

OpenAccess:

Goals and Status

DAC, 2003

- OpenAccess Goals
- OpenAccess Coalition (OAC) Structure, Process and Participation
- OpenAccess Technology
- OA Proliferation and Progress
- OpenAccess Status/Summary

Openness Requires...!

- Accessible by all parties:
 - Anyone can use, change, embed, or redistribute according to clearly established terms
- Reasonable cost:
 - Established prices (if any) are based on service value and do not present an undue barrier to any company, regardless of size
- Managed migration by stakeholders:
 - Controlled evolution of the technology by an elected Change Team

OpenAccess meets these criteria

OpenAccess Goals

- Provide an IC design tool infrastructure that yields
 - Integrated systems rather than sequential flows
 - Choice of design tools and provider
 - Technology transfer of innovative research
 - Collaborative design capability for ICs
- Promote an open standard for IC design data access
- Gain adoption of the standard within the EDA industry and university research programs

OpenAccess Benefits: End-users

- Saves investment (people and dollars) in proprietary API/data model/database solution
- Enhances interoperability with vendor tools
 - Saves investment to develop/maintain translators
 - Plug-and-play access to new tools reduces integration costs
 - Reduces/eliminates performance impact of translators on design flows
- Allows focus on core competencies, i.e., developing value-added internal tools and customized flows
- Leverage collective knowledge base and contributions of OA community, including academia

OpenAccess Benefits: EDA Companies

- Large EDA companies:
 - Easier access to customers
 - Simpler integration into their flows
 - Less interfacing effort
 - Focus on tool development
 - Easier to integrate tools when purchasing small vendors
- Small EDA companies:
 - Reduces barrier to entry, i.e., quicker "startups", faster ROI
 - Less infrastructure to develop
 - Custom infrastructure may be barrier to acceptance
 - Focus on tool development
 - Less interfacing effort
 - Quickly sell to a larger market

OpenAccess Benefits: Universities

- Access to commercial database and its users
- Ability to influence standard
- Access to industry benchmark examples
- Potential for research on tightly-coupled applications and flows
- Ability to streamline technology transfer

EDA Interoperability Genealogy

Process level integration

Design to Manufacturing Data Sharing

Multi-vendor integrated systems

01/2003

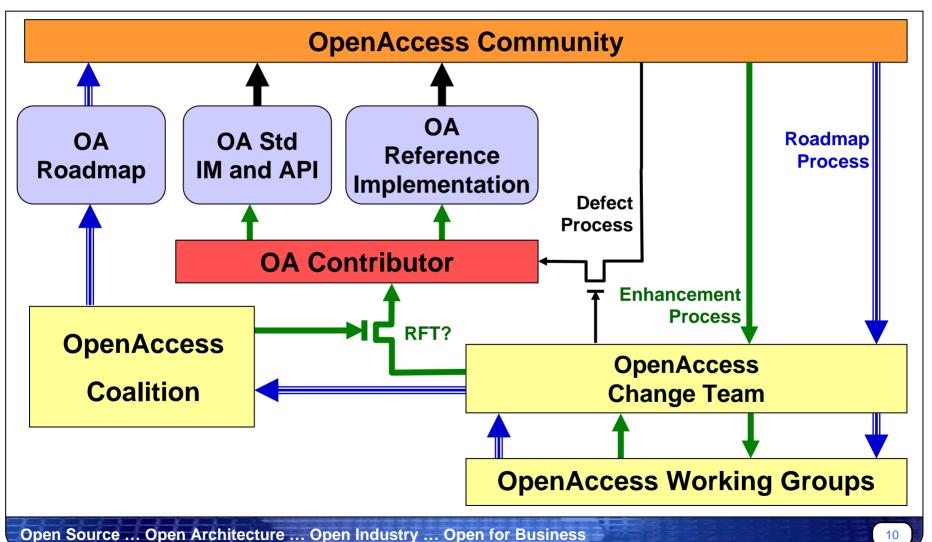
Single vendor integrated systems

Open Data API

Proprietary Data APIs

Loosely coupled systems

Open File Formats


Proprietary File Formats

- OpenAccess Goals
- OpenAccess Coalition (OAC) Structure, Process and Participation
- OpenAccess Technology
- OA Proliferation and Progress
- OpenAccess Status/Summary

OpenAccess Process

OpenAccess Coalition

Coalition members have specific rights and responsibilities

- Share in funding
- Operate to open, unbiased decision-making policy
- Abide by OpenAccess Participation agreement terms, and joint funding for development and facilitation
- Guide future of API and Reference Code
- Elect Change Team to manage revisions

Coalition member benefits

- Early access to planned/future releases of reference database code
- Participate in Change Team and Working Groups
- Set direction and vote on development priorities
- All things equal, higher priority for member requests
- Discounted training, support and access to Si2

OpenAccess Change Team

Makeup

- 12 annually-elected Coalition company representatives
 - 1 representative per company, 1 vote per company
 - Max of 5 EDA companies (4 plus Cadence)
- Chaired by 2 architects who must be CT members (Cadence and 1 elected non- EDA company)
- Approval of change requires 9 "Yes" votes

Responsibilities

- Approving body for API & Reference DB changes
- Specifies changes to code integrator
- Caretakers for OA Technical Roadmap
- Charters working groups to analyze/solve key problems
- Change Team may collectively agree to delegate vote to architects in which case both must agree to approve the change
- If Change Team has less than 12 members and a proposed change receives 75% approval, then architects (by unanimous vote) make up missing votes

OpenAccess Working Groups

- Chartered to analyze specific problems and recommend solutions to Change Team
- Current working groups:
 - **Tech:** Solve problem of representing technical manufacturing constraints and rules, considering current applications for SIPPS standards.
 - DDM: Analyze and solve problem for library directory structure optimization. Activity targeted for Rel. 2.2.
 - **Golden Gate:** Analyze bridging between Milky Way and OA. Initial effort focused on creating mapping document to show mapping between OA and Milky Way and roadmap for 2003 & 2004. Bridging software to be based on mapping document.
- Completed working groups:
 - Occurrence and L/P: Defined approach for occurrence model and means to represent both logical and physical hierarchies in design in unified manner (Embedded Module Hierarchy). Results will be in Rel. 2.1 (07/2003)
 - Extensibility: Develop requirements and specs for capability to extend common model and associated functions with new elements, attributes and relationships without requiring change to OA API standard
 - Parasitics: Define means to efficiently/comprehensively represent RLC parasitic data in OA model. Currently dormant.

OpenAccess Structure/Membership

IBM ST Microelectronics

Intel Sun

LSI Logic Synchronicity
Mitsubishi Synplicity

Motorola Tektronix
Nassda Artisan*

12 Member Change Team

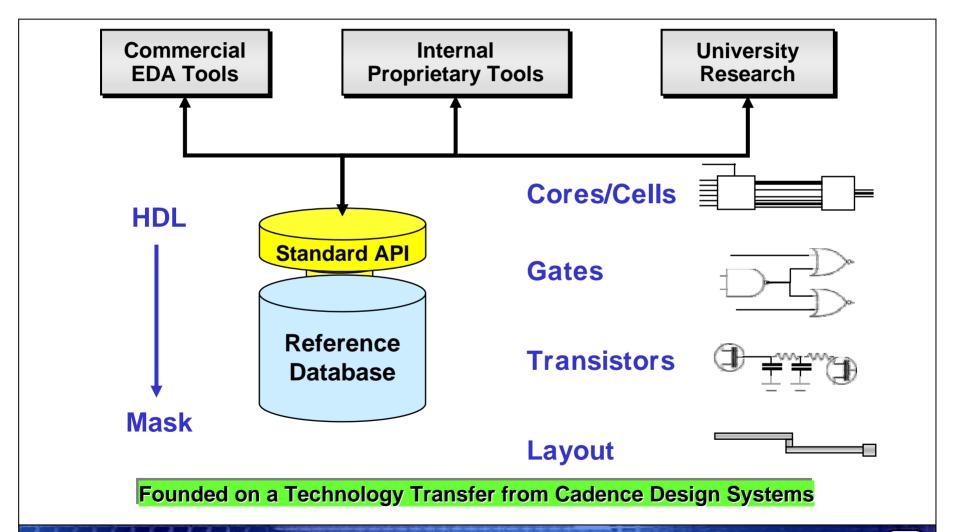
Two Architects

Working Groups

Governing

Coalition

OpenAccess Community



- OpenAccess Goals
- OpenAccess Coalition (OAC) Structure, Process and Participation
- OpenAccess Technology
- OA Proliferation and Progress
- OpenAccess Status/Summary

What is OpenAccess?

Scope of Applications

- Synthesized RTL to Silicon
- Digital and Analog
- Std. Cell and Custom
- Macro cells to Transistors
- Logical and Physical
- Batch or Interactive

OpenAccess Technology

OA features:

- Standard information model for IC design data
- Standard C++ interface (API) to access, manipulate and store data
- Reference, commercial-grade database compliant with API
- Translators to industry-standard formats
- Development support aids

OA provides:

- Greater design productivity
 - Standard Model & API provide for choice & tighter design flows
- Reduced development and support cost
 - Reference DB provides solution for IC designers and EDA developers right out of the box
- Better interoperability
 - Reference Database provides "golden behavior" for development & test, & for interoperability issue resolution

API Features

- Strongly typed
 - Less chance of errors
- Data representation independent of machine width
 - 32 bit, 64 bit support
- Multi-platform support
 - Automatic byte-swapping

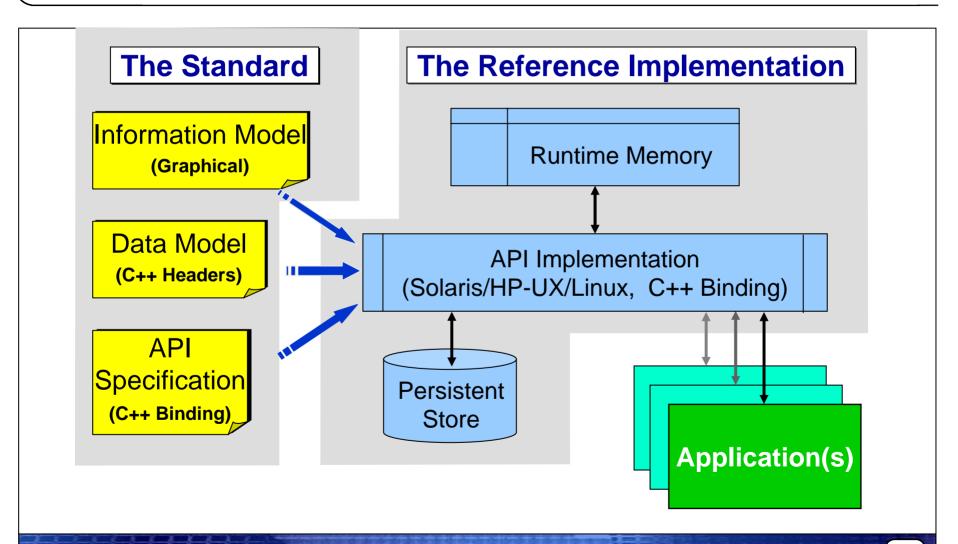
- Thread-safe (07/2003)
 - Support parallel processing

Information Model Scope

Design Data

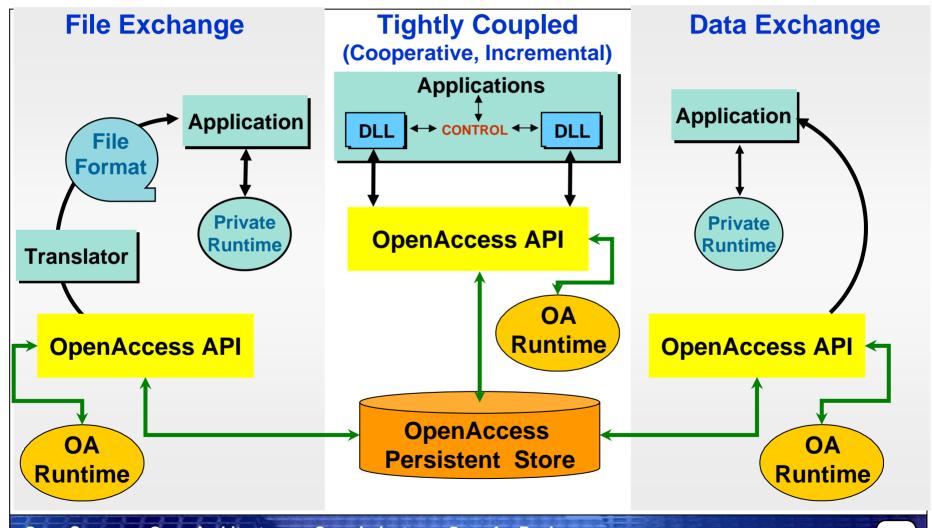
- Hierarchical connectivity
- Floorplan information
- Physical layout
- Special routing types
- Shapes
- Pins and vias
- Parasitics (detailed and reduced)
- Scan chains
- Extension objects (groups, properties, etc)
- Timing (through extensibility feature now, will be added as part of design data after definition of timing data specs)
- Occurrence model and EMH (07/2003)

Technology Data


- Layer constraints
- Technology characteristics
- Technology constraints

Library Management

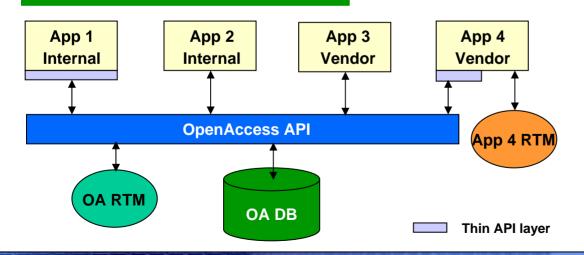
- Design hierarchy
- Access control



Open Access Deliverables

Application Integration

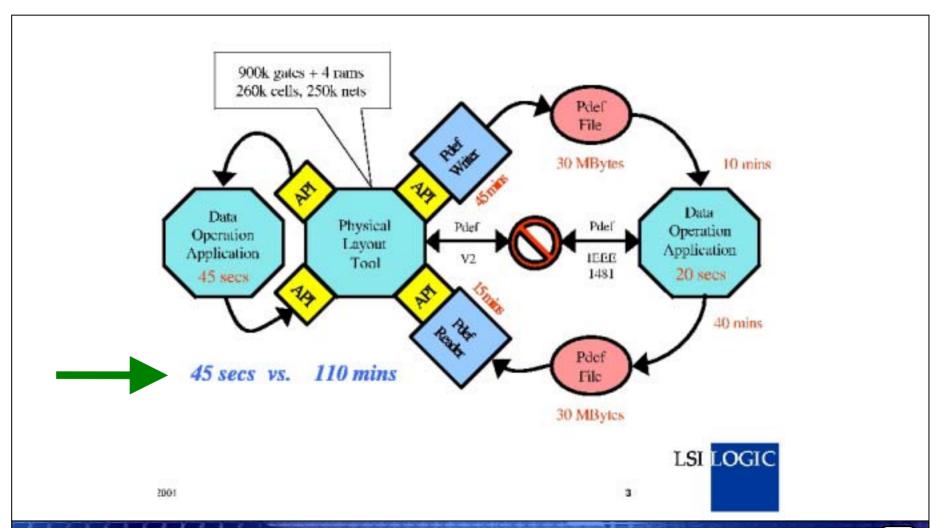
Streamlined Design Flows


Life in the Slow Lane:

Writing translators: Compelling job description for a PhD?

Or, how to drive him/her to your competition!

Life in the Fast Lane:



By design, OA:

- Enables tool interoperability
- Reduces need for translators
- Creates common syntax and semantics even in non-ideal case
- RTM is context-sensitive and memoryefficient
- Private RTM may be application specific and can be considered, case-by-case, as temp. solution

Example of API Benefits

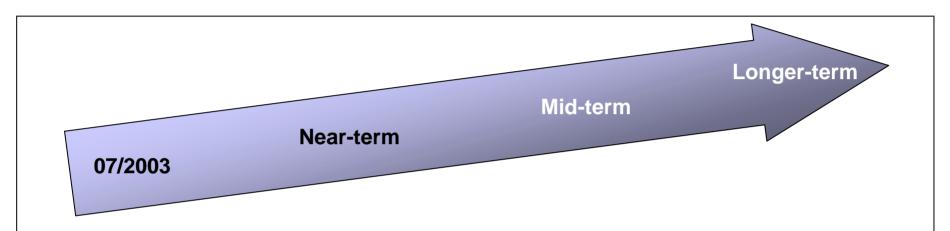
- OpenAccess Goals
- OpenAccess Coalition (OAC) Structure, Process and Participation
- OpenAccess Technology
- OA Proliferation and Progress
- OpenAccess Status/Summary

Connecting With EDA Industry & Users

- DAC, 2003: OpenAccess adoption is reality!
 - Compelling base of OA functionality available from OpenEDA website
 - Strong leadership from EDA/end-user companies to drive standard
 - OpenAccess evolving with greater capabilities Roadmap defined!
 - Multiple EDA/end-user companies creating/porting tools to OA
 - 7 showing products at booth
 - Downloads from OpenEDA website rising daily
 - 744 downloads/month, 800 licenses issued in 2003!

Academic Interest/Participation

Focus on US Universities

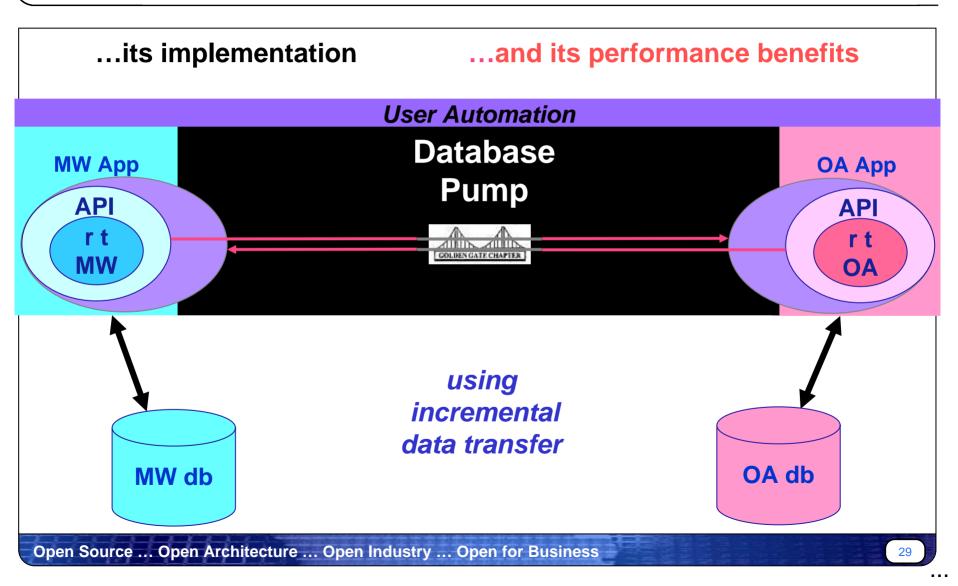

- NCSU
 - Rhett Davis teaching OA-based course
 - Submitted research proposals to SRC for OA-based flow research
- U. of Michigan
 - Student trained to apply OA to GSRC P&R algorithm research
- UC, Santa Cruz
 - Student trained and starting to apply OA to algorithm research
 - Has ported OA 2.0 to Linux and donated to Si2
- Others
 - Students from UCLA and UC, San Diego trained in OA
 - UT, Austin planning to download
 OA for training & evaluation

Focus on European Universities

- Meetings held during DATE week to begin engagement
- Discussions underway with universities/organizations in Germany:
 - U. of Hannover (Barke)
 - U. of Bonn (Korte)
 - Edacentrum (Haase)
- Universities/organizations in France:
 - U. PMC has signed OA source license agreement to download, evaluate and use for research

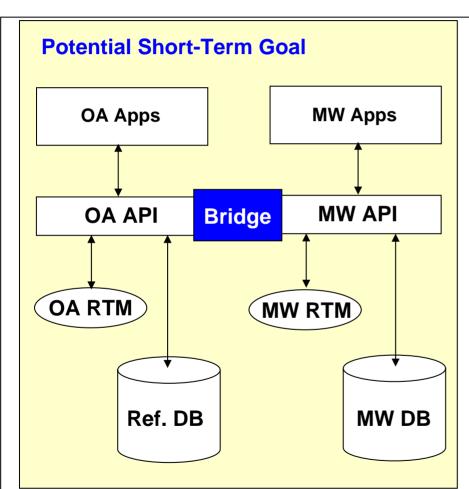
Moving Forward: OA Roadmap!

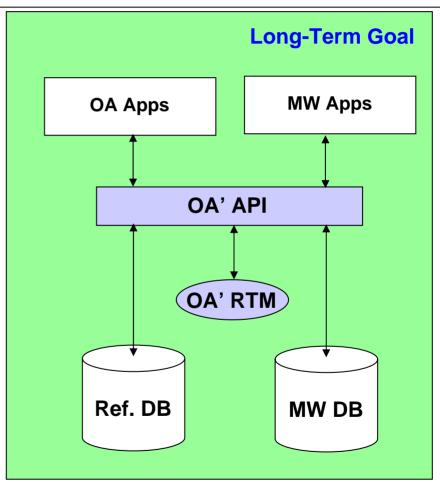
- Key items for OA 2.1:
 - Occurrence Model / EMH
 - Multi-threading
 - Plug-in for custom region query
 - Data loading by LPP
 - **•** ,.....


- Key items:
 - Support timing/electrical constraints
 - X-routing support
 - Standardized process modeling for RLC extr.
 - Functional model support.
 - Enhanced tech. data support (for OPC/PSM & package-level analysis)
 - Additional translators for industry-standard formats,.....

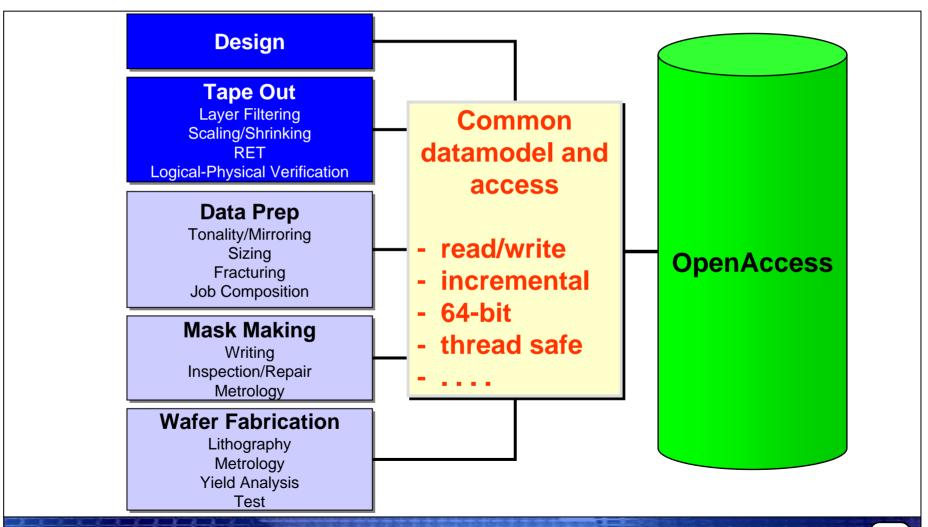
- Key items:
 - Support design-tomanufacturing
 - Library modeling
 - System-in-package
 - Library & design data management
 - Manufacturing test
 - IP security
 - Control-level tool communication APIs,....

- Key items:
 - Formal transistor-level modeling support
 - Support behavioral-level data models
 - Support architecturallevel data models,....




GoldenGate Data Exchange Usage

GGWG Goals



GGWG Roadmap Targets

Ì	 Preliminary Mapping between OA and MW complete: Identify Basic Objects for physical, hierarchical connectivity Identify the Correspondence between MW and OA for these objects Identify Basic Operations required on basic objects Initial Mapping Rules 	07/2003
•	 Preliminary Development Logistics: Ownership / Copyright plan from Si2/Synopsys Identified sites and resources for collaborative development Identification of Alpha and Beta customers 	07/2003
1	 Prototype software: Write bi-directional emulation layers for subset of basic objects Prepare test data for "round trip" tests Verify emulation layers AND mapping accuracy with Alpha customer data 	TBD
•	Real Software, Beta Phase: Re-write prototype software, as needed Beta test with customers, verify completeness Begin performance tuning	TBD
•	First release of "Bridge" software:	TBD

UDM - Common Data Model Concept

- OpenAccess Goals
- OpenAccess Coalition (OAC) Structure, Process and Participation
- OpenAccess Technology
- OA Proliferation and Progress
- Next Steps

OpenAccess: Call to Action

Formulate: Your corporate strategy, re: OA

- Download, evaluate ("kick the tires") the code
- If end-user, determine your ROI, push your suppliers
- If EDA company, check what your customers want
- Buy the book and accelerator kit
- Sign up for training

Get involved: Support the goals of the coalition

- Port your code to OA
- Push your suppliers towards OA
- Join coalition to guide OA strategy to keep it aligned to your corporate strategy

Si2 connections:

- Bob Carver: bobc@si2.org
- Sumit DasGupta: dasgupta@si2.org
- Bayer: bayer@si2.org