N_4 = \{B_1, A_1, C_3\} \]
5.1 Introduction

- **Multi-Stage Routing of Signal Nets**
 - Coarse-grain assignment of routes to routing regions (Chap. 5)
- **Detailed Routing**
 - Fine-grain assignment of routes to routing tracks (Chap. 6)
- **Timing-Driven Routing**
 - Net topology optimization and resource allocation to critical nets (Chap. 8)
- **Large Single-Net Routing**
 - Power (VDD) and Ground (GND) routing (Chap. 3)
- **Geometric Techniques**
 - Non-Manhattan and clock routing (Chap. 7)
5.1 Introduction

Global Routing

- Wire segments are tentatively assigned (embedded) within the chip layout
- Chip area is represented by a coarse routing grid
- Available routing resources are represented by edges with capacities in a grid graph
 ⇒ Nets are assigned to these routing resources
5.1 Introduction

Global Routing

Detailed Routing

- Horizontal Segment
- Vertical Segment
- Via

VLSI Physical Design: From Graph Partitioning to Timing Closure
Chapter 5: Global Routing
5.1.2 Globalverdrahtung

Detailed Routing → Placement → Wire Tracks → Global Routing → Congestion Map → Detailed Routing
5.2 Terminology and Definitions

- **Routing Track**: Horizontal wiring path
- **Routing Column**: Vertical wiring path
- **Routing Region**: Region that contains routing tracks or columns
- **Uniform Routing Region**: Evenly spaced horizontal/vertical grid
- **Non-uniform Routing Region**: Horizontal and vertical boundaries that are aligned to external pin connections or macro-cell boundaries resulting in routing regions that have differing sizes
5.2 Terminology and Definitions

Channel

Rectangular routing region with pins on two opposite sides

Standard cell layout (Two-layer routing)
5.2 Terminology and Definitions

Channel

Rectangular routing region with pins on two opposite sides

Standard cell layout (Two-layer routing)
5.2 Terminology and Definitions

Capacity

Number of available routing tracks or columns

Horizontal Routing Channel

- d_{pitch}
- h
5.2 Terminology and Definitions

Capacity

Number of available routing tracks or columns

- For single-layer routing, the capacity is the height h of the channel divided by the pitch d_{pitch}.

- For multilayer routing, the capacity σ is the sum of the capacities of all layers.

$$\sigma(\text{Layers}) = \sum_{\text{layer} \in \text{Layers}} \left[\frac{h}{d_{pitch}(\text{layer})} \right]$$
5.2 Terminology and Definitions

Switchbox (Two-layer macro cell layout)

Intersection of horizontal and vertical channels

Horizontal channel is routed after vertical channel is routed
5.2 Terminology and Definitions

T-junction (Two-layer macro cell layout)
5.2 Terminology and Definitions

2D and 3D Switchboxes

- Bottom pin connection on 3D switchbox
- Top pin connection on cell
- Pin on channel boundary
- 2D switchbox
- 3D switchbox

Metal5
Metal4
Horizontal channel
Metal3
Metal2
Metal1
Vertical channel
5.2 Terminology and Definitions

Gcells (Tiles) with macro cell layout

Metal1 Metal2 Metal3 Metal4 etc.
5.2 Terminology and Definitions

Gcells (Tiles) with standard cells

Metal1 (Standard cells) Metal2 (Cell ports) Metal3
Metal4 usw.
5.2 Terminology and Definitions

Gcells (Tiles) with standard cells (back-to-back)
5.3 Optimization Goals

- Global routing seeks to
 - determine whether a given placement is routable, and
 - determine a coarse routing for all nets within available routing regions

- Considers goals such as
 - minimizing total wirelength, and
 - reducing signal delays on critical nets
5.3 Optimization Goals

Full-custom design

Layout is dominated by macro cells and routing regions are non-uniform

(1) Types of channels

(2) Channel ordering
5.3 Optimization Goals

Standard-cell design
If number of metal layers is limited, feedthrough cells must be used to route across multiple cell rows

Feedthrough cells

Variable-die, standard cell design:
Total height = \(\sum \text{Cell row heights} + \text{All channel heights} \)
5.3 Optimization Goals

Standard-cell design

Steiner tree solution with minimal wirelength

Steiner tree solution with fewest feedthrough cells
5.3 Optimization Goals

Gate-array design
Cell sizes and sizes of routing regions between cells are fixed

Key Tasks:
- Determine routability
- Find a feasible solution
5.1 Introduction
5.2 Terminology and Definitions
5.3 Optimization Goals
5.4 Representations of Routing Regions
5.5 The Global Routing Flow
5.6 Single-Net Routing
 5.6.1 Rectilinear Routing
 5.6.2 Global Routing in a Connectivity Graph
 5.6.3 Finding Shortest Paths with Dijkstra’s Algorithm
 5.6.4 Finding Shortest Paths with A* Search
5.7 Full-Netlist Routing
 5.7.1 Routing by Integer Linear Programming
 5.7.2 Rip-Up and Reroute (RRR)
5.8 Modern Global Routing
 5.8.1 Pattern Routing
 5.8.2 Negotiated-Congestion Routing
• Routing regions are represented using efficient data structures

• Routing context is captured using a graph, where
 – nodes represent routing regions and
 – edges represent adjoining regions

• Capacities are associated with both edges and nodes to represent available routing resources
Grid graph model

\[g_{grid} = (V, E), \text{ where the nodes } v \in V \text{ represent the routing grid cells (gcells)} \]
\[\text{and the edges represent connections of grid cell pairs (} v_i, v_j) \]
Channel connectivity graph

\[G = (V,E), \text{ where the nodes } v \in V \text{ represent channels,} \]
\[\text{and the edges } E \text{ represent adjacencies of the channels} \]
5.4 Representations of Routing Regions

Switchbox connectivity graph

\[G = (V, E) \], where the nodes \(v \in V \) represent switchboxes and an edge exists between two nodes if the corresponding switchboxes are on opposite sides of the same channel.
5.5 The Global Routing Flow – General Idea

1. Defining the routing regions (Region definition)
 - Layout area is divided into routing regions
 - Nets can also be routed over standard cells
 - Regions, capacities and connections are represented by a graph

2. Mapping nets to the routing regions (Region assignment)
 - Each net of the design is assigned to one or several routing regions to connect all of its pins
 - Routing capacity, timing and congestion affect mapping

3. Assigning crosspoints along the edges of the routing regions (Midway routing)
 - Routes are assigned to fixed locations or crosspoints along the edges of the routing regions
 - Enables scaling of global and detailed routing
5.6 Single-Net Routing

5.6.1 Rectilinear Routing
5.6.2 Global Routing in a Connectivity Graph
5.6.3 Finding Shortest Paths with Dijkstra’s Algorithm
5.6.4 Finding Shortest Paths with A* Search

5.7 Full-Netlist Routing
5.7.1 Routing by Integer Linear Programming
5.7.2 Rip-Up and Reroute (RRR)

5.8 Modern Global Routing
5.8.1 Pattern Routing
5.8.2 Negotiated-Congestion Routing
5.6.1 Rectilinear Routing

Rectilinear minimum spanning tree (RMST)

Rectilinear Steiner minimum tree (RSMT)
5.6.1 Rectilinear Routing

- An RMST can be computed in $O(p^2)$ time, where p is the number of terminals in the net using methods such as Prim’s Algorithm.
- Prim’s Algorithm builds an MST by starting with a single terminal and greedily adding least-cost edges to the partially-constructed tree.
- Advanced computational-geometric techniques reduce the runtime to $O(p \log p)$.
Characteristics of an RSMT

- An RSMT for a p-pin net has between 0 and $p - 2$ (inclusive) Steiner points.
- The degree of any terminal pin is 1, 2, 3, or 4.
 The degree of a Steiner point is either 3 or 4.
- A RSMT is always enclosed in the minimum bounding box (MBB) of the net.
- The total edge length L_{RSMT} of the RSMT is at least half the perimeter.
- Of the minimum bounding box of the net: $L_{RSMT} \geq \frac{L_{MBB}}{2}$.
Transforming an initial RMST into a low-cost RSMT

Construct \(L \)-shapes between points with (most) overlap of net segments

Final tree (RSMT)
5.6.1 Rectilinear Routing

Adding Steiner points to an RMST can significantly reduce the wirelength.

Maurice Hanan proved that for finding Steiner points, it suffices to consider only points located at the intersections of vertical and horizontal lines that pass through terminal pins.

The Hanan grid consists of the lines $x = x_p$, $y = y_p$ that pass through the location (x_p, y_p) of each terminal pin p.

The Hanan grid contains at most $(n^2 - n)$ candidate Steiner points ($n =$ number of pins), thereby greatly reducing the solution space for finding an RSMT.
5.6.1 Rectilinear Routing

- Terminal pins
- Intersection lines
- Hanan points (●)
- RSMT
5.6.1 Rectilinear Routing

Defining routing regions

Pin connections

Pins assigned to grid cells
5.6.1 Rectilinear Routing

- Pins assigned to grid cells
- Rectilinear Steiner minimum tree (RSMT)
- Assigned routing regions and feedthrough cells

Sequential Steiner Tree Heuristic
5.6.1 Rectilinear Routing

A Sequential Steiner Tree Heuristic

1. Find the closest (in terms of rectilinear distance) pin pair, construct their minimum bounding box (MBB)

2. Find the closest point pair \((p_{MBB}, p_C)\) between any point \(p_{MBB}\) on the MBB and \(p_C\) from the set of pins to consider

3. Construct the MBB of \(p_{MBB}\) and \(p_C\)

4. Add the \(L\)-shape that \(p_{MBB}\) lies on to \(T\) (deleting the other \(L\)-shape). If \(p_{MBB}\) is a pin, then add any \(L\)-shape of the MBB to \(T\).

5. Goto step 2 until the set of pins to consider is empty
5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic
5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic
5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic

![Rectilinear Routing Diagram]

- **PC**: p
- **MBB**: MBB

VLSI Physical Design: From Graph Partitioning to Timing Closure

Chapter 5: Global Routing

© KLMH Lienig
© 2011 Springer Verlag
5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic

The diagram illustrates the sequential Steiner tree heuristic for rectilinear routing. The process involves connecting points 1, 2, 3, and 4 with a minimum bounding box (MBB) to optimize the routing.
5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic

1.

2.

3.

VLSI Physical Design: From Graph Partitioning to Timing Closure

Chapter 5: Global Routing
5.6.1 Rectilinear Routing: Example Sequential Steiner Tree Heuristic
5.6.2 Global Routing in a Connectivity Graph

Channel connectivity graph

Switchbox connectivity graph

VLSI Physical Design: From Graph Partitioning to Timing Closure

Chapter 5: Global Routing
5.6.2 Global Routing in a Connectivity Graph

Channel connectivity graph

Switchbox connectivity graph
5.6.2 Global Routing in a Connectivity Graph

- Combines switchboxes and channels, handles non-rectangular block shapes
- Suitable for full-custom design and multi-chip modules

Overview:

Routing regions

Graph representation

Graph-based path search
5.6.2 Global Routing in a Connectivity Graph

Defining the routing regions

Horizontal macro-cell edges + Vertical macro-cell edges
5.6.2 Global Routing in a Connectivity Graph

Defining the connectivity graph

<table>
<thead>
<tr>
<th></th>
<th>8</th>
<th>17</th>
<th>21</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1112</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1314152022</td>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
5.6.2 Global Routing in a Connectivity Graph

Horizontal capacity of routing region 1

Vertical capacity of routing region 1

2 Tracks

1 Track

1,2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
5.6.2 Global Routing in a Connectivity Graph

![Diagram of a connectivity graph with numbers indicating connections and routings.]

- [Image with numbers and connections illustrating the concept of global routing in a connectivity graph.]
Algorithm Overview

1. Define routing regions
2. Define connectivity graph
3. Determine net ordering
4. Assign tracks for all pin connections in Netlist
5. Consider each net
 a) Free corresponding tracks for net’s pins
 b) Decompose net into two-pin subnets
 c) Find shortest path for subnet connectivity graph
 d) If no shortest path exists, do not route, otherwise, assign subnet to the nodes of shortest path and update routing capacities
6. If there are unrouted nets, goto Step 5, otherwise END
Example
Global routing of the nets A-A and B-B
Example

Global routing of the nets A-A and B-B
Example

Global routing of the nets A-A and B-B
Example

Global routing of the nets A-A and B-B
Example

Determine routability of a placement
Example

Determine routability of a placement
Example

Determine routability of a placement

![Diagram showing a placement grid with elements B and A at different locations, with associated routability analysis.](image)
5.6.3 Finding Shortest Paths with Dijkstra’s Algorithm

- Finds a shortest path between two specific nodes in the routing graph

- Input
 - graph $G(V,E)$ with non-negative edge weights W,
 - source (starting) node s, and
 - target (ending) node t

- Maintains three groups of nodes
 - **Group 1** – contains the nodes that have not yet been visited
 - **Group 2** – contains the nodes that have been visited but for which the shortest-path cost from the starting node has not yet been found
 - **Group 3** – contains the nodes that have been visited and for which the shortest path cost from the starting node has been found

- Once t is in Group 3, the algorithm finds the shortest path by backtracing
5.6.3 Finding Shortest Paths with Dijkstra’s Algorithm

Example

Find the shortest path from source s to target t where the path cost $\sum w_1 + \sum w_2$ is minimal.
Current node: 1
Current node: 1
Neighboring nodes: 2, 4
Minimum cost in group 2: node 4
Current node: 4
Neighboring nodes: 1, 5, 7
Minimum cost in group 2: node 2
Current node: 2
Neighboring nodes: 4, 3, 5
Minimum cost in group 2: node 3
Current node: 3
Neighboring nodes: 2, 6
Minimum cost in group 2: node 5

Group 2

<table>
<thead>
<tr>
<th>Node</th>
<th>Group</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>N[2]</td>
<td>8,6</td>
<td></td>
</tr>
<tr>
<td>W[4]</td>
<td>1,4</td>
<td></td>
</tr>
</tbody>
</table>

Group 3

<table>
<thead>
<tr>
<th>Node</th>
<th>Group</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>W[4]</td>
<td>1,4</td>
<td></td>
</tr>
<tr>
<td>N[2]</td>
<td>8,6</td>
<td></td>
</tr>
<tr>
<td>N[3]</td>
<td>9,10</td>
<td></td>
</tr>
<tr>
<td>W[5]</td>
<td>10,12</td>
<td></td>
</tr>
</tbody>
</table>

parent of node [node name] \(\sum_{s} w_1(s, node), \sum_{s} w_2(s, node) \)
Current node: 5
Neighboring nodes: 2, 4, 6, 8
Minimum cost in group 2: node 7

Group 2

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>N[2]</td>
<td>8,6</td>
</tr>
<tr>
<td>W[4]</td>
<td>1,4</td>
</tr>
<tr>
<td>N[5]</td>
<td>10,11</td>
</tr>
<tr>
<td>W[7]</td>
<td>9,12</td>
</tr>
</tbody>
</table>

Group 3

<table>
<thead>
<tr>
<th>Neighbor</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>W[4]</td>
<td>1,4</td>
</tr>
<tr>
<td>N[2]</td>
<td>8,6</td>
</tr>
<tr>
<td>N[3]</td>
<td>9,10</td>
</tr>
<tr>
<td>W[5]</td>
<td>10,12</td>
</tr>
</tbody>
</table>

parent of node [node name] $\sum w_1(s, \text{node}), \sum w_2(s, \text{node})$
Current node: 7
Neighboring nodes: 4, 8
Minimum cost in group 2: node 8

parent of node [node name] \(\sum w_1(s, \text{node}), \sum w_2(s, \text{node}) \)
Retrace from t to s
Optimal path 1-4-7-8 from s to t with accumulated cost (12,14)
5.6.4 Finding Shortest Paths with A* Search

- **A* search** operates similarly to Dijkstra’s algorithm, but extends the cost function to include an estimated distance from the current node to the target.

- Expands only the most promising nodes; its best-first search strategy eliminates a large portion of the solution space.

Diagram:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
1											15																					
2																																
3																																
4																																
5																																
6																																
7																																
8																																
9																																
10																																
11																																
12																																
13																																
14																																
15																																
16																																
17																																
18																																
19																																
20																																
21																																
22																																
23																																
24																																
25																																
26																																
27																																
28																																
29																																
30																																
31																																

Dijkstra’s algorithm (exploring 31 nodes)

A* search (exploring 6 nodes)
5.6.4 Finding Shortest Paths with A* Search

- **Bidirectional A* search**: nodes are expanded from both the source and target until the two expansion regions intersect.
- Number of nodes considered can be reduced.

Unidirectional A* search

Bidirectional A* search

- Source
- Target
- Obstacle
5.7 Full-Netlist Routing

5.7.1 Routing by Integer Linear Programming
5.7.2 Rip-Up and Reroute (RRR)

5.8 Modern Global Routing
5.8.1 Pattern Routing
5.8.2 Negotiated-Congestion Routing
5.7 Full-Netlist Routing

- Global routers must properly match nets with routing resources, without oversubscribing resources in any part of the chip.

- Signal nets are either routed
 - simultaneously, e.g., by integer linear programming, or
 - sequentially, e.g., one net at a time

- When certain nets cause resource contention or overflow for routing edges, sequential routing requires multiple iterations: rip-up and reroute.
5.7.1 Routing by Integer Linear Programming

- A linear program (LP) consists
 - of a set of constraints and
 - an optional objective function

- Objective function is maximized or minimized

- Both the constraints and the objective function must be linear
 - Constraints form a system of linear equations and inequalities

- Integer linear program (ILP): linear program where every variable can only assume integer values
 - Typically takes much longer to solve
 - In many cases, variables are only allowed values 0 and 1

- Several ways to formulate the global routing problem as an ILP, one of which is presented next
5.7.1 Routing by Integer Linear Programming

- Three inputs
 - $W \times H$ routing grid G,
 - Routing edge capacities, and
 - Netlist

- Two sets of variables
 - k Boolean variables $x_{net1}, x_{net2}, \ldots, x_{netk}$, each of which serves as an indicator for one of k specific paths or route options, for each net $net \in \text{Netlist}$
 - k real variables $w_{net1}, w_{net2}, \ldots, w_{netk}$, each of which represents a net weight for a specific route option for $net \in \text{Netlist}$

- Two types of constraints
 - Each net must select a single route (mutual exclusion)
 - Number of routes assigned to each edge (total usage) cannot exceed its capacity
5.7.1 Routing by Integer Linear Programming

- **Inputs**
 - \(W, H\): width \(W\) and height \(H\) of routing grid \(G\)
 - \(G(i,j)\): grid cell at location \((i,j)\) in routing grid \(G\)
 - \(\sigma (G(i,j)~G(i+1,j))\): capacity of horizontal edge \(G(i,j) \sim G(i+1,j)\)
 - \(\sigma (G(i,j)~G(i,j+1))\): capacity of vertical edge \(G(i,j) \sim G(i,j+1)\)
 - **Netlist**: netlist

- **Variables**
 - \(x_{\text{net}1}, \ldots, x_{\text{net}k}\): \(k\) Boolean path variables for each net \(\text{net} \in \text{Netlist}\)
 - \(w_{\text{net}1}, \ldots, w_{\text{net}k}\): \(k\) net weights, one for each path of net \(\text{net} \in \text{Netlist}\)

- **Maximize**
 \[
 \sum_{\text{net} \in \text{Netlist}} w_{\text{net}1} \cdot x_{\text{net}1} + \ldots + w_{\text{net}k} \cdot x_{\text{net}k}
 \]

- **Subject to**
 - Variable ranges
 - Net constraints
 - Capacity constraints
5.7.1 Routing by Integer Linear Programming – Example

Global Routing Using Integer Linear Programming

- **Given**
 - Nets A, B
 - $W = 5 \times H = 4$ routing grid G
 - $\sigma(e) = 1$ for all $e \in G$
 - L-shapes have weight 1.00 and Z-shapes have weight 0.99
 - The lower-left corner is (0,0).

- **Task**
 - Write the ILP to route the nets in the graph below

![Graph with nodes A, B, C, and connecting lines]

The lower-left corner is (0,0).
5.7.1 Routing by Integer Linear Programming – Example

- **Solution**
 - For net A, the possible routes are two L-shapes (A_1, A_2) and two Z-shapes (A_3, A_4)
 - **Net Constraints:**
 \[x_{A_1} + x_{A_2} + x_{A_3} + x_{A_4} \leq 1 \]
 - **Variable Constraints:**
 \[
 0 \leq x_{A_1} \leq 1, \quad 0 \leq x_{A_2} \leq 1, \\
 0 \leq x_{A_3} \leq 1, \quad 0 \leq x_{A_4} \leq 1
 \]

 - For net B, the possible routes are two L-shapes (B_1, B_2) and one Z-shape (B_3)
 - **Net Constraints:**
 \[x_{B_1} + x_{B_2} + x_{B_3} \leq 1 \]
 - **Variable Constraints:**
 \[
 0 \leq x_{B_1} \leq 1, \quad 0 \leq x_{B_2} \leq 1, \\
 0 \leq x_{B_3} \leq 1
 \]

 - For net C, the possible routes are two L-shapes (C_1, C_2) and two Z-shapes (C_3, C_4)
 - **Net Constraints:**
 \[x_{C_1} + x_{C_2} + x_{C_3} + x_{C_4} \leq 1 \]
 - **Variable Constraints:**
 \[
 0 \leq x_{C_1} \leq 1, \quad 0 \leq x_{C_2} \leq 1, \\
 0 \leq x_{C_3} \leq 1, \quad 0 \leq x_{C_4} \leq 1
 \]
5.7.1 Routing by Integer Linear Programming – Example

Horizontal Edge Capacity Constraints:

<table>
<thead>
<tr>
<th>Edge</th>
<th>Constraint</th>
<th>Right-Hand Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G(0,0) \sim G(1,0)$</td>
<td>$x_{C1} + x_{C3} \leq \sigma (G(0,0) \sim G(1,0)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(1,0) \sim G(2,0)$</td>
<td>$x_{C1} \leq \sigma (G(1,0) \sim G(2,0)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(2,0) \sim G(3,0)$</td>
<td>$x_{B1} + x_{B3} \leq \sigma (G(2,0) \sim G(3,0)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(3,0) \sim G(4,0)$</td>
<td>$x_{B1} \leq \sigma (G(3,0) \sim G(4,0)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(0,1) \sim G(1,1)$</td>
<td>$x_{A2} + x_{C4} \leq \sigma (G(0,1) \sim G(1,1)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(1,1) \sim G(2,1)$</td>
<td>$x_{A2} + x_{A3} + x_{C4} \leq \sigma (G(1,1) \sim G(2,1)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(2,1) \sim G(3,1)$</td>
<td>$x_{B2} \leq \sigma (G(2,1) \sim G(3,1)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(3,1) \sim G(4,1)$</td>
<td>$x_{B2} + x_{B3} \leq \sigma (G(3,1) \sim G(4,1)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(0,2) \sim G(1,2)$</td>
<td>$x_{A4} + x_{C2} \leq \sigma (G(0,2) \sim G(1,2)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(1,2) \sim G(2,2)$</td>
<td>$x_{A4} + x_{C2} + x_{C3} \leq \sigma (G(1,2) \sim G(2,2)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(2,2) \sim G(3,2)$</td>
<td>$x_{A1} + x_{A3} \leq \sigma (G(2,2) \sim G(3,2)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(0,3) \sim G(1,3)$</td>
<td>$x_{A1} \leq \sigma (G(0,3) \sim G(1,3)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(1,3) \sim G(2,3)$</td>
<td>$x_{A1} \leq \sigma (G(1,3) \sim G(2,3)) = 1$</td>
<td></td>
</tr>
</tbody>
</table>

Vertical Edge Capacity Constraints:

<table>
<thead>
<tr>
<th>Edge</th>
<th>Constraint</th>
<th>Right-Hand Side</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G(0,0) \sim G(0,1)$</td>
<td>$x_{C2} + x_{C4} \leq \sigma (G(0,0) \sim G(0,1)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(1,0) \sim G(1,1)$</td>
<td>$x_{C3} \leq \sigma (G(1,0) \sim G(1,1)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(2,0) \sim G(2,1)$</td>
<td>$x_{B2} + x_{C1} \leq \sigma (G(2,0) \sim G(2,1)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(3,0) \sim G(3,1)$</td>
<td>$x_{B3} \leq \sigma (G(3,0) \sim G(3,1)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(4,0) \sim G(4,1)$</td>
<td>$x_{B1} \leq \sigma (G(4,0) \sim G(4,1)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(0,1) \sim G(0,2)$</td>
<td>$x_{A2} + x_{C2} \leq \sigma (G(0,1) \sim G(0,2)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(1,1) \sim G(1,2)$</td>
<td>$x_{A3} + x_{C3} \leq \sigma (G(1,1) \sim G(1,2)) = 1$</td>
<td></td>
</tr>
<tr>
<td>$G(2,1) \sim G(2,2)$</td>
<td>$x_{A1} + x_{A4} + x_{C1} + x_{C4} \leq \sigma (G(2,1) \sim G(2,2)) = 1$</td>
<td></td>
</tr>
</tbody>
</table>

$G(2,2) = 1$
5.7.2 Rip-Up and Reroute (RRR)

- Rip-up and reroute (RRR) framework: focuses on hard-to-route nets
- Idea: allow temporary violations, so that all nets are routed, but then iteratively remove some nets (rip-up), and route them differently (reroute)

Routing without allowing violations

Routing with allowing violations and RRR
5.1 Introduction
5.2 Terminology and Definitions
5.3 Optimization Goals
5.4 Representations of Routing Regions
5.5 The Global Routing Flow
5.6 Single-Net Routing
 5.6.1 Rectilinear Routing
 5.6.2 Global Routing in a Connectivity Graph
 5.6.3 Finding Shortest Paths with Dijkstra’s Algorithm
 5.6.4 Finding Shortest Paths with A* Search
5.7 Full-Netlist Routing
 5.7.1 Routing by Integer Linear Programming
 5.7.2 Rip-Up and Reroute (RRR)
5.8 Modern Global Routing
 5.8.1 Pattern Routing
 5.8.2 Negotiated-Congestion Routing
- General flow for modern global routers, where each router uses a unique set of optimizations:

```
Global Routing Instance

Net Decomposition → Initial Routing

Layer Assignment (optional)

Final Improvements

Violations? (optional)

no

yes

Rip-up and Reroute
```
5.8 Modern Global Routing

- **Pattern Routing**
 - Searches through a small number of route patterns to improve runtime
 - Topologies commonly used in pattern routing: \(L \)-shapes, \(Z \)-shapes, \(U \)-shapes
Negotiated-Congestion Routing

- Each edge e is assigned a cost value $cost(e)$ that reflects the demand for edge e
- A segment from net net that is routed through e pays a cost of $cost(e)$
- Total cost of net is the sum of $cost(e)$ values taken over all edges used by net:
 \[
 cost(net) = \sum_{e \in net} cost(e)
 \]
- The edge cost $cost(e)$ is increased according to the edge congestion $\phi(e)$, defined as the total number of nets passing through e divided by the capacity of e:
 \[
 \phi(e) = \frac{\eta(e)}{\sigma(e)}
 \]
 - A higher $cost(e)$ value discourages nets from using e and implicitly encourages nets to seek out other, less used edges
 \[\Rightarrow\]
 Iterative routing approaches (Dijkstra’s algorithm, A* search, etc.) find routes with minimum cost while respecting edge capacities
Summary of Chapter 5 – Types of Routing

Global Routing

- Input: netlist, placement, obstacles + (usually) routing grid
- Partitions the routing region (chip or block) into global routing cells (gcells)
- Considers the locations of cells within a region as identical
- Plans routes as sequences of gcells
- Minimizes total length of routes and, possibly, routed congestion
- May fail if routing resources are insufficient
 - Variable-die can expand the routing area, so can't usually fail
 - Fixed-die is more common today (cannot resize a block in a larger chip)
- Interpreting failures in global routing
 - Failure with many violations => must restructure the netlist and/or redo global placement
 - Failure with few violations => detailed routing may be able to fix the problems
Summary of Chapter 5 – Types of Routing

Detailed Routing

- Input: netlist, placement, obstacles, global routes (on a routing grid), routing tracks, design rules
- Seeks to implement each global route as a sequence of track segments
- Includes layer assignment (unless that is performed during global routing)
- Minimizes total length of routes, subject to design rules

Timing-Driven routing

- Minimizes circuit delay by optimizing timing-critical nets
- Usually needs to trade off route length and congestion against timing
- Both global and detailed routing can be timing-driven
Summary of Chapter 5 – Types of Routing

Large-Net Routing

- Nets with many pins can be so complex that routing a single net warrants dedicated algorithms
- Steiner tree construction
 - Minimum wirelength, extensions for obstacle-avoidance
 - Nonuniform routing costs to model congestion
- Large signal nets are routed as part of global routing and then split into smaller segments processed during detailed routing

Clock Tree Routing / Power Routing

- Performed before global routing to avoid competition for resources occupied by signal nets
Summary of Chapter 5 – Routing Single Nets

- Usually ~50% of the nets are two-pin nets, ~25% have three pins, ~12.5% have four, etc.
 - Two-pin nets can be routed as L-shapes or using maze search (in a connectivity graph of the routing regions)
 - Three-pin nets usually have 0 or 1 branching point
 - Larger nets are more difficult to handle

- Pattern routing
 - For each net, considers only a small number of shapes (L, Z, U, T, E)
 - Very fast, but misses many opportunities
 - Good for initial routing, sometimes is sufficient

- Routing pin-to-pin connections
 - Breadth-first-search (when costs are uniform)
 - Dijkstra’s algorithm (non-uniform costs)
 - A*-search (non-uniform costs and/or using additional distance information)
Summary of Chapter 5 – Routing Single Nets

- Minimum Spanning Trees and Steiner Minimal Trees in the rectilinear topology (RMSTs and RSMTs)
 - RMSTs can be constructed in near-linear time
 - Constructing RSMTs is NP-hard, but feasible in practice
- Each edge of an RMST or RSMT can be considered a pin-to-pin connection and routed accordingly
- Routing congestion introduces non-uniform costs, complicates the construction of minimal trees (which is why A*-search still must be used)
- For nets with <10 pins, RSMTs can be found using look-up tables (FLUTE) very quickly
Summary of Chapter 5 – Full Netlist Routing

- **Routing by Integer Linear Programming (ILP)**
 - Capture the route of each net by 0-1 variables, form equations constraining those variables
 - The objective function can represent total route length
 - Solve the equations while minimizing the objective function (ILP software)
 - Usually a convenient but slow technique, may not scale to largest netlists (can be extended by area partitioning)

- **Rip-up and Re-route (RRR)**
 - Processes one net at a time, usually by A*-search and Steiner-tree heuristics
 - Allows temporary overlaps between nets
 - When every net is routed (with overlaps), it removes (rips up) those with overlaps and routes them again with penalty for overlaps
 - This process may not finish, but often does, else use a time-out

- Both ILP-based routing and RRR can be applied in global and detailed routing
 - ILP-based routing is usually preferable for small, difficult-to-route regions
 - RRR is much faster when routing is easy
Summary of Chapter 5 – Modern Global Routing

• Initial routes are constructed quickly by pattern routing and the FLUTE package for Steiner tree construction - very fast

• Several iterations based on modified pattern routing to avoid congestion - also very fast
 - Sometimes completes all routes without violations
 - If violations remain, they are limited to a few congested spots

• The main part of the router is based on a variant of RRR called Negotiated-Congestion Routing (NCR)
 - Several proposed alternatives are not competitive

• NCR maintains "history" in terms of which regions attracted too many nets

• NCR increases routing cost according to the historical popularity of the regions
 - The nets with alternative routes are forced to take those routes
 - The nets that do not have good alternatives remain unchanged
 - Speed of increase controls tradeoff between runtime and route quality