top tsp


Concorde Home

Documentation

Download

Benchmarks

Concorde

TSP Links

TSPBIB

TSPLIB

Home page

Compaq

Concorde Benchmarks

We report below the running times for the Concorde TSP solver on all TSPLIB instances.  Unless otherwise noted, the times are for the default 99.12.15 version of the code using 99 as the random number seed (that is,  "concorde -s 99  xxx.tsp").  The tests were carried out on a 500 MHz Compaq XP1000 workstation.  A comparison on a number of other machine types is given at the bottom of the page.


TSPLIB Instances

The TSPLIB is Gerhard Reinelt's library of 110 instances of the traveling salesman problem. Some of these instances arise from the task of drilling holes in printed circuit boards; others have been constructed artificially. (A popular way of constructing a TSP instance is to choose a set of actual cities and to define the cost of travel from X to Y as the distance between X and Y.) None of them (with a single exception) is contrived to be hard and none of them is contrived to be easy; their sizes range from 17 to 85,900 cities.  Concorde's TSP solver has solved 106 instances from the library; the remaining four instances are still open problems.  For several of the larger instances, links are given to detailed reports of the computations.
 
 
NameNodes in Search TreeRunning Time (seconds)
burma141  0.06 
ulysses161  0.22 
gr171  0.08 
gr211  0.03 
ulysses221  0.53 
gr241  0.07 
fri261  0.07 
bayg291  0.09 
bays291  0.13 
dantzig421  0.23 
swiss421  0.13 
att481  0.56 
gr481  0.67
hk481  0.17 
eil511  0.73 
berlin521  0.29 
brazil581  0.68 
st701  0.50 
eil761  0.30 
pr761  1.86 
gr961  6.71 
rat991  0.95 
kroA1001  1.00 
kroB1001  2.36 
kroC1001  0.96 
kroD1001  1.00 
kroE1001  2.44 
rd1001  0.67 
eil1011  0.74 
lin1051  0.59 
pr1071  1.03 
gr1201  2.23 
pr1241  3.64 
bier1271  1.65 
ch1301  2.13 
pr1361  3.97 
gr1371  3.42 
pr1441  2.58 
ch1501  3.03 
kroA1501  5.00 
kroB1501  4.23 
pr1521  7.93 
u1591  1.00 
si1753  13.09 
brg1801  1.46 
rat1955  22.23 
d1983  11.82 
kroA2001  6.59 
kroB2001  3.91 
gr2021  5.01 
ts2251  20.52 
tsp2251  15.01 
pr2261  4.35 
gr2293  38.61 
gil2621  13.06 
pr2641  2.67 
a2803  5.37 
pr2993  17.49 
lin3181  9.74 
rd40015  148.42 
fl4175  57.75 
gr43113  133.29 
pr43915  216.75 
pcb4429  49.92 
d4935  113.32 
att5327  109.52 
ali5353  53.14 
si5353  43.13 
pa56117  246.82 
u5741  23.04 
rat57525  363.07 
p6543  26.52 
d65713  260.37 
gr6663  49.86 
u72411  225.44 
rat7831  37.88 
dsj10007  410.32 
pr10021  34.30 
si10321  25.47 
u106021  571.43 
vm108411  604.78 
pcb117319  468.27 
d12914527393.72 
rl13041  189.20 
rl132325  3742.25 
nrw137919  578.42 
fl14005  1548.51 
u1432 3  223.70 
fl15777  6705.04 
d16555  263.03 
vm174817  2223.65 
u1817887449230.55 
rl18898310023.02 
d210316911179253.91 (2)
u215230945204.53 
u231913  7067.93 
pr23921  116.86 
pcb303831380828.87 
fl37952169886.48 
fnl446121353420.13 (2)
rl59151612319671.71 (2)
rl5934205588936.85 (1)
pla7397101428996.2 (3)
rl11849431~155 days (4)
usa135099539~4 years (5)
brd14051--OPEN 
d15112164569~22.6 years (6)
d18512--OPEN 
pla33810--OPEN 
pla85900--OPEN 

NOTES:

(1)  For the instance rl5934, the TSP solver was given the value of the optimal tour as an input parameter.

(2) For the instances d2103, fnl4461, rl5915, and pla7397 the optimal value was given and the code was run with local cuts of size 24 (that is "-C 24") rather than the default.

(3) The default code on pla7397 ran into difficulties with the LP solver, related to dual degeneracy in the LPs that were created.  To solve this instance we ran the code with CCtsp_EDGE_DUST = 0.000001 and CCtsp_EDGE_LIFE = 50 (these settings cause the code to remove from the LP any column [edge] that has not been assigned an LP value greater than 0.000001 for 50 consecutive LPs).

(4)  The default options were not used on rl11849.  Instead, several passes through the cutting plane routines were made before the branching process was initiated.

(5)  The running time for usa13509 is only a very rough estimate.  The TSP solver was run in parallel on a network consisting of a wide variety of machine types.   The run was made with an earlier (1998) version of Concorde's TSP solver, using multiple passes through the cutting plane routines.

(6)  The d15112 run was made with an updated version of Concorde.  Like the usa13509 run, a large amount of CPU time was used in finding the initial LP relaxation.  The final branching run was carried out on a network of 110 processors located at Rice and at Princeton.  More information about the solution can be found on the d15112 page.

(7)  Some additional Concorde benchmarks can be found at Hans Mittelmann's TSP page.


Machine Benchmarks

To give an indication of the performance of Concorde on a variety of machine types, we ran a benchmark consisting of the 87 TSPLIB instances in the above table that solved in under 1,000 seconds on the XP1000.   The total time to solve this set of instances is reported in the table given below.  Note that this is only a rough measure of the performance of the machine types since the optimization algorithm will follow different paths on different machines (due to numerical issues in the linear programming solver).
 
Machine TypeOperating SystemTotal Time (seconds)
Compaq XP1000 (500 MHz)True64 Unix5901
AMD Athlon (800 MHz)FreeBSD9214
AMD Athlon (550 MHz)FreeBSD11782
Intel Pentium III (600 MHz)Redhat Linux 6.111935
AlphaServer 4100 (400 MHz, EV56)Digital Unix14676
Intel Pentium II (300 MHz)Solaris 2.620431
UltraSparc 30 (300 MHz)Solaris 2.621056
Intel Pentium Pro (200 MHz)Solaris 2.631551
Sun Ultra 1 (167 MHz)Solaris 2.642833



Concorde Links



David Applegate, Robert Bixby, Vašek Chvátal, William Cook
TSP home page.

Last updated:  July  5, 2001.
Contact:  bico@math.princeton.edu

The TSP Home pageTSP ApplicationsTSP History PageSolution of 15,112-city TSP