Chapter 5 – Global Routing

VLSI Physical Design: From Graph Partitioning to Timing Closure

Original Authors:

Andrew B. Kahng, Jens Lienig, Igor L. Markov, Jin Hu

Chapter 5 – Global Routing

- 5.1 Introduction
- 5.2 Terminology and Definitions
- 5.3 Optimization Goals
- 5.4 Representations of Routing Regions
- 5.5 The Global Routing Flow
- 5.6 Single-Net Routing
 - 5.6.1 Rectilinear Routing
 - 5.6.2 Global Routing in a Connectivity Graph
 - 5.6.3 Finding Shortest Paths with Dijkstra's Algorithm
 - 5.6.4 Finding Shortest Paths with A* Search
- 5.7 Full-Netlist Routing
 - 5.7.1 Routing by Integer Linear Programming
 - 5.7.2 Rip-Up and Reroute (RRR)
- 5.8 Modern Global Routing
 - 5.8.1 Pattern Routing
 - 5.8.2 Negotiated-Congestion Routing

Chip

5.1 Introduction

Given a placement, a netlist and technology information,

- determine the necessary wiring, e.g., net topologies and specific routing segments, to connect these cells
- while respecting constraints, e.g., design rules and routing resource capacities, and
- optimizing routing objectives, e.g., minimizing total wirelength and maximizing timing slack.

5.1 Introduction

Terminology:

- Net: Set of two or more pins that have the same electric potential
- Netlist: Set of all nets.
- Congestion: Where the shortest routes of several nets are incompatible because they traverse the same tracks.
- Fixed-die routing: Chip outline and routing resources are fixed.
- Variable-die routing: New routing tracks can be added as needed.

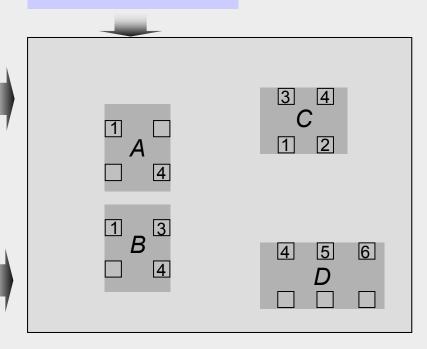
5.1 Introduction: General Routing Problem

Netlist:

$$N_1 = \{C_4, D_6, B_3\}$$
 $N_2 = \{D_4, B_4, C_1, A_4\}$
 $N_3 = \{C_2, D_5\}$
 $N_4 = \{B_1, A_1, C_3\}$

Technology Information (Design Rules)

Placement result



5.1 Introduction: General Routing Problem

Netlist:

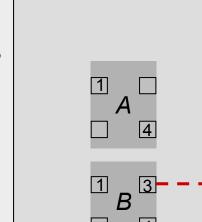
$$N_1 = \{C_4, D_6, B_3\}$$

$$N_2 = \{D_4, B_4, C_1, A_4\}$$

$$N_3 = \{C_2, D_5\}$$

$$N_4 = \{B_1, A_1, C_3\}$$

Technology Information (Design Rules)



3

4

5

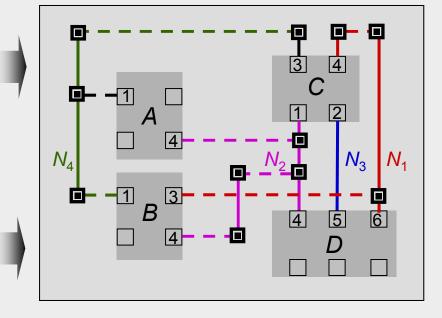
 N_1

5.1 Introduction: General Routing Problem

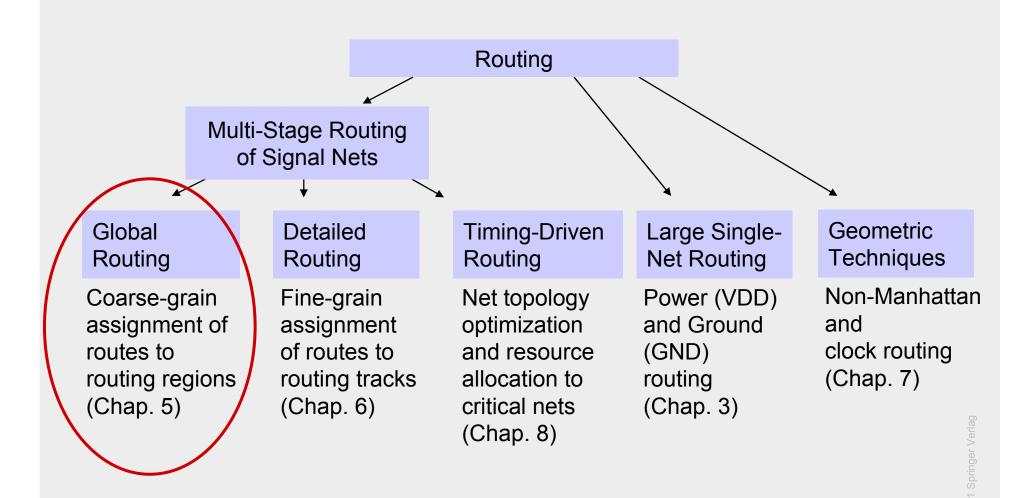
Netlist:

$$N_1 = \{C_4, D_6, B_3\}$$
 $N_2 = \{D_4, B_4, C_1, A_4\}$
 $N_3 = \{C_2, D_5\}$
 $N_4 = \{B_1, A_1, C_3\}$

Technology Information (Design Rules)



5.1 Introduction

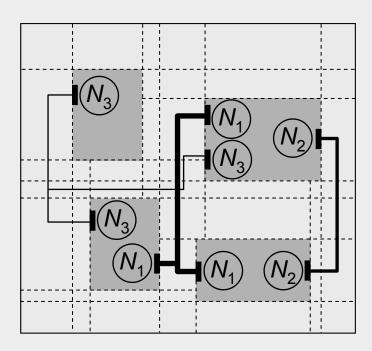


5.1 Introduction

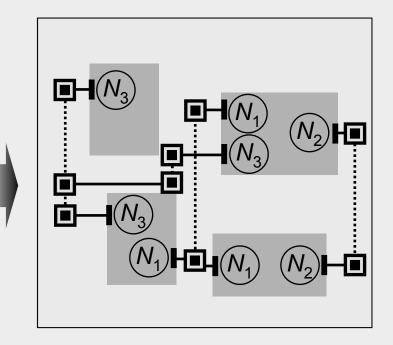
Global Routing

- Wire segments are tentatively assigned (embedded) within the chip layout
- Chip area is represented by a coarse routing grid
- Available routing resources are represented by edges with capacities in a grid graph
- ⇒ Nets are assigned to these routing resources

Global Routing

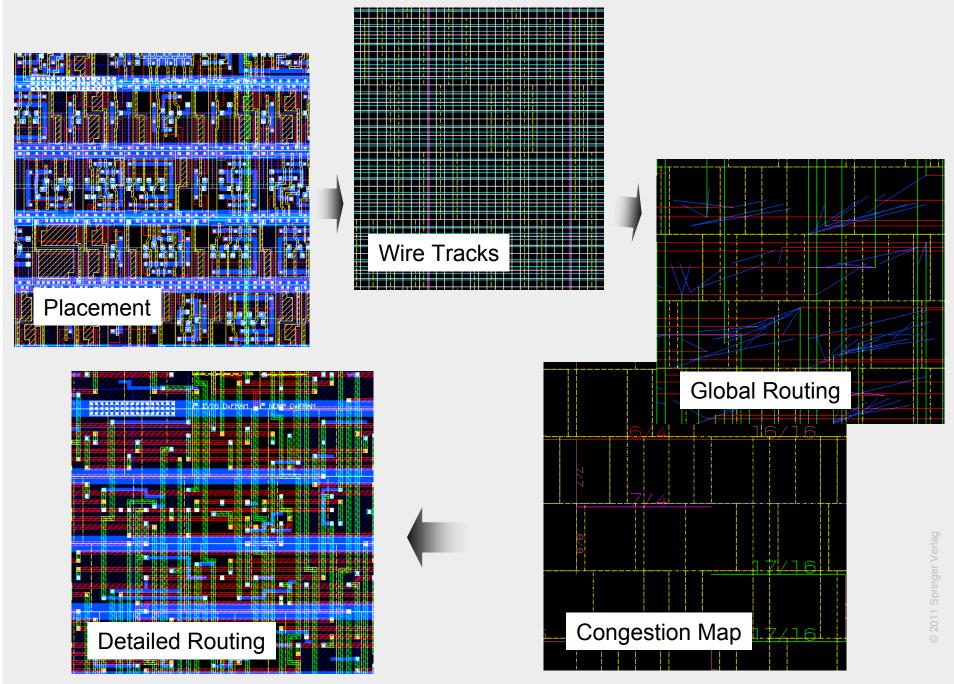


Detailed Routing



Horizontal Segment Vertical Segment

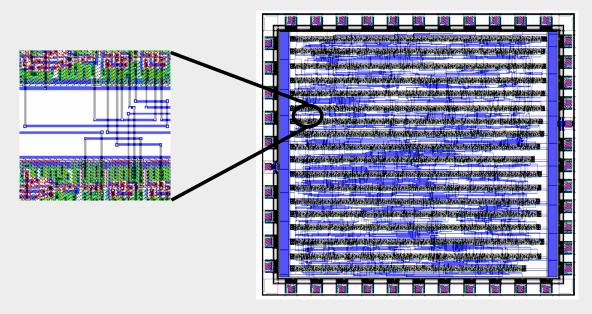
■ Via



- Routing Track: Horizontal wiring path
- Routing Column: Vertical wiring path
- Routing Region: Region that contains routing tracks or columns
- Uniform Routing Region: Evenly spaced horizontal/vertical grid
- Non-uniform Routing Region: Horizontal and vertical boundaries that are aligned to external pin connections or macro-cell boundaries resulting in routing regions that have differing sizes

Channel

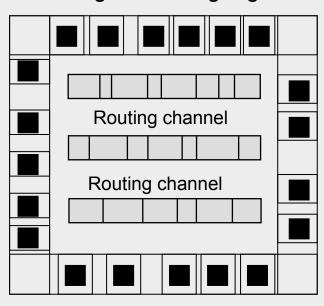
Rectangular routing region with pins on two opposite sides

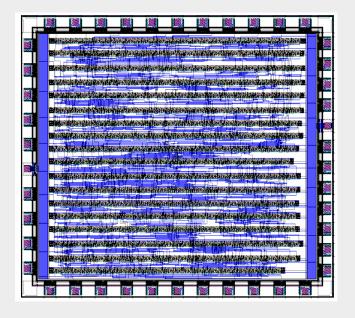


Standard cell layout (Two-layer routing)

Channel

Rectangular routing region with pins on two opposite sides

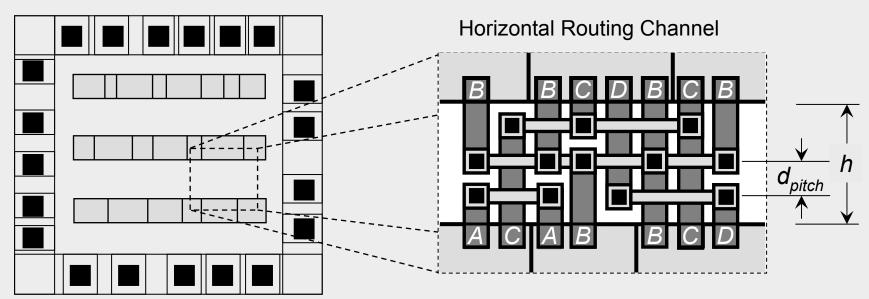




Standard cell layout (Two-layer routing)

Capacity

Number of available routing tracks or columns

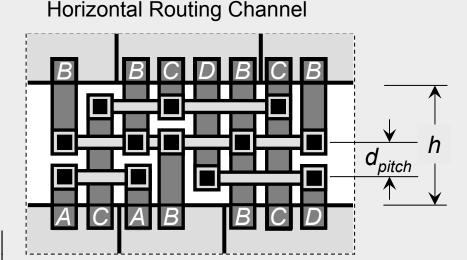


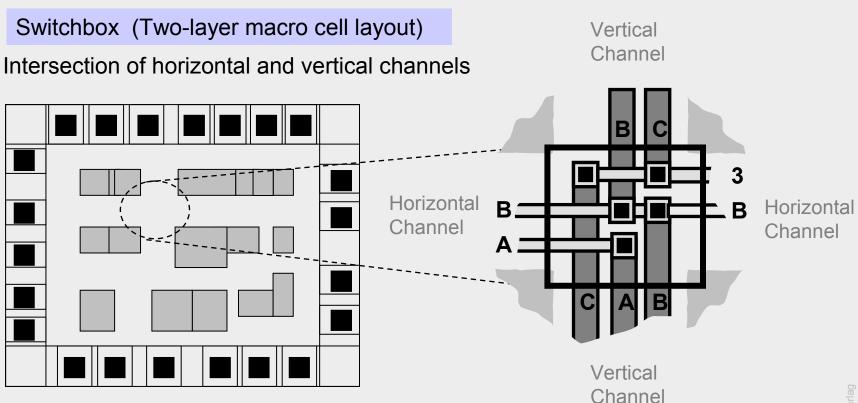
Capacity

Number of available routing tracks or columns

- For single-layer routing, the capacity is the height h of the channel divided by the pitch d_{pitch}
- For multilayer routing, the capacity σ is the sum of the capacities of all layers.

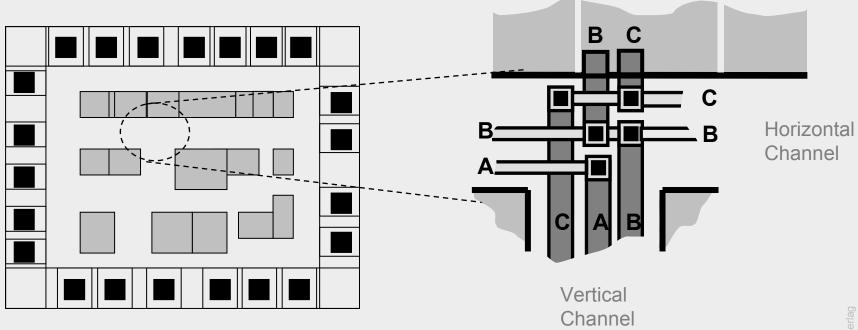
$$\sigma(Layers) = \sum_{layer \in Layers} \left[\frac{h}{d_{pitch}(layer)} \right]$$



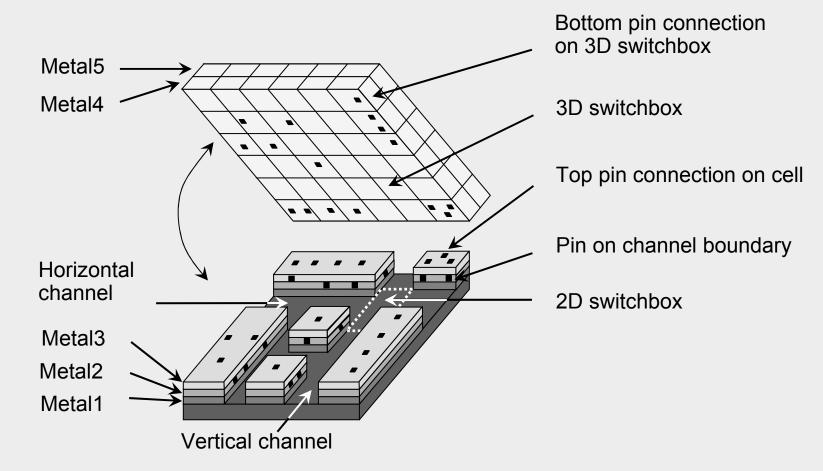


Horizontal channel is routed after vertical channel is routed

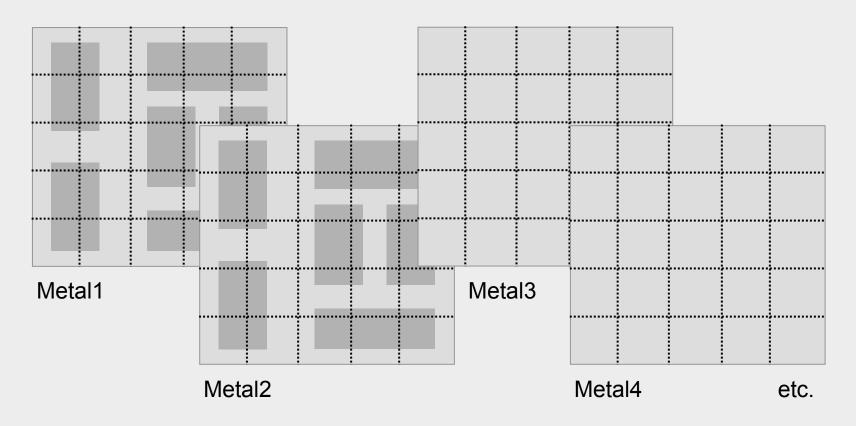
T-junction (Two-layer macro cell layout)



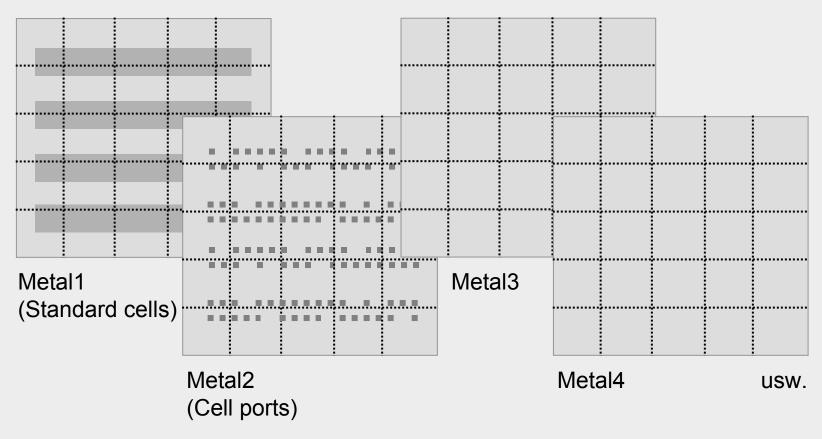
2D and 3D Switchboxes



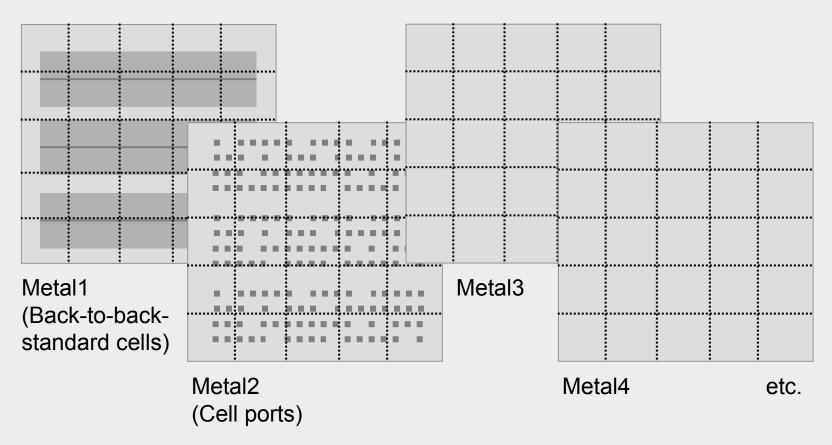
Gcells (Tiles) with macro cell layout



Gcells (Tiles) with standard cells



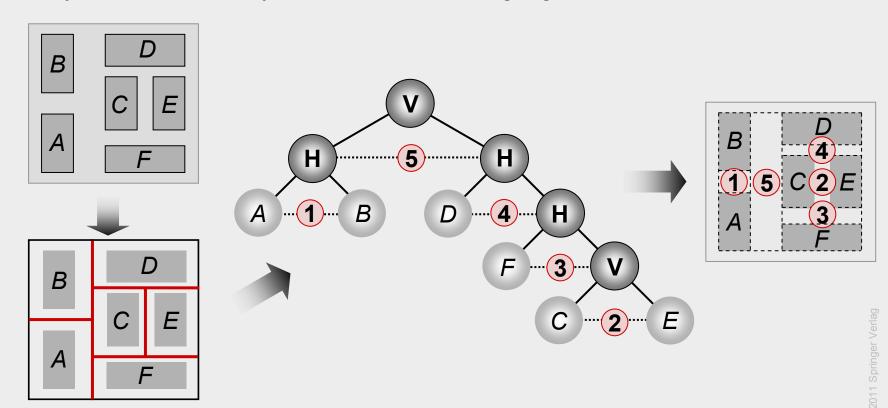
Gcells (Tiles) with standard cells (back-to-back)



- Global routing seeks to
 - determine whether a given placement is routable, and
 - determine a coarse routing for all nets within available routing regions
- Considers goals such as
 - minimizing total wirelength, and
 - reducing signal delays on critical nets

Full-custom design

Layout is dominated by macro cells and routing regions are non-uniform

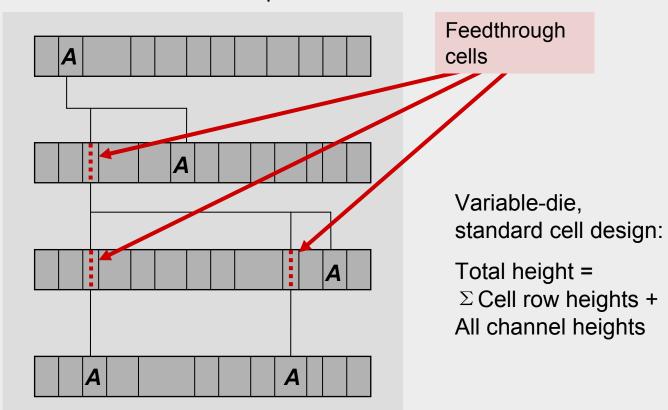


(1) Types of channels

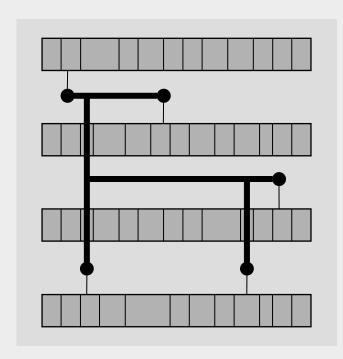
(2) Channel ordering

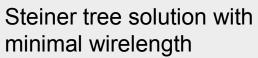
Standard-cell design

If number of metal layers is limited, feedthrough cells must be used to route across multiple cell rows



Standard-cell design

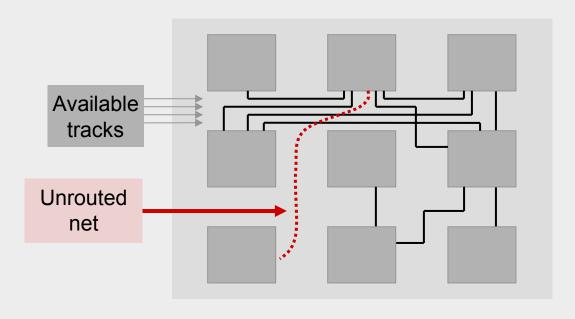




Steiner tree solution with fewest feedthrough cells

Gate-array design

Cell sizes and sizes of routing regions between cells are fixed



Key Tasks:

Determine routability

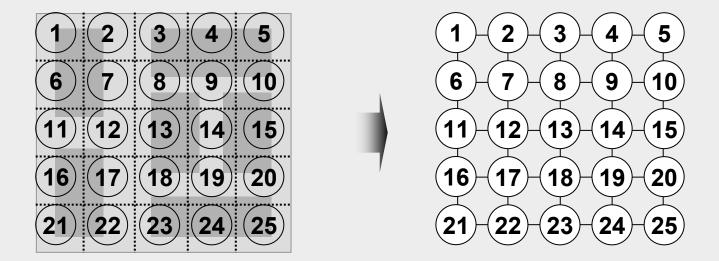
Find a feasible solution

5.1	Introduction
5.2	Terminology and Definitions
5.3	Optimization Goals
5.4	Representations of Routing Regions
5.5	The Global Routing Flow
5.6	Single-Net Routing 5.6.1 Rectilinear Routing 5.6.2 Global Routing in a Connectivity Graph 5.6.3 Finding Shortest Paths with Dijkstra's Algorithm 5.6.4 Finding Shortest Paths with A* Search
5.7	Full-Netlist Routing 5.7.1 Routing by Integer Linear Programming 5.7.2 Rip-Up and Reroute (RRR)
5.8	Modern Global Routing 5.8.1 Pattern Routing

5.8.2 Negotiated-Congestion Routing

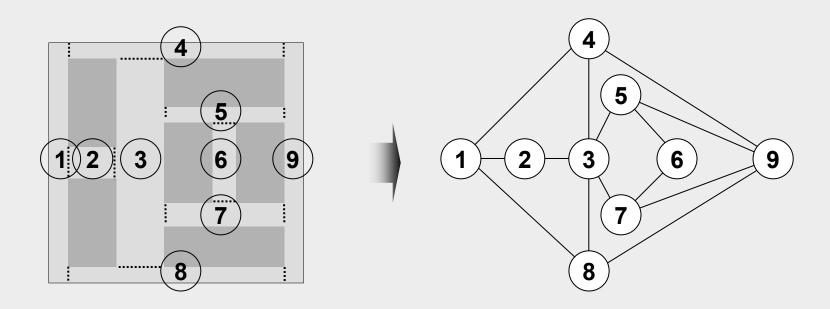
- Routing regions are represented using efficient data structures
- Routing context is captured using a graph, where
 - nodes represent routing regions and
 - edges represent adjoining regions
- Capacities are associated with both edges and nodes to represent available routing resources

Grid graph model



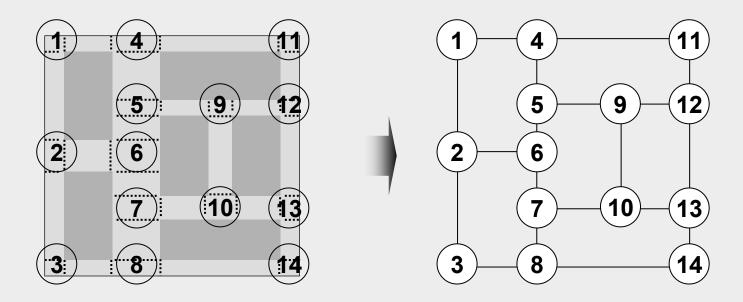
ggrid = (V,E), where the nodes $v \in V$ represent the routing grid cells (gcells) and the edges represent connections of grid cell pairs (v_i, v_i)

Channel connectivity graph



G = (V, E), where the nodes $v \in V$ represent channels, and the edges E represent adjacencies of the channels

Switchbox connectivity graph



G = (V, E), where the nodes $v \in V$ represent switchboxes and an edge exists between two nodes if the corresponding switchboxes are on opposite sides of the same channel

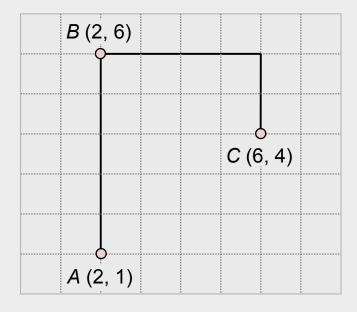
5.5 The Global Routing Flow – General Idea

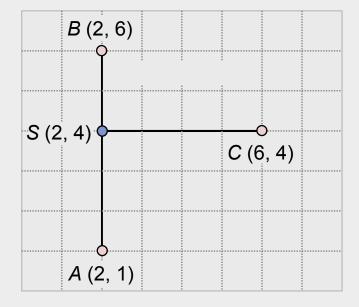
- 1. Defining the routing regions (Region definition)
 - Layout area is divided into routing regions
 - Nets can also be routed over standard cells
 - Regions, capacities and connections are represented by a graph
- 2. Mapping nets to the routing regions (Region assignment)
 - Each net of the design is assigned to one or several routing regions to connect all of its pins
 - Routing capacity, timing and congestion affect mapping
- 3. Assigning crosspoints along the edges of the routing regions (Midway routing)
 - Routes are assigned to fixed locations or crosspoints along the edges of the routing regions
 - Enables scaling of global and detailed routing

5.6 Single-Net Routing

- 5.1 Introduction
- 5.2 Terminology and Definitions
- 5.3 Optimization Goals
- 5.4 Representations of Routing Regions
- 5.5 The Global Routing Flow
- → 5.6 Single-Net Routing
 - 5.6.1 Rectilinear Routing
 - 5.6.2 Global Routing in a Connectivity Graph
 - 5.6.3 Finding Shortest Paths with Dijkstra's Algorithm
 - 5.6.4 Finding Shortest Paths with A* Search
 - 5.7 Full-Netlist Routing
 - 5.7.1 Routing by Integer Linear Programming
 - 5.7.2 Rip-Up and Reroute (RRR)
 - 5.8 Modern Global Routing
 - 5.8.1 Pattern Routing
 - 5.8.2 Negotiated-Congestion Routing

5.6.1 Rectilinear Routing





Rectilinear minimum spanning tree (RMST)

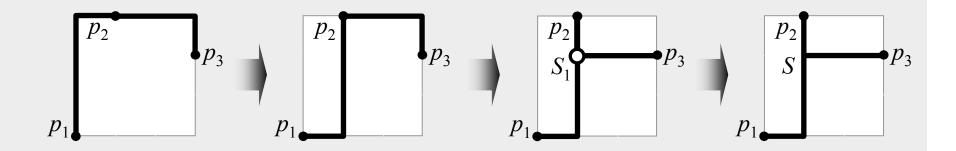
Rectilinear Steiner minimum tree (RSMT)

- An RMST can be computed in $O(p^2)$ time, where p is the number of terminals in the net using methods such as Prim's Algorithm
- Prim's Algorithm builds an MST by starting with a single terminal and greedily adding least-cost edges to the partially-constructed tree
- Advanced computational-geometric techniques reduce the runtime to $O(p \log p)$

Characteristics of an RSMT

- An RSMT for a p-pin net has between 0 and p 2 (inclusive) Steiner points
- The degree of any terminal pin is 1, 2, 3, or 4
 The degree of a Steiner point is either 3 or 4
- A RSMT is always enclosed in the minimum bounding box (MBB) of the net
- The total edge length L_{RSMT} of the RSMT is at least half the perimeter
- of the minimum bounding box of the net: $L_{RSMT} \ge L_{MBB} / 2$

Transforming an initial RMST into a low-cost RSMT

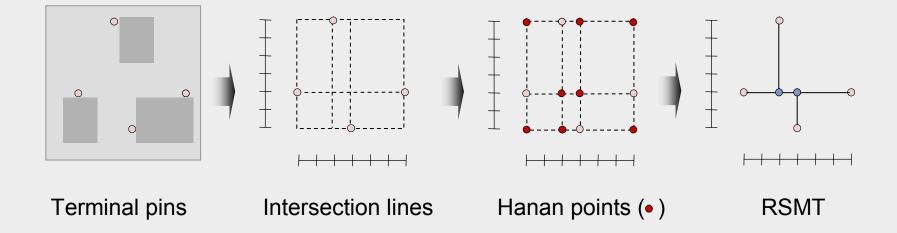


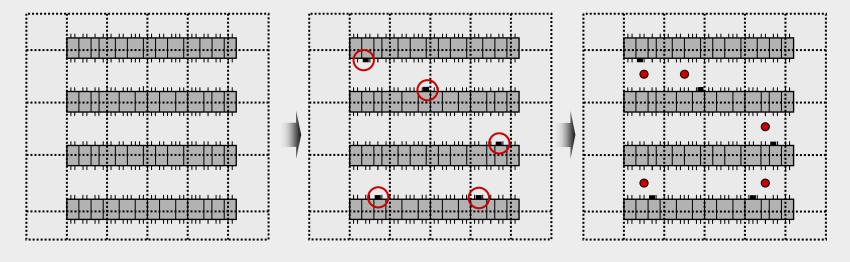
Construct *L*-shapes between points with (most) overlap of net segments

Final tree (RSMT)

Hanan grid

- Adding Steiner points to an RMST can significantly reduce the wirelength
- Maurice Hanan proved that for finding Steiner points, it suffices to consider only points located at the intersections of vertical and horizontal lines that pass through terminal pins
- The Hanan grid consists of the lines $x = x_p$, $y = y_p$ that pass through the location (x_p, y_p) of each terminal pin p
- The Hanan grid contains at most (n^2-n) candidate Steiner points (n = number of pins), thereby greatly reducing the solution space for finding an RSMT

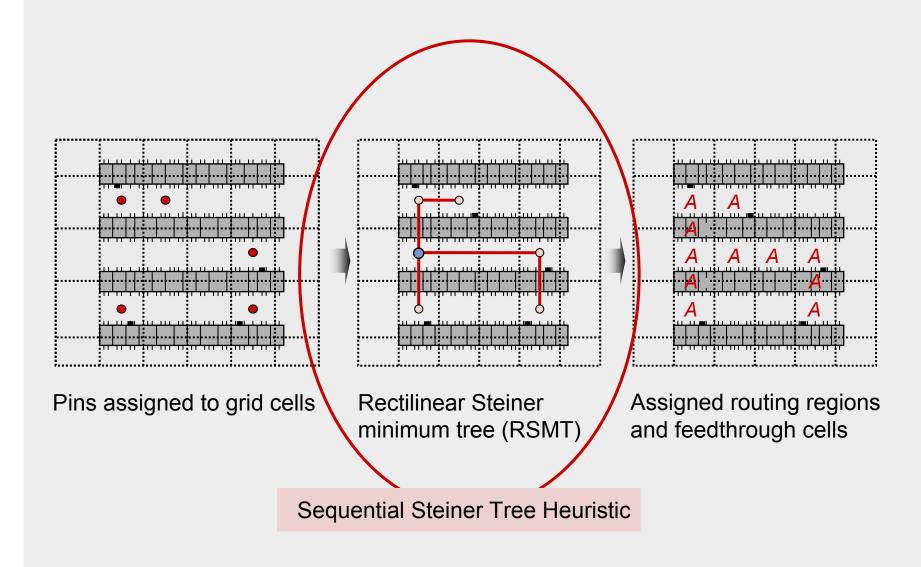




Definining routing regions

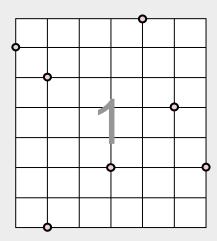
Pin connections

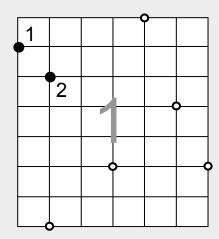
Pins assigned to grid cells

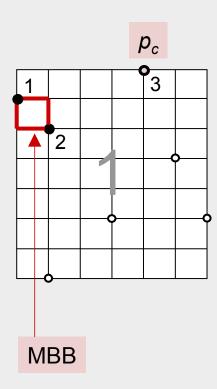


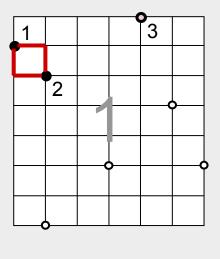
A Sequential Steiner Tree Heuristic

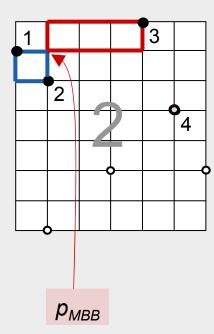
- 1. Find the closest (in terms of rectilinear distance) pin pair, construct their minimum bounding box (MBB)
- 2. Find the closest point pair (p_{MBB}, p_C) between any point p_{MBB} on the MBB and p_C from the set of pins to consider
- 3. Construct the MBB of p_{MBB} and p_{C}
- 4. Add the *L*-shape that p_{MBB} lies on to *T* (deleting the other *L*-shape). If p_{MBB} is a pin, then add any *L*-shape of the MBB to *T*.
- 5. Goto step 2 until the set of pins to consider is empty

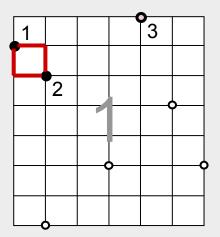


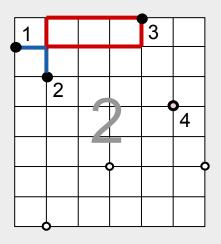


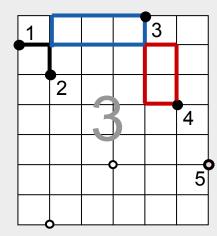


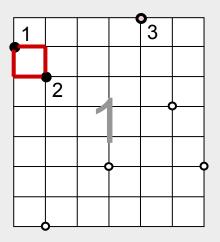


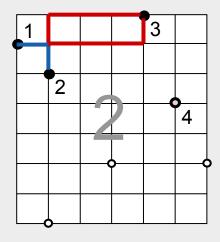


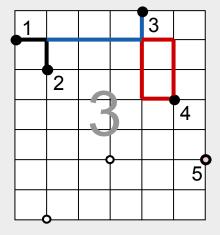


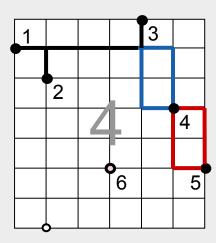


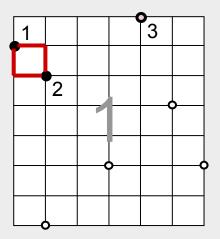


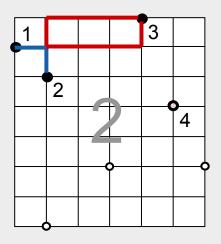


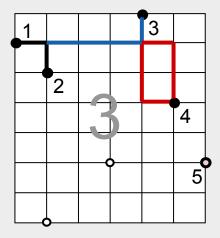


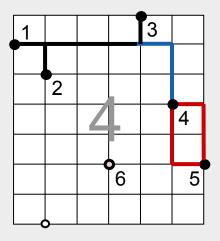


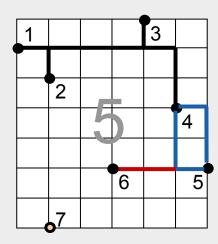


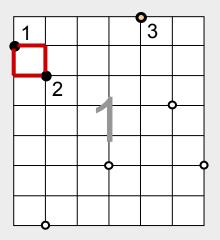


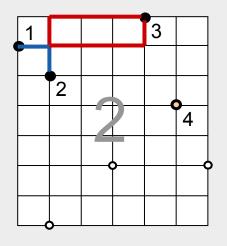


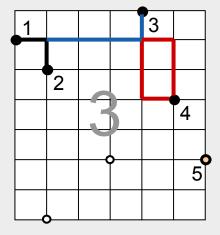


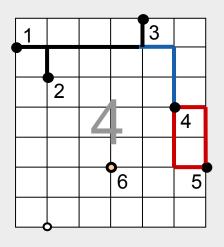


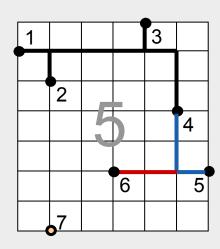


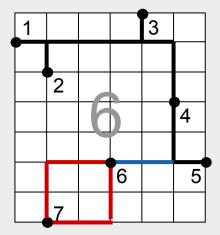


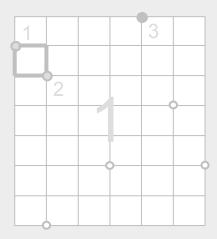


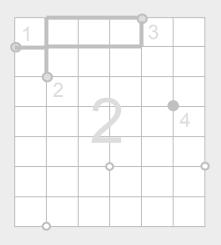


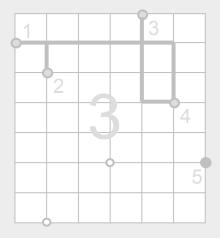


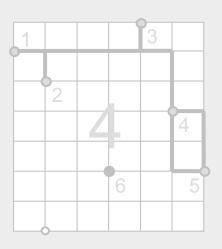


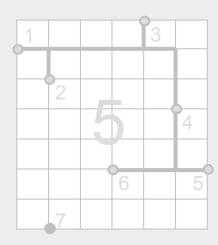


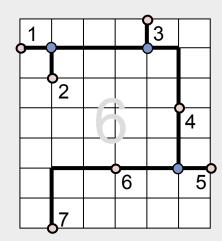




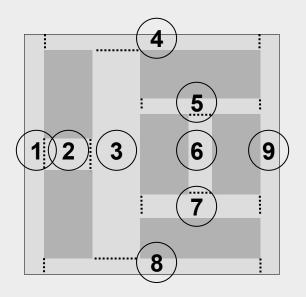


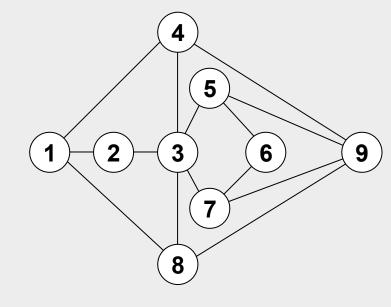




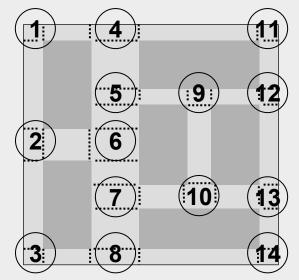


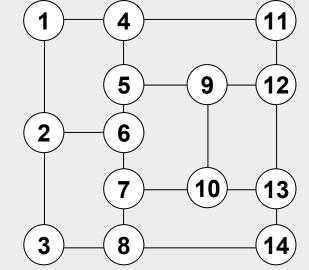
Channel connectivity graph





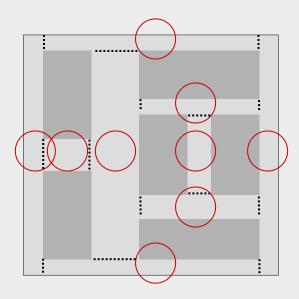
Switchbox connectivity graph

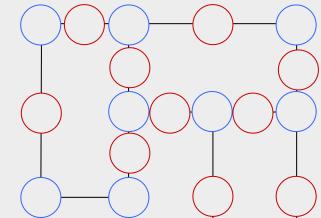




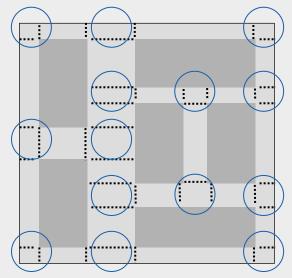
© 2011 Springer Verlag

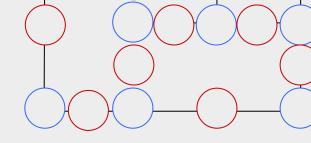
Channel connectivity graph





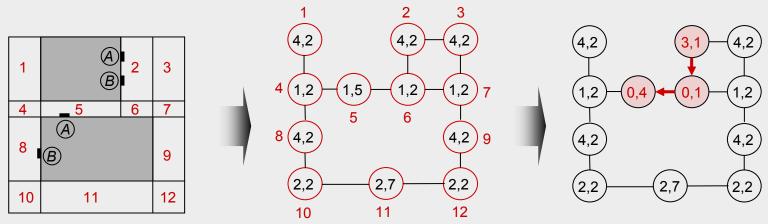
Switchbox connectivity graph





- Combines switchboxes and channels, handles non-rectangular block shapes
- Suitable for full-custom design and multi-chip modules

Overview:

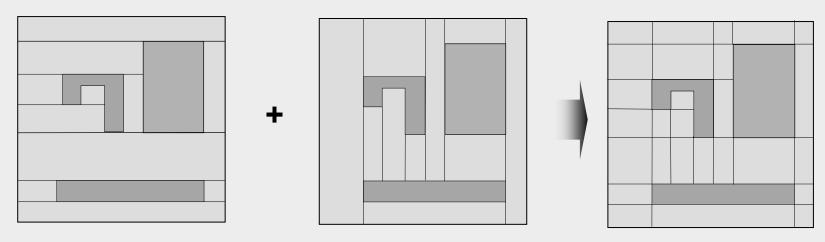


Routing regions

Graph representation

Graph-based path search

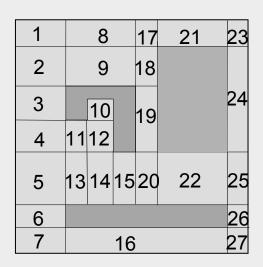
Defining the routing regions

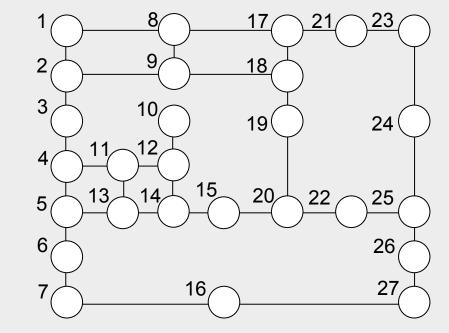


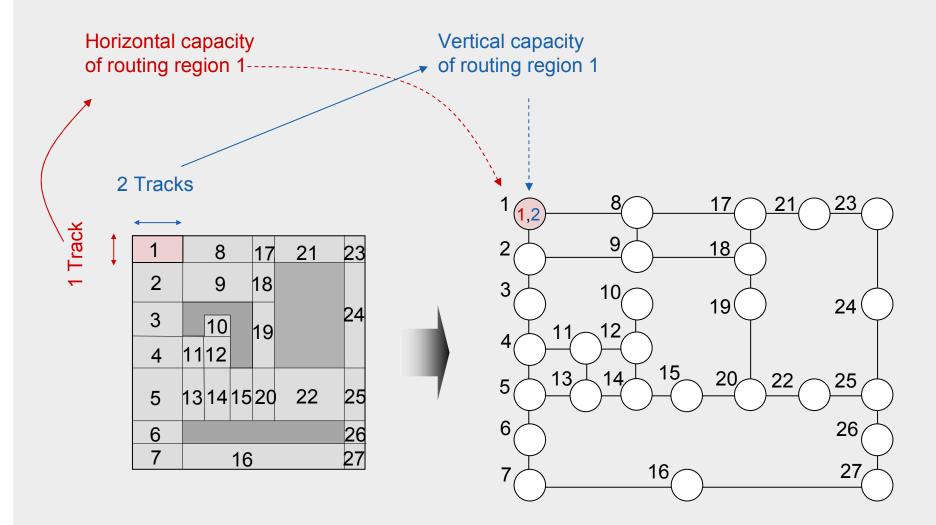
Horizontal macro-cell edges

Vertical macro-cell edges

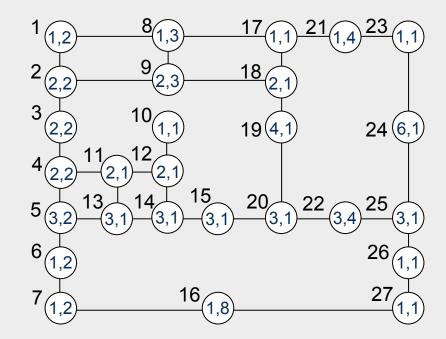
Defining the connectivity graph







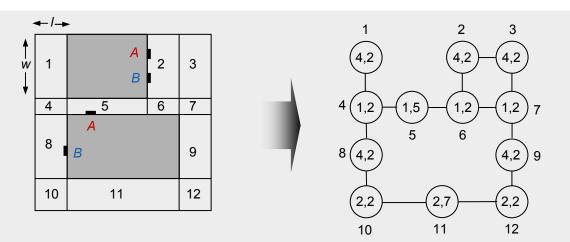
1	8		17	21	23
2	9		18		
3	1	0	19		24
4	111	2			
5	13 1	4 15	20	22	25
6					
7	16				



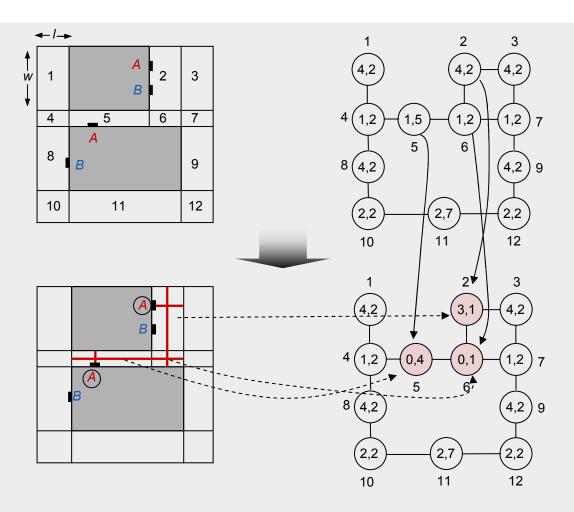
Algorithm Overview

- 1. Define routing regions
- 2. Define connectivity graph
- 3. Determine net ordering
- 4. Assign tracks for all pin connections in Netlist
- 5. Consider each net
 - a) Free corresponding tracks for net's pins
 - b) Decompose net into two-pin subnets
 - c) Find shortest path for subnet connectivity graph
 - d) If no shortest path exists, do not route, otherwise, assign subnet to the nodes of shortest path and update routing capacities
- 6. If there are unrouted nets, goto Step 5, otherwise END

Example
Global routing
of the nets A-A and B-B



Example
Global routing
of the nets A-A and B-B

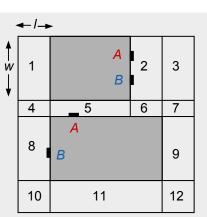


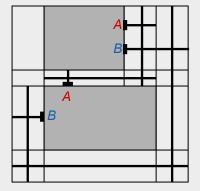
←/**→** 3 В Example (1,2)7 4 . 5 6 Global routing of the nets A-A and B-B 8 9 (4,2)9 10 12 11 2,7 11 12 (1,2) (4,2) 9 (2,7) (2,2) 12 8 (3,1 10 (1,1

2011 Springer Verlag

12

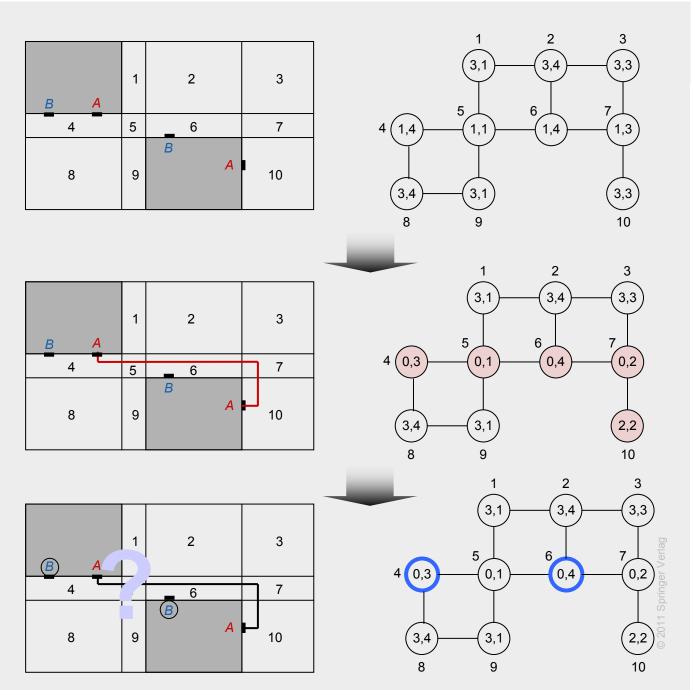
Example
Global routing
of the nets A-A and B-B





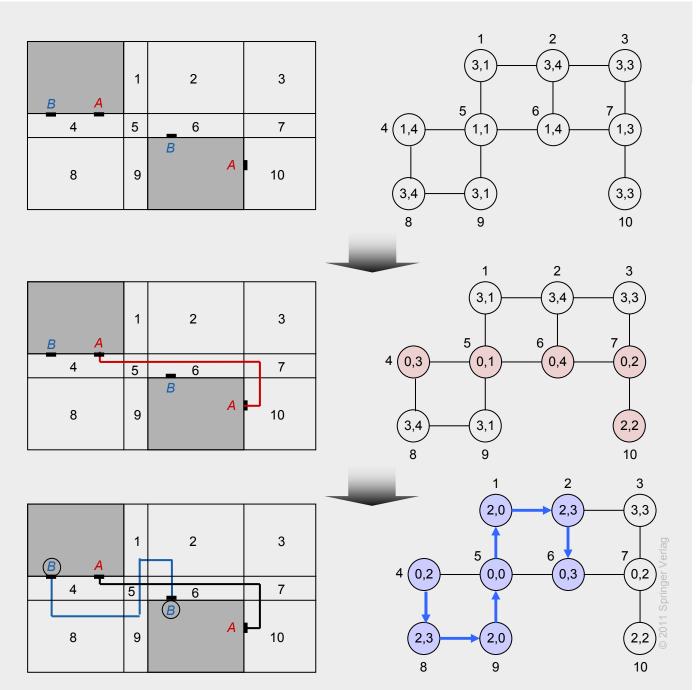
Example

Determine routability of a placement



Example

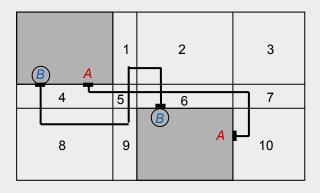
Determine routability of a placement



Example

Determine routability of a placement

<u>в</u> <u>А</u>	1	2	3
4	5	_ 6	7
8	9	В	10

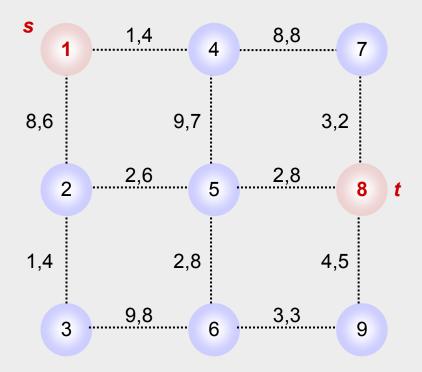


5.6.3 Finding Shortest Paths with Dijkstra's Algorithm

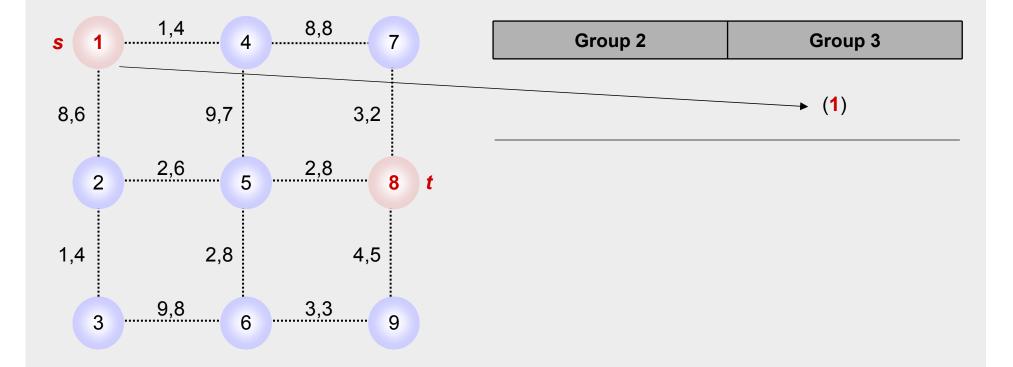
- Finds a shortest path between two specific nodes in the routing graph
- Input
 - graph G(V,E) with non-negative edge weights W,
 - source (starting) node s, and
 - target (ending) node t
- Maintains three groups of nodes
 - Group 1 contains the nodes that have not yet been visited
 - Group 2 contains the nodes that have been visited but for which the shortest-path cost from the starting node <u>has not yet been found</u>
 - Group 3 contains the nodes that have been visited and for which the shortest path cost from the starting node <u>has been found</u>
- Once t is in Group 3, the algorithm finds the shortest path by backtracing

5.6.3 Finding Shortest Paths with Dijkstra's Algorithm

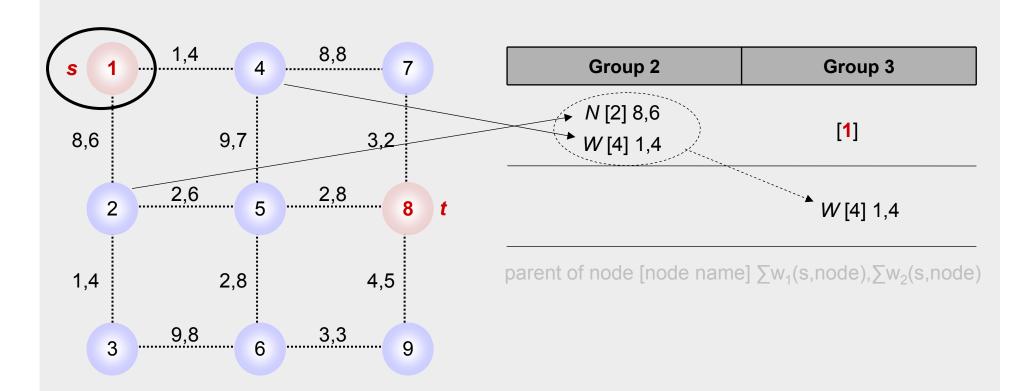
Example



Find the shortest path from source s to target t where the path cost $\sum w_1 + \sum w_2$ is minimal



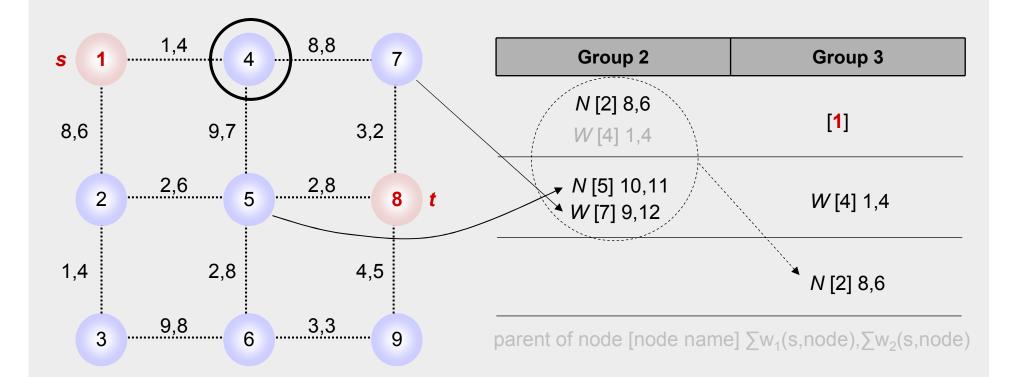
Current node: 1



Current node: 1

Neighboring nodes: 2, 4

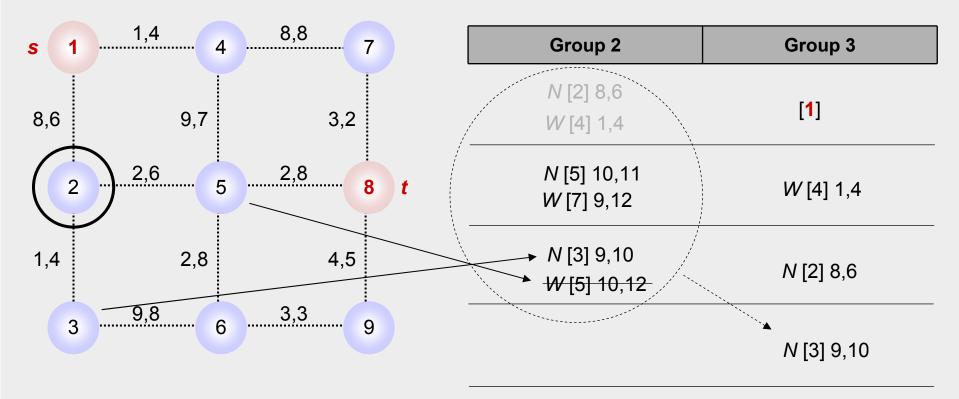
Minimum cost in group 2: node 4



Current node: 4

Neighboring nodes: 1, 5, 7

Minimum cost in group 2: node 2

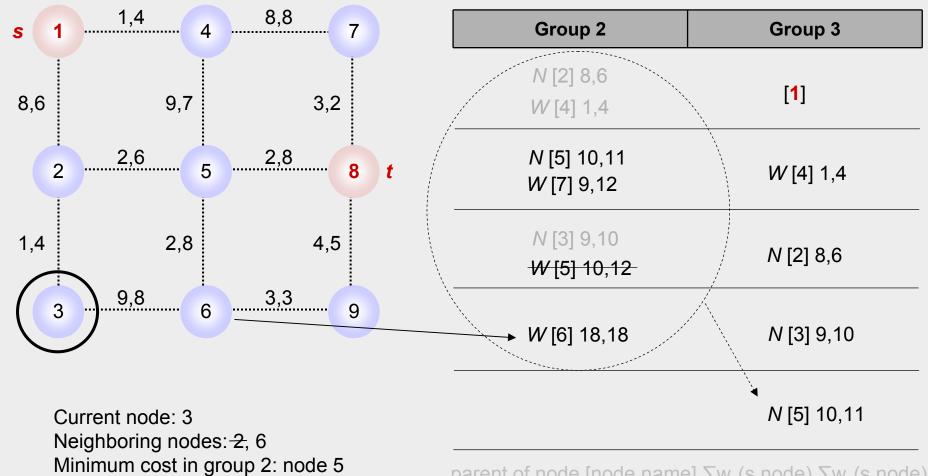


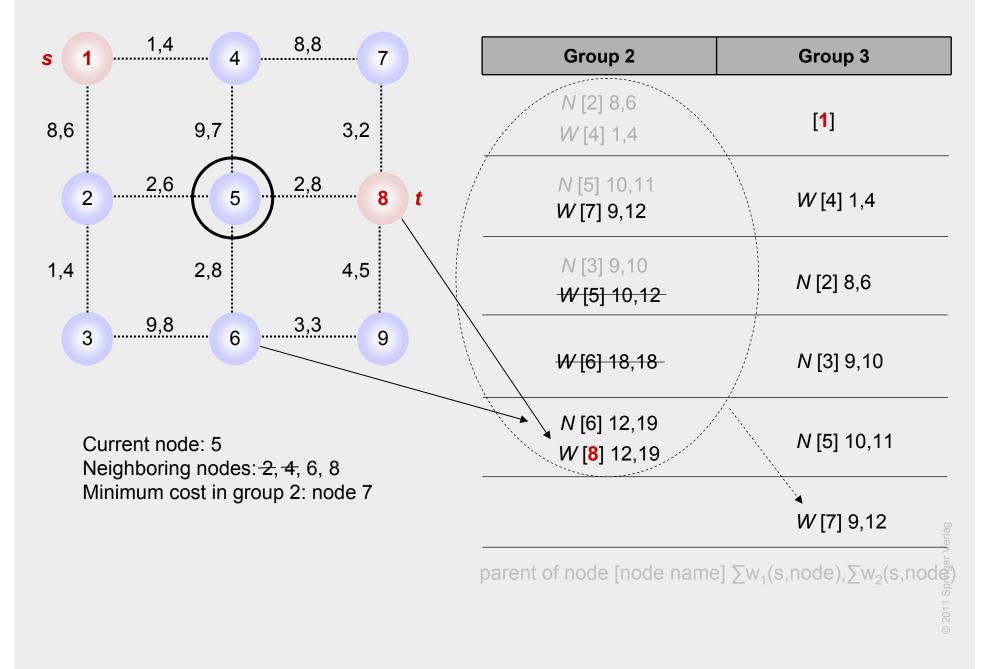
parent of node [node name] $\sum w_1(s,node), \sum w_2(s,node)$

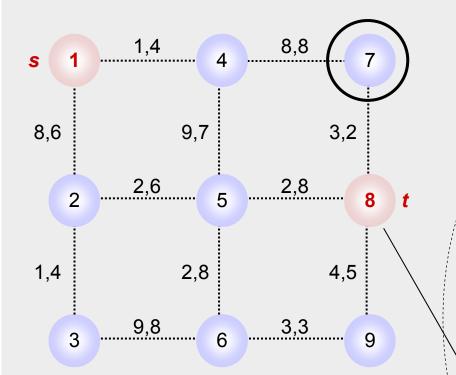
Current node: 2

Neighboring nodes: 4, 3, 5

Minimum cost in group 2: node 3



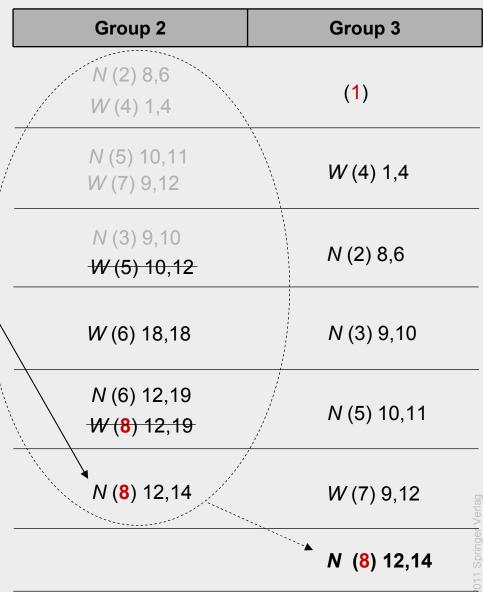




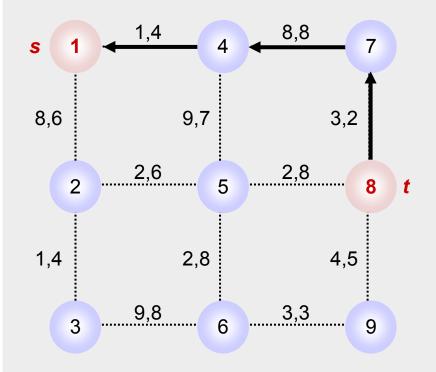
Current node: 7

Neighboring nodes: 4, 8

Minimum cost in group 2: node 8

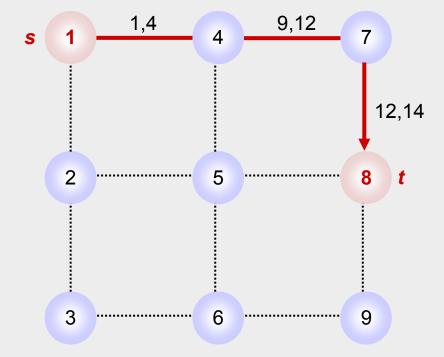


parent of node [node name] $\sum w_1(s,node), \sum w_2(s,node)$



Retrace from *t* to *s*

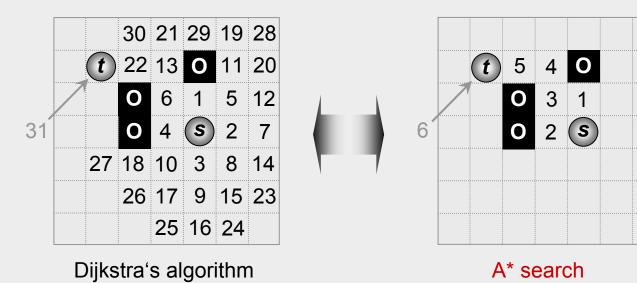
Group 2	Group 3
N (2) 8,6 W (4) 1,4	(1)
N (5) 10,11 W (7) 9,12	W (4) 1,4
N (3) 9,10 W (5) 10,12	N (2) 8,6
W (6) 18,18	N (3) 9,10
N (6) 12,19 W (8) 12,19	N (5) 10,11
N (8) 12,14	(7) 9,12
	(N) (8) 12,14
	<u> </u>



Optimal path 1-4-7-8 from *s* to *t* with accumulated cost (12,14)

5.6.4 Finding Shortest Paths with A* Search

- A* search operates similarly to Dijkstra's algorithm, but extends the cost function to include an estimated distance from the current node to the target
- Expands only the most promising nodes; its best-first search strategy eliminates a large portion of the solution space



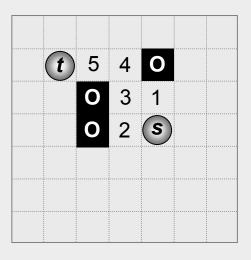
SourceTargetObstacle

(exploring 31 nodes)

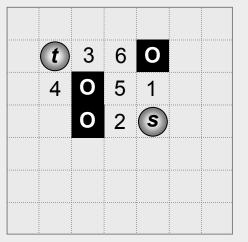
(exploring 6 nodes)

5.6.4 Finding Shortest Paths with A* Search

- Bidirectional A* search: nodes are expanded from both the source and target until the two expansion regions intersect
- Number of nodes considered can be reduced



Unidirectional A* search



Bidirectional A* search

- Source
- Target
- O Obstacle

5.7 Full-Netlist Routing

- 5.1 Introduction
- 5.2 Terminology and Definitions
- 5.3 Optimization Goals
- 5.4 Representations of Routing Regions
- 5.5 The Global Routing Flow
- 5.6 Single-Net Routing
 - 5.6.1 Rectilinear Routing
 - 5.6.2 Global Routing in a Connectivity Graph
 - 5.6.3 Finding Shortest Paths with Dijkstra's Algorithm
 - 5.6.4 Finding Shortest Paths with A* Search
- → 5.7 Full-Netlist Routing
 - 5.7.1 Routing by Integer Linear Programming
 - 5.7.2 Rip-Up and Reroute (RRR)
 - 5.8 Modern Global Routing
 - 5.8.1 Pattern Routing
 - 5.8.2 Negotiated-Congestion Routing

5.7 Full-Netlist Routing

- Global routers must properly match nets with routing resources, without oversubscribing resources in any part of the chip
- Signal nets are either routed
 - simultaneously, e.g., by integer linear programming, or
 - sequentially, e.g., one net at a time
- When certain nets cause resource contention or overflow for routing edges, sequential routing requires multiple iterations: rip-up and reroute

5.7.1 Routing by Integer Linear Programming

- A linear program (LP) consists
 - of a set of constraints and
 - an optional objective function
- Objective function is maximized or minimized
- Both the constraints and the objective function must be linear
 - Constraints form a system of linear equations and inequalities
- Integer linear program (ILP): linear program where every variable can only assume integer values
 - Typically takes much longer to solve
 - In many cases, variables are only allowed values 0 and 1
- Several ways to formulate the global routing problem as an ILP, one of which is presented next

5.7.1 Routing by Integer Linear Programming

Three inputs

- $W \times H$ routing grid G,
- Routing edge capacities, and
- Netlist

Two sets of variables

- k Boolean variables x_{net1} , x_{net2} , ..., x_{netk} , each of which serves as an indicator for one of k specific paths or route options, for each net $net \in Netlist$
- k real variables w_{net1} , w_{net2} , ..., w_{netk} , each of which represents a net weight for a specific route option for $net \in Netlist$
- Two types of constraints
 - Each net must select a single route (mutual exclusion)
 - Number of routes assigned to each edge (total usage) cannot exceed its capacity

5.7.1 Routing by Integer Linear Programming

- Inputs
 - W,H: width W and height H of routing grid G
 - G(i,j): grid cell at location (i,j) in routing grid G
 - σ (G(i,j)~G(i + 1,j)): capacity of horizontal edge G(i,j) ~ G(i + 1,j)
 - σ (G(i,j)~G(i,j + 1)): capacity of vertical edge G(i,j) ~ G(i,j + 1)
 - Netlist: netlist
- Variables
 - $-x_{net1}$, ..., x_{netk} : k Boolean path variables for each net net ∈ Netlist
 - w_{net1} , ..., w_{netk} : k net weights, one for each path of net $net \in Netlist$
- Maximize

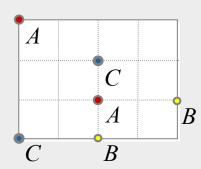
$$\sum_{net \in Netlist} w_{net_1} \cdot x_{net_1} + \ldots + w_{net_k} \cdot x_{net_k}$$

- Subject to
 - Variable ranges
 - Net constraints
 - Capacity constraints

5.7.1 Routing by Integer Linear Programming – Example

Global Routing Using Integer Linear Programming

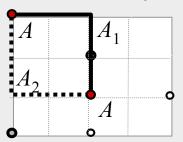
- Given
 - Nets A, B
 - $W = 5 \times H = 4$ routing grid G
 - σ (e) = 1 for all e ∈ G
 - L-shapes have weight 1.00 and Z-shapes have weight 0.99
 - The lower-left corner is (0,0).
- Task
 - Write the ILP to route the nets in the graph below

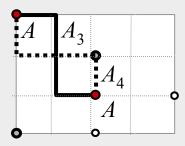


5.7.1 Routing by Integer Linear Programming – Example

Solution

- For net A, the possible routes are two L-shapes (A_1,A_2) and two Z-shapes (A_3,A_4)



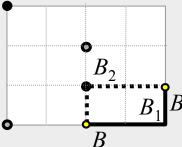


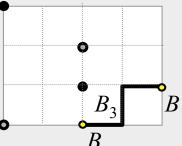
Net Constraints:

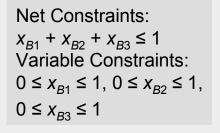
$$x_{A1} + x_{A2} + x_{A3} + x_{A4} \le 1$$

Variable Constraints:
 $0 \le x_{A1} \le 1, \ 0 \le x_{A2} \le 1,$
 $0 \le x_{A3} \le 1, \ 0 \le x_{A4} \le 1$

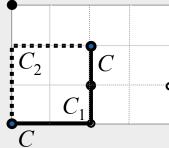
- For net B, the possible routes are two L-shapes (B_1, B_2) and one Z-shape (B_3)

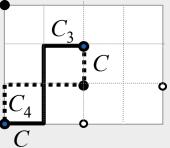






- For net C, the possible routes are two L-shapes (C_1, C_2) and two Z-shapes (C_3, C_4)





Net Constraints: $x_{C1} + x_{C2} + x_{C3} + x_{C4} \le 1$ Variable Constraints: $0 \le x_{C1} \le 1, \ 0 \le x_{C2} \le 1,$ $0 \le x_{C3} \le 1, \ 0 \le x_{C4} \le 1$

Routing by Integer Linear Programming – Example 5.7.1

```
Horizontal Edge Capacity Constraints:
                                                                         Edge Capacity Constraints: G(0,0) \sim G(1,0): \qquad x_{C1} + x_{C3} \qquad \qquad \sigma \left( G(0,0) \sim G(1,0) \right) = 1
G(1,0) \sim G(2,0): \qquad x_{C1} \qquad \qquad \sigma \left( G(1,0) \sim G(2,0) \right) = 1
G(2,0) \sim G(3,0): \qquad x_{B1} + x_{B3} \qquad \qquad \sigma \left( G(2,0) \sim G(3,0) \right) = 1
G(3,0) \sim G(4,0): \qquad x_{B1} \qquad \qquad \sigma \left( G(3,0) \sim G(4,0) \right) = 1
G(0,1) \sim G(1,1): \qquad x_{A2} + x_{C4} \qquad \qquad \sigma \left( G(0,1) \sim G(1,1) \right) = 1
G(1,1) \sim G(2,1): \qquad x_{A2} + x_{A3} + x_{C4} \qquad \qquad \sigma \left( G(1,1) \sim G(2,1) \right) = 1
G(2,1) \sim G(3,1): \qquad x_{B2} \qquad \qquad \sigma \left( G(2,1) \sim G(3,1) \right) = 1
G(3,1) \sim G(4,1): \qquad x_{B2} + x_{B3} \qquad \qquad \sigma \left( G(3,1) \sim G(4,1) \right) = 1
G(0,2) \sim G(1,2): \qquad x_{A4} + x_{C2} \qquad \qquad \sigma \left( G(0,2) \sim G(1,2) \right) = 1
G(1,2) \sim G(2,2): \qquad x_{A4} + x_{C2} + x_{C3} \qquad \qquad \sigma \left( G(0,3) \sim G(1,3) \right) = 1
                                                                               G(0,3) \sim G(1,3): X_{A1} + X_{A3} \leq \sigma (G(0,3) \sim G(1,3)) = 1

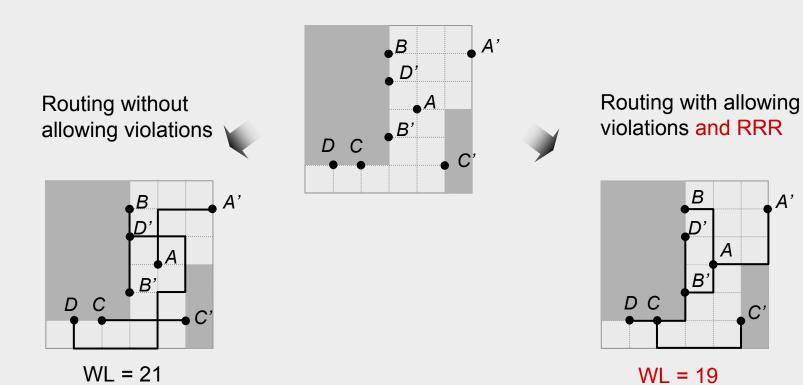
G(1,3) \sim G(2,3): G(0,3) \sim G(1,3) = 1
Vertical Edge Capacity Constraints:
                                                                            G(0,0) \sim G(0,1): \qquad x_{C2} + x_{C4} \qquad \leqslant \qquad \sigma \left(G(0,0) \sim G(0,1)\right) = 1
G(1,0) \sim G(1,1): \qquad x_{C3} \qquad \leqslant \qquad \sigma \left(G(1,0) \sim G(1,1)\right) = 1
G(2,0) \sim G(2,1): \qquad x_{B2} + x_{C1} \qquad \leqslant \qquad \sigma \left(G(2,0) \sim G(2,1)\right) = 1
G(3,0) \sim G(3,1): \qquad x_{B3} \qquad \leqslant \qquad \sigma \left(G(3,0) \sim G(3,1)\right) = 1
G(4,0) \sim G(4,1): \qquad x_{B1} \qquad \leqslant \qquad \sigma \left(G(4,0) \sim G(4,1)\right) = 1
G(0,1) \sim G(0,2): \qquad x_{A2} + x_{C2} \qquad \leqslant \qquad \sigma \left(G(0,1) \sim G(0,2)\right) = 1
G(1,1) \sim G(1,2): \qquad x_{A3} + x_{C3} \qquad \leqslant \qquad \sigma \left(G(1,1) \sim G(1,2)\right) = 1
G(2,1) \sim G(2,2): \qquad x_{A1} + x_{A4} + x_{C1} + x_{C4} \leqslant \qquad \sigma \left(G(2,1) \sim G(2,1)\right) = 1
 G(2,2)) = 1
```

 $G(0,2) \sim G(0,3)$: $X_{A2} + X_{A4} \leq \sigma (G(0,2) \sim G(0,3)) = 1$ $G(1,2) \sim G(1,3)$: $X_{A3} \leq \sigma (G(1,2) \sim G(1,3)) = 1$ $G(2,2) \sim G(2,3)$: $G(2,2) \sim G(2,3) = 1$

 $X_{\Delta 1}$

5.7.2 Rip-Up and Reroute (RRR)

- Rip-up and reroute (RRR) framework: focuses on hard-to-route nets
- Idea: allow temporary violations, so that all nets are routed, but then iteratively remove some nets (rip-up), and route them differently (reroute)



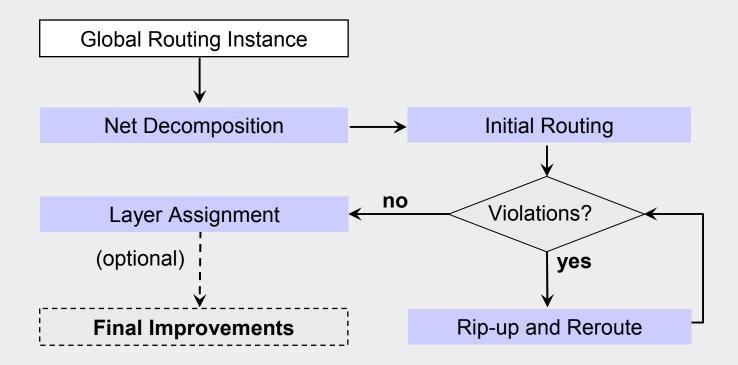
5.8 Modern Global Routing

5 1	- In	0	tr		d		0:	Εï	\cap	n	h
J. I	- 11		UI.	\cup	u	u١	0	UI.	\cup	Ш	l

- 5.2 Terminology and Definitions
- 5.3 Optimization Goals
- 5.4 Representations of Routing Regions
- 5.5 The Global Routing Flow
- 5.6 Single-Net Routing
 - 5.6.1 Rectilinear Routing
 - 5.6.2 Global Routing in a Connectivity Graph
 - 5.6.3 Finding Shortest Paths with Dijkstra's Algorithm
 - 5.6.4 Finding Shortest Paths with A* Search
- 5.7 Full-Netlist Routing
 - 5.7.1 Routing by Integer Linear Programming
 - 5.7.2 Rip-Up and Reroute (RRR)
- 5.8 Modern Global Routing
 - 5.8.1 Pattern Routing
 - 5.8.2 Negotiated-Congestion Routing

5.8 Modern Global Routing

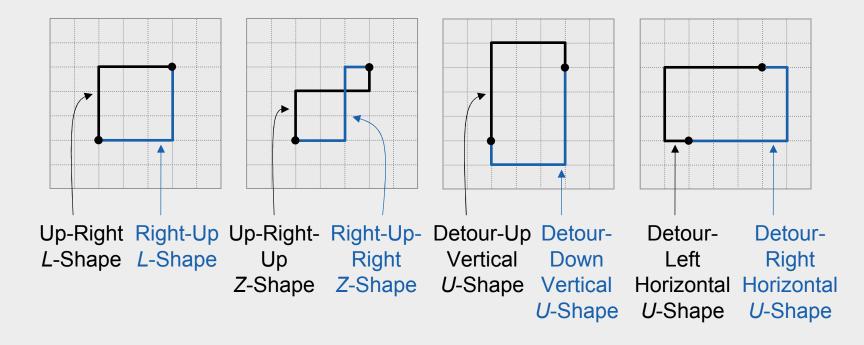
 General flow for modern global routers, where each router uses a unique set of optimizations:



5.8 Modern Global Routing

Pattern Routing

- Searches through a small number of route patterns to improve runtime
- Topologies commonly used in pattern routing: L-shapes, Z-shapes, U-shapes



Negotiated-Congestion Routing

- Each edge e is assigned a cost value cost(e) that reflects the demand for edge e
- A segment from net *net* that is routed through *e* pays a cost of *cost(e)*
- Total cost of *net* is the sum of *cost(e)* values taken over all edges used by *net*:

$$cost(net) = \sum_{e \in net} cost(e)$$

The edge cost cost(e) is increased according to the edge congestion $\Phi(e)$, defined as the total number of nets passing through e divided by the capacity of e:

$$\varphi(e) = \frac{\eta(e)}{\sigma(e)}$$

- A higher *cost(e)* value discourages nets from using *e* and implicitly encourages nets to seek out other, less used edges
- ⇒ Iterative routing approaches (Dijkstra's algorithm, A* search, etc.) find routes with minimum cost while respecting edge capacities

pringer vertag

Summary of Chapter 5 – Types of Routing

Global Routing

- Input: netlist, placement, obstacles + (usually) routing grid
- Partitions the routing region (chip or block) into global routing cells (gcells)
- Considers the locations of cells within a region as identical
- Plans routes as sequences of gcells
- Minimizes total length of routes and, possibly, routed congestion
- May fail if routing resources are insufficient
 - Variable-die can expand the routing area, so can't usually fail
 - Fixed-die is more common today (cannot resize a block in a larger chip)
- Interpreting failures in global routing
 - Failure with many violations => must restructure the netlist and/or redo global placement
 - Failure with few violations => detailed routing may be able to fix the problems

Summary of Chapter 5 – Types of Routing

Detailed Routing

- Input: netlist, placement, obstacles, global routes (on a routing grid), routing tracks, design rules
- Seeks to implement each global route as a sequence of track segments
- Includes layer assignment (unless that is performed during global routing)
- Minimizes total length of routes, subject to design rules

Timing-Driven routing

- Minimizes circuit delay by optimizing timing-critical nets
- Usually needs to trade off route length and congestion against timing
- Both global and detailed routing can be timing-driven

Summary of Chapter 5 – Types of Routing

Large-Net Routing

- Nets with many pins can be so complex that routing a single net warrants dedicated algorithms
- Steiner tree construction
 - Minimum wirelength, extensions for obstacle-avoidance
 - Nonuniform routing costs to model congestion
- Large signal nets are routed as part of global routing and then split into smaller segments processed during detailed routing

Clock Tree Routing / Power Routing

 Performed before global routing to avoid competition for resources occupied by signal nets

© 2011 Springer Verla

Summary of Chapter 5 – Routing Single Nets

- Usually ~50% of the nets are two-pin nets, ~25% have three pins, ~12.5% have four, etc.
 - Two-pin nets can be routed as L-shapes or using maze search (in a connectivity graph of the routing regions)
 - Three-pin nets usually have 0 or 1 branching point
 - Larger nets are more difficult to handle
- Pattern routing
 - For each net, considers only a small number of shapes (L, Z, U, T, E)
 - Very fast, but misses many opportunities
 - Good for initial routing, sometimes is sufficient
- Routing pin-to-pin connections
 - Breadth-first-search (when costs are uniform)
 - Dijkstra's algorithm (non-uniform costs)
 - A*-search (non-uniform costs and/or using additional distance information)

Summary of Chapter 5 – Routing Single Nets

- Minimum Spanning Trees and Steiner Minimal Trees in the rectilinear topology (RMSTs and RSMTs)
 - RMSTs can be constructed in near-linear time
 - Constructing RSMTs is NP-hard, but feasible in practice
- Each edge of an RMST or RSMT can be considered a pin-to-pin connection and routed accordingly
- Routing congestion introduces non-uniform costs, complicates the construction of minimal trees (which is why A*-search still must be used)
- For nets with <10 pins, RSMTs can be found using look-up tables (FLUTE) very quickly

011 Springer Verlag

Summary of Chapter 5 – Full Netlist Routing

- Routing by Integer Linear Programming (ILP)
 - Capture the route of each net by 0-1 variables, form equations constraining those variables
 - The objective function can represent total route length
 - Solve the equations while minimizing the objective function (ILP software)
 - Usually a convenient but slow technique, may not scale to largest netlists (can be extended by area partitioning)
- Rip-up and Re-route (RRR)
 - Processes one net at a time, usually by A*-search and Steiner-tree heuristics
 - Allows temporary overlaps between nets
 - When every net is routed (with overlaps), it removes (rips up) those with overlaps and routes them again with penalty for overlaps
 - This process may not finish, but often does, else use a time-out
- Both ILP-based routing and RRR can be applied in global and detailed routing
 - ILP-based routing is usually preferable for small, difficult-to-route regions
 - RRR is much faster when routing is easy

Summary of Chapter 5 – Modern Global Routing

- Initial routes are constructed quickly by pattern routing and the FLUTE package for Steiner tree construction - very fast
- Several iterations based on modified pattern routing to avoid congestion
 - also very fast
 - Sometimes completes all routes without violations
 - If violations remain, they are limited to a few congested spots
- The main part of the router is based on a variant of RRR called Negotiated-Congestion Routing (NCR)
 - Several proposed alternatives are not competitive
- NCR maintains "history" in terms of which regions attracted too many nets
- NCR increases routing cost according to the historical popularity of the regions
 - The nets with alternative routes are forced to take those routes
 - The nets that do not have good alternatives remain unchanged
 - Speed of increase controls tradeoff between runtime and route quality