
SomeWhere in the Semantic Web

P. Adjiman, P. Chatalic, F. Goasdoué, M.-C. Rousset, and L. Simon
{adjiman,chatalic,fg,mcr,simon}@lri.fr

Université Paris Sud XI & CNRS (LRI), INRIA (UR Futurs)??,
Bâtiment 490, Université Paris Sud XI, 91405 Orsay cedex, France

Abstract. In this paper, we describe the SomeWhere semantic peer-to-peer data
management system and we provide an experimental analysis showing its scala-
bility. The scalability results from the underlying distributed data model of Some-
Where that can be captured by a fragment of OWL DL, which we think is the ap-
propriate common semantic support needed for most of the future Semantic Web
applications (e.g., those based on taxonomies). In this setting, query answering
over peers can be done by distributed query rewriting, which can be equivalently
reduced to distributed reasoning over logical propositional theories.

1 Introduction

The Semantic Web [1] envisions a world-wide distributed architecture where data and
computational resources will easily inter-operate to coordinate complex tasks such as
answering queries or global computing. Semantic marking up of web resources using
ontologies is expected to provide the necessary glue for making this vision work. The
de-centralized nature of the Web makes inevitable that communities of users or software
developers will use their own ontologies to describe their data or services. This vision of
the Semantic Web corresponds to semantic peer-to-peer networks, in which each peer
can indistinctly play the role of data (or service) provider and of mediator with other
peers. The problem of schema mediation in peer-to-peer data management systems has
been investigated recently in [2], where mappings between relational schemas are ex-
pressed using a powerful relational formalism. It is shown that in this setting, query
answering is undecidable except if some restrictions are imposed on the mappings and
on the resulting topology of the peer-to-peer network.

In this paper, we describe the SomeWhere semantic peer-to-peer data management
system and we provide an experimental analysis showing its scalability. The scalability
results from the underlying distributed data model of SomeWhere which can be cap-
tured by the fragment of OWL DL [3] corresponding to logical combination of atomic
classes using the conjunction, disjunction, and complement constructors. In particular,
this model allows for expressing taxonomies and mappings between taxonomies, which
we think are the appropriate common semantic support needed for most of the future
semantic web applications. In this setting, query answering over multiple schemas can
be done by distributed query rewriting, which can be equivalently reduced to distributed
reasoning over logical propositional theories.

?? Pôle Commun de Recherche en Informatique du plateau de Saclay, CNRS, École Polytech-
nique – X, INRIA et Université Paris Sud.

The paper is organized as follows. Section 2 defines the SomeWhere data model and
the corresponding query answering and rewriting problems. In Section 3, we show the
propositional encoding allowing us to equivalently reduce the distributed computation
of query rewritings to a distributed reasoning task in propositional logic. In Section 4,
we describe the message based distributed reasoning algorithm that is implemented
in SomeWhere. Section 5 reports experimental results for evaluating the scalability of
SomeWhere. We conclude with related work and a short discussion in Section 6.

2 Data model and query answering in SomeWhere

SomeWhere is a network of peers having their own terminology of classes for describ-
ing their schema and stored data, but being semantically related by mappings. A new
peer joins the peer-to-peer network through some peers that it knows (called its acquain-
tances) by declaring mappings between its own terminology and the terminologies of
its acquaintances. Queries are posed to a given peer using its local terminology. The an-
swers that are expected are not only instances of local classes but possibly instances of
classes of peers distant from the queried peer if it can be infered from the peer ontolo-
gies and the mappings that they satisfy the query. Local terminologies, data descriptions
and mappings are defined using a fragment of OWL DL that we will denote OWL PL,
where PL stands for propositional logic. We first present OWL PL, then we introduce
the peer-to-peer SomeWhere data model and query answering problem.

2.1 Syntax and semantics of OWL PL

OWL PL is the fragment of OWL DL reduced to the union, intersection and com-
plement constructors for building class descriptions. An ontology is made of a set of
axioms and facts. The axioms that are allowed in OWL PL are class (partial or com-
plete) definitions that associate class identifiers with class descriptions, and disjoint-
ness, equivalence or inclusion statements between class descriptions. The facts that are
allowed in OWL PL are restricted to statements relating individual identifiers to class
identifiers. The OWL PL syntax is defined as follows as an OWL DL sub-grammar:

ontology ::= ’Ontology(’ [ontologyID] {directive} ’)’
directive ::= axiom | fact
axiom ::= ’Class(’ classID modality description {description} ’)’

| ’DisjointClasses(’ description description {description} ’)’
| ’EquivalentClasses(’ description description {description} ’)’
| ’SubClassOf(’ description description ’)’

modality ::= ’complete’ | ’partial’
description ::= classID

| owl:Thing
| ’unionOf(’ description description {description} ’)’
| ’intersectionOf(’ description description {description} ’)’
| ’complementOf(’ description ’)’

fact ::= ’Individual(’ individualID {’type(’ classID ’)’} ’)’

The semantics of OWL PL is a standard logical formal semantics defined in terms
of interpretations. An interpretation I is a pair (∆I , .I) where ∆ is a non-empty set,
called the domain of interpretation, and .I is an interpretation function which assigns a
subset of ∆I to every class identifier and an element of ∆I to every individual identifier.

Definition 1 (Model of an ontology (or a collection of ontologies)). An interpretation
I is a model of an ontology O (respectively of a collection of ontologies {Oi}n

i=1) iff
each directive in O (respectively in {Oi}

n
i=1) is satisfied by I .

Directives are satisfied in OWL PL if the following holds:
– if Class(classID complete d1 . . . dn) is in O then classIDI =

Tn

i=1(di)
I

– if Class(classID partial d1 . . . dn) is in O then classIDI ⊆
Tn

i=1(di)
I

– if DisjointClasses(d1 . . . dn) is in O then (di)
I ∩(dj)

I = ∅ for every i, j 1 ≤ i < j ≤ n

– if EquivalentClasses(d1 . . . dn) is in O then (di)
I = (dj)

I for every i, j 1 ≤ i < j ≤ n

– if SubClassOf(d1 d2) is in O then (d1)
I ⊆ (d2)

I

– if Individual(individualID type(t1) . . . type(tn)) is in O then individualIDI ∈
Tn

i=1(ti)
I

Interpretations of axioms rely on interpretations of descriptions which are inductively
defined as follows:

– (owl : Thing)I = ∆I

– (unionOf(d1 . . . dn))I =
Sn

i=1(di)
I

– (intersectionOf(d1 . . . dn))I =
Tn

i=1(di)
I

– (complementOf(d1))
I = ∆I\(d1)

I

Definition 2 (Satisfiability and entailment). An ontology (or a collection of ontolo-
gies) is satisfiable iff it has a model. An ontology (or a collection of ontologies) entails
an OWL directive if every model of the ontology (or of the collection of ontologies) is a
model of the directive.

Definition 3 (Class subsumption (wrt ontologies)). Let C and C ′ be class descrip-
tions.

– C is subsumed by C′ if for every interpretation I CI is a subset of C ′I .
– Let O (respectively {Oi}n

i=1) be an ontology (respectively a collection of ontolo-
gies). C is subsumed by C ′ wrt O (respectively wrt {Oi}

n
i=1) if for every model I

of O (respectively of {Oi}n
i=1) CI is a subset of C ′I .

2.2 SomeWhere peer-to-peer data model

In a SomeWhere peer-to-peer network, the content of each peer is defined by an OWL
PL ontology from which we exhibit a terminological component, a view component,
an assertional component and a mapping component. The terminological component is
made of class definitions and possibly disjunction, inclusion or equivalence statements.
The class identifiers appearing in the terminology will be referred to as intentional
classes. The view component is made of the class definitions for which individuals are
given in the assertional component. Class identifiers of these definitions will be re-
ferred to as extensional classes. The views component is the storage description of the
peer. We impose some constraints on extensional classes to fit with a Local as V iews
approach and an open-world assumption of the information integration setting: exten-
sional classes must be partially defined in terms of intentional classes only and they
cannot appear in any components in descriptions involved in disjunction, inclusion or
equivalence axioms. The assertional component is made of the fact statements that re-
late individuals to extentional classes of the view component. The mapping component
is made of the set of disjunction, inclusion or equivalence statements relating intentional

classes of a peer P (called local classes wrt P) with intentional classes belonging to
some other peers (called foreign classes wrt P). Those mappings are in the ontology of
P because when P joint the peer-to-peer network, it had to know some peers already in
the network and it had to declare some semantic connections between its terminological
component and those of its acquaintances.

In the following, we will denote the ontology of a peer P by 〈T ,V ,A,M〉 where
T , V , A and M are respectively the terminological, view, assertional and mapping
components of P . We call the vocabulary of a peer the set of (intentional or extensional)
class identifiers appearing in its terminological, view and mapping components. We
will denote the content of a SomeWhere peer-to-peer network P made of a collection
of peers {Pi}n

i=1 by the collection of ontologies {〈Ti,Vi,Ai,Mi〉}n
i=1, where each

〈Ti,Vi,Ai,Mi〉 is the ontology of peer Pi. Without loss of generality we assume that
the class identifiers defined by the different peers of a network are distinct.

In a SomeWhere network, there is no centralized schema but a distributed schema
made of the terminological, view and mapping components of the different peers.

Definition 4 (Data and Schema of a SomeWhere peer-to-peer network).
Let P:{〈Ti,Vi,Ai,Mi〉}n

i=1 be a SomeWhere peer-to-peer network.
– The schema S(P) of P is the collection of ontologies {〈Ti,Vi, ∅,Mi〉}

n
i=1.

– The data D(P) of P is {a | Individual(a type(t1) . . . type(tn)) ∈
⋃n

i=1
Ai}.

The point is that the data and the schema of a peer-to-peer network are distributed
and each peer has a partial knowledge of it: it knows its own data and schema, and
mappings with its acquaintances. The acquaintance graph accounts for the connection
induced by the mappings between the different peers within a given SomeWhere peer-
to-peer network.

Definition 5 (Acquaintance graph). Let P = {Pi}n
i=1 a collection of peers with their

respective vocabularies V ocPi
. Let V oc =

⋃n

i=1
V ocPi

be the vocabulary of P . Its
acquaintance graph is a graph Γ = (P , ACQ) where P is the set of vertices and ACQ ⊆
V oc×P ×P is a set of labelled edges such that for every (c, Pi, Pj) ∈ ACQ, i 6= j and
c ∈ V ocPi

∩ V ocPj
.

A labelled edge (c, Pi, Pj) expresses that peers Pi and Pj know each other to be
sharing the class c. This means that c belongs to the intentional classes of Pi (or Pj)
and is involved in a mapping with intentional classes of Pj (or Pi).

Example Let us consider four persons Ann, Bob, Chris and Dora, each having some
data about restaurants they know or like. Each of them maintains his/her own terminol-
ogy and views. Ann, who is working as a restaurant critics, distinguishes restaurants
considered as offering a ”good” cooking (G), among which are those which are rated
(R) with 1, 2 or 3 stars (S1, S2, S3). Ann also records the kind of cooking. She dis-
tinguishes Indian cooking (I) from oriental cooking (O), which for her covers Chinese
(C), Taı̈ (T) and Vietnamese (V) cooking. Bob is found of Asian cooking (A) and also
keeps track of what he considers to be the best quality (Q) restaurants he knows. Chris
is more found of fish restaurants (F) but recently discovered some places serving a
very nice cantonese cuisine (CA). Eventually, Dora’s preferred restaurants (DP) are

pizzeria (P), as well as restaurants serving Asian cuisine (but only of good quality) or
seafood (SF).

Ann, Bob, Chris and Dora are modelled as four peers P1, P2, P3 and P4 As a
convention, we use the previously introduced symbols to denote intentional classes and
symbols of the form MyX to denote extensional classes. We suppose that Ann stores
data on restaurants of various specialties, but that the only rated restaurants for which
she has stored data are those rated with 2 stars. We consider that Dora only keeps data
on pizzerias. We do not describe explicitly the assertional part of the peers but assume
that to each view defined in Vi corresponds at least one stored individual.

Peer 1 :
T1 Class(G partial Thing)

Class(S1 partial Thing)
Class(S2 partial Thing)
Class(S3 partial Thing)
DisjointClasses(S1 S2 S3)
Class(R complete unionOf(S1 S2 S3))
SubClassOf(R G)
Class(O partial Thing)
Class(I partial Thing)
Class(C partial O)
Class(V partial O)
Class(T partial O)

V1 Class(MyS2 partial S2)
Class(MyC partial C)
Class(MyV partial V)
Class(MyT partial T)
Class(MyI partial I)

Peer 2 :
T2 Class(A partial Thing)

Class(Q partial Thing)

V2 Class(MyA partial A)
Class(MyQ partial Q)

Peer 3 :
T3 Class(F partial Thing)

Class(CA partial Thing)

V3 Class(MyF partial F)
Class(MyCA partial CA)

Peer 4 :
T4 Class(DP partial Thing)

Class(P partial DP)
Class(SF partial DP)

V4 Class(MyP partial P)

The mappings express what each peer knows about its acquaintances:

Peer 1 Ann knows that Cantonese cuisine is a particular case of Chinese cooking.
Moreover she is very confident in Bob’s taste and agree to include Bob’ selec-
tion as good restaurants. She does’nt know exactly what Asian means for Bob, but
think that this notion encompasses her concept of oriental restaurant.
M1 : SubClassOf(CA C) SubClassOf(Q G) SubClassOf(O A)

Peer 2 Bob knows that what he calls Asian cooking exactly corresponds to what Ann
classifies as Oriental cooking
M2 : EquivalentClasses(A O)

Peer 3 Chris considers that fish specialties are a particular case of seafood specialties.
M3 : SubClassOf(F SF)

Peer 4 Dora counts on Ann and Bob’s knowledge to obtain good Asian restaurants.
M4 : SubClassOf(intersectionOf(A G) DP)

Figure 1 describes the acquaintance graph corresponding to this example. We just men-
tion the vocabulary of each peer. Edges are labeled with the class identifiers that are
shared (through mappings) between peers.

2.3 Query answering in SomeWhere

In SomeWhere, each user interrogates the peer-to-peer network through one peer of his
choice, and uses the vocabulary of this peer to express his query.

Definition 6 (Query). Let P be a SomeWhere peer-to-peer network. A query is an
OWL PL description in terms of classes of a particular peer of P .

P4: P, SF,

DP, A,G, MyP

P2: A,Q,

O, MyA,MyQ

P3: F, SF, CA, MyF, MyCA

P1: G, R,

S1, S2, S3,

O, I,C, V, T

MyC,MyV, MyT,

MyI, MyS2,

A, Q, CA

SF

A
G

Q, O, A

CA

Fig. 1. The acquaintance graph

The point is that, even if the query is local to a peer, the expected answers are all the
individuals, possibly stored at different peers, which satisfy the query. The following
definition provides the formal semantics of query answering in SomeWhere: an indi-
vidual a is an answer for the query q if q(a) is entailed by the union of the OWL PL
ontologies of all the peers in the network.

Definition 7 (answers). Let P:{〈Ti,Vi,Ai,Mi〉}n
i=1 be a SomeWhere peer-to-peer

network. Let q be a query defined over a peer of P . Let a be an individual of D(P): a
is an answer of q iff aI ∈ qI for every model I of {〈Ti,Vi,Ai,Mi〉}n

i=1.

Given a SomeWhere peer-to-peer network P and a query q, the query answering
problem is to find all the answers of q. In general, finding all answers in a peer data
management system is a critical issue [2]. In our setting however, we are in a case
where all the answers can be obtained using rewritings of the query. We first define the
notion of (maximal) conjunctive rewriting of a query in our setting. We then show how
conjunctive rewritings can be used to compute all the answers for the query.

Definition 8 (Conjunctive rewriting of a query). Let P be a SomeWhere peer-to-peer
network and S(P) its schema. Let q be a query asked to a peer of P . Let qe be a query
defined as an intersection of extensional classes only. qe is a conjunctive rewriting of q
iff qe is subsumed by q wrt S(P). It is maximal iff there does not exist a strict subsumer
of qe which is a rewriting of q.

It results from this definition that the answers of conjunctive rewritings of a query q
are answers for q. Getting the answers of a conjunctive rewriting is straightforward:
the answer set of qe is obtained as the intersection of the extensions of the extensional
classes in its definition. Thanks to the restrictions that we have imposed to the exten-
sional classes, the extension of an extensional class classID is simply the set of the
individual identifiers declared as of type classID in the corresponding ontology. Most
importantly, it has been shown in [4, 5] that when a query has a finite number of max-
imal conjunctive rewritings, then all its answers can be obtained in polynomial data
complexity as the union of the answer sets of its rewritings.

In the following section, we present a propositional encoding that enables us to
show that in our setting every query has a finite number of maximal conjunctive rewrit-
ings, and that maximal conjunctive rewritings correspond exactly to the negation of
proper prime implicates of the negation of the query in the distributed logical theory
resulting from that encoding.

3 Propositional encoding of query rewriting in SomeWhere

The propositional encoding concerns the schema of a SomeWhere peer-to-peer network
and the queries. It consists in transforming each query and schema statement into a
propositional formula using class identifiers as propositional variables.

The propositional encoding of an OWL PL description d, and thus of a query, is the
propositional formula Prop(d) obtained inductively as follows:

– Prop(owl : Thing) = true
– Prop(A) = A, if A is a class identifier
– Prop(unionOf(d1 . . . dn)) =

∨n

i=1
(Prop(dn))

– Prop(intersectionOf(d1 . . . dn)) =
∧n

i=1
(Prop(dn))

– Prop(complementOf(d1)) = ¬(Prop(d1))
The propositional encoding of the schema S(P) of a SomeWhere peer-to-peer network
P is the distributed propositional theory Prop(S(P)) made of the formulas obtained
inductively from the OWL PL directives of S(P) as follows:

– Prop(Class(classID complete d1 . . . dn)) = classID ⇔
∧n

i=1
(Prop(di))

– Prop(Class(classID partial d1 . . . dn)) = classID ⇒
∧n

i=1
(Prop(di))

– Prop(DisjointClasses(d1 . . . dn)) =
∧n

i=1

∧n

i<j(¬(Prop(di))∨¬(Prop(dj)))

– Prop(EquivalentClasses(d1 . . . dn)) =
∧n

i=1

∧n
i<j(Prop(di) ⇔ Prop(dj))

– Prop(SubClassesOf(d1 d2)) = Prop(d1) ⇒ Prop(d2))
From now on, for simplicity purpose, we use the propositional clausal form notation for
the queries and SomeWhere peer-to-peer network schemas.

As an illustration, let us consider the propositional encoding of the example pre-
sented in Section 2.2. After application of the transformation rules, conversion of each
produced formula in clausal form and suppression of tautologies, we obtain (figure 2) a
new acquaintance graph where each peer schema is described as a propositional theory.

P4 :

¬MyP ∨ P

¬P ∨ DP
¬SF ∨ DP
¬A ∨ ¬G ∨ DP

P2 :

¬MyA ∨ A ¬MyQ ∨ Q
¬A ∨ O

¬O ∨ A
P3 :

¬MyF ∨ F
¬MyCA ∨ CA

¬F ∨ SF

P1 :

¬S1 ∨ ¬S2 ¬S1 ∨ ¬S3 ¬S2 ∨ ¬S3

¬S1 ∨ R ¬S2 ∨ R ¬S3 ∨ R
¬R ∨ S1 ∨ S2 ∨ S3 ¬MyS2 ∨ S2

¬R ∨ G ¬Q ∨ G ¬O ∨ A
¬C ∨ O ¬V ∨ O ¬T ∨ O

¬MyC ∨ C ¬MyV ∨ V ¬MyT ∨ T
¬MyI ∨ I ¬CA ∨ C

SF

A

G

Q, O, A

CA

Fig. 2. The propositional encoding for the restaurant network

Proposition 1 states that the propositional encoding transfers satisfiability and es-
tablishes the connection between (maximal) conjunctive rewritings and clausal proper
(prime) implicates.

Definition 9 (Proper prime implicate wrt a theory). Let T be a clausal theory and q
be a clause. A clause m is said to be:

– a prime implicate of q wrt T iff T ∪ {q} |= m and for any other clause m′, if
T ∪ {q} |= m′ and m′ |= m then m′ ≡ m.

– a proper prime implicate of q wrt T iff it is a prime implicate of q wrt T but T 6|= m.

Proposition 1 (Propositional transfer). Let P be a SomeWhere peer-to-peer network
and let Prop(S(P)) be the propositional encoding of its schema. Let Ve be the set of
all the extensional classes.

– S(P) is satisfiable iff Prop(S(P)) is satisfiable.
– qe is a maximal conjunctive rewriting of a query q iff ¬Prop(qe) is a proper prime

implicate of ¬Prop(q) wrt Prop(S(P)) such that all its variables are extensional
classes.

As a result we can use any SAT algorithm for checking satisfiability of a SomeWhere
peer-to-peer network schema. Most importantly, Proposition 1 gives us a way to com-
pute all the answers of a query. The maximal conjunctive rewritings of a query q within
a peer-to-peer network P correspond to negation of the proper prime implicates of ¬q
wrt the propositional encoding of the schema of S(P). Since the number of proper
prime implicates of a clause wrt a clausal theory is finite, every query in SomeWhere
has a finite number of maximal conjunctive rewritings. Therefore, according to [4, 5],
the set of all of its answers is exactly the union of the answer sets of its rewritings.

In the following section, we exhibit a distributed consequence finding algorithm
which computes the set of proper prime implicates of a literal wrt a distributed propo-
sitional clausal theory. According to Proposition 1, if this algorithm is applied to a
distributed theory resulting from the propositional encoding of the schema of a Some-
Where peer-to-peer network, with the extensional classes considered as target variables,
and triggered with a literal ¬q, it computes in fact the negation of the maximal conjunc-
tive rewritings of the atomic query q. Since in our setting the maximal rewritings of
an arbitrary query can be obtained by combining the maximal rewritings of its atomic
components, we focus on the computation of the rewritings of atomic queries.

Illustration on the example Before going into the details of the algorithm, we illustrate
its behavior on finding the conjunctive rewritings of the query DP asked to P4 for
finding Dora’s preferred restaurants. The algorithm computes the proper implicates of
¬DP starting from P4. The local proper implicates of ¬DP with respect to P4 that are
produced are: {¬MyP,¬P, ¬SF,¬A ∨ ¬G}. The clause ¬MyP only contains one
extensional class symbol. Its negation MyP is thus a first local rewriting. The clause
¬P is discarded since it does not contain any symbol shared whith some other peer.
But the last two clauses can be used to try to find further rewritings, by soliciting P4

acquaintances that share symbols with these clauses. The clause ¬SF is transmitted
for propagation to P3, which produces {¬MyF,¬F}. Since ¬MyF only contains one
extensional class symbol, its negation MyF is a second rewriting. We call it a remote
rewriting because it has been produced by inference through a remote peer . Since F is
not shared, ¬F is discarded and this branch of reasoning is closed.

The last clause to consider is ¬A ∨ ¬G which contains two shared symbols. Our
algorithm splits such a clause and separately computes implicates of each of its com-
ponents (¬A and ¬G). The respective results will be recombined afterwards. We first
focus on ¬A, which is transmitted for propagation to P2. This produces the clauses
{¬MyA,¬O}, among which ¬MyA is left pending for further combination. ¬O and
¬A are transmitted to P1. The propagation of ¬O produces as new proper implicates of
¬A: ¬MyV , ¬MyT and ¬MyC, as well as ¬MyCA (by further propagation of ¬C
in P3). Transmitting ¬A to P1 produces again the clause ¬O in P1 (by resolution with

¬O∨A). Since O is shared with P2, ¬O is transmitted back to P2. Its propagation in P2

produces ¬A. At this stage, the algorithm checks in its history that ¬A has already been
transmitted to P2 before and stops the current reasoning branch. Handling such histo-
ries is the means for avoiding the algorithm to loop. The whole set of proper implicates
of ¬A is then: {¬MyA,¬MyV,¬MyT,¬MyC,¬MyCA}. In a similar way, trans-
mitting ¬G to P1 produces as proper imlicates of ¬G: {¬MyS2,¬MyQ}. Recom-
bining the implicates of each component of the splitted clause amounts to building all
the clauses of the product of {¬MyS2,¬MyQ} by {¬MyA,¬MyV,¬MyT,¬MyC,
¬MyCA}. The negation of each of the 10 clauses produced in this way (e.g. MyS2 ∧
MyA, MyQ ∧ MyT ,..) constitutes new rewritings of the initial query. We call such
rewritings integration rewritings. Eventually, the inital query admits a total of 12 max-
imal conjunctive rewritings. For example, the rewriting MyS2 ∧ MyA states that the
identifiers of restaurants that are found both in the data stored by Ann as 2 stars rated
restaurants and in the data stored by Bob as Asian cooking restaurants are answers to
the query asking for Dora’s preferred restaurants.

4 Distributed consequence finding algorithm

The distributed algorithm that we have designed is a message passing algorithm im-
plemented locally at each peer. It handles an history which is initialized to the empty
sequence. An history hist is a sequence of triples (l, P, c) (where l is a literal, P a
peer, and c a clause). An history [(ln, Pn, cn), . . . , (l1, P1, c1), (l0, P0, c0)] represents a
branch of reasoning initiated by the propagation of the literal l0 within the peer P0, and
the splitting of the clause c0: for every i ∈ [0..n − 1], ci is a consequence of li and Pi,
and li+1 is a literal of ci, which is propagated in Pi+1. The algorithm is composed of
three procedures, each one being triggered by the reception of a message.
The procedure RECEIVEQUERYMESSAGE is triggered by the reception of a query
message m(Sender, Receiver, query, hist, l) sent by the peer Sender to the peer
Receiver which executes the procedure: on the demand of Sender, with which it
shares the variable of l, it processes the literal l.
The procedure RECEIVEANSWERMESSAGE is triggered by the reception of an answer
message m(Sender, Receiver, answer, hist, r) sent by the peer Sender to the peer
Receiver which executes the procedure: it processes the answer r (which is a clause
the variables of which are target variables) sent back by Sender for the literal l (last
added in the history) ; it may have to combine it with other answers for literals being in
the same clause as l.
The procedure RECEIVEFINALMESSAGE is triggered by the reception of a final mes-
sage m(Sender, Receiver, final, hist, true): the peer Sender notifies the peer Re-
ceiver that answer computation for the literal l (last added in the history) is completed.
Those procedures handle two data structures stored at each peer: ANSWER(l, hist)
caches the answers resulting from the propagation of l within the reasoning branch
corresponding to hist ; FINAL(q, hist) is set to true when the propagation of q within
the reasoning branch of the history hist is completed. The reasoning is initiated by
the user (denoted by a particular peer User) sending to a given peer P a message
m(User, P, query, ∅, q), which triggers the procedure RECEIVEQUERYMESSAGE(m(
User, P, query, ∅, q)) that is locally executed by P . In the description of the proce-

dures, since they are locally executed by the peer which receives the message, we will
denote by Self the receiver peer.

In the following, we will use the notations:
– for a literal q, Resolvent(q, P) denotes the set of clauses obtained by resolution

between q and a clause of P ,
– for a literal q, q̄ denotes its complementary literal,
– for a clause c of a peer P , S(c) (resp. L(c)) denotes the disjonction of literals of

c whose variables are shared (resp. not shared) with any acquaintance of P . The
condition S(c) = 2 thus expresses that c does not contain any shared variable,

– > is the distribution operator on sets of clauses: S1 > · · · > Sn = {c1 ∨ · · · ∨ cn

|c1 ∈ S1, . . . , cn ∈ Sn}. If L = {l1, . . . , lp}, we will use the notation >l∈LSl to
denote Sl1 > · · · > Slp .

– T arget(P) is the language of clauses (including the empty clause) involving only
variables that are extensonial classes of P .

Algorithm 1: Message passing procedure for processing queries
RECEIVEQUERYMESSAGE(m(Sender,Self, query, hist, q))
(1) if (q̄, ,) ∈ hist

(2) send m(Self, Sender, answer, [(q, Self, 2)|hist], 2)
(3) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(4)else if q ∈ Self or (q, Self,) ∈ hist

(5) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(6)else
(7) LOCAL(Self)← {q} ∪Resolvent(q, Self)
(8) if 2 ∈ LOCAL(Self)
(9) send m(Self, Sender, answer, [(q, Self, 2)|hist], 2)
(10) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(11) else
(12) LOCAL(Self)← {c ∈ LOCAL(Self)| L(c) ∈ T arget(Self)}
(13) if for every c ∈ LOCAL(Self), S(c) = 2

(14) foreach c ∈ LOCAL(Self)
(15) send m(Self, Sender, answer, [(q, Self, c)|hist], c)
(16) send m(Self, Sender, final, [(q, Self, true)|hist], true)
(17) else
(18) foreach c ∈ LOCAL(Self)
(19) if S(c) = 2

(20) send m(Self, Sender, answer, [(q, Self, c)|hist], c)
(21) else
(22) foreach literal l ∈ S(c)
(23) if l ∈ T arget(Self)
(24) ANSWER(l, [(q, Self, c)|hist])← {l}
(25) else
(26) ANSWER(l, [(q, Self, c)|hist])← ∅
(27) FINAL(l, [(q, Self, c)|hist])← false

(28) foreach RP ∈ ACQ(l, Self)
(29) send m(Self,RP, query, [(q, Self, c)|hist], l)

The following theorems summarize the main properties of our distributed message
passing algorithm. Theorem 1 states the termination and the soundness of the algorithm.
Theorem 2 states its completeness under the condition that each local theory is saturated

Algorithm 2: Message passing procedure for processing answers
RECEIVEANSWERMESSAGE(m(Sender,Self, answer, hist, r))
(1)hist is of the form [(l′, Sender, c′), (q, Self, c)|hist′]
(2) ANSWER(l′, hist)← ANSWER (l′, hist) ∪ {r}
(3) RESULT←>l∈S(c)\{l′}ANSWER(l, hist) > {L(c) ∨ r}
(4) if hist′ = ∅, U ← User else U ← the first peer P′ of hist′

(5) foreach cs ∈ RESULT

(6) send m(Self, U, answer, [(q, Self, c)|hist′], cs)

Algorithm 3: Message passing procedure for notifying termination
RECEIVEFINALMESSAGE(m(Sender,Self, final, hist, true))
(1)hist is of the form [(l′, Sender, true), (q, Self, c)|hist′]
(2) FINAL(l′, hist)← true

(3) if for every l ∈ S(c), FINAL(l, hist) = true

(4) if hist′ = ∅ U ← User else U ← the first peer P′ of hist′

(5) send m(Self, U, final, [(q, Self, true)|hist′], true)
(6) foreach l ∈ S(c)
(7) ANSWER(l, [(l, Sender,), (q, Self, c)|hist′])← ∅

by resolution. Theorem 3 states that the user is notified of the termination when it oc-
curs, which is crucial for an anytime algorithm. Their full proofs are given in [6], in
which the properties of termination, soundness and completeness are first proven for a
recursive consequence finding algorithm that we do not provide in this paper by lack
of space. Theorem 1 and Theorem 2 are then obtained by proving that the distributed
message passing algorithm described in this paper terminates and computes the same
results as that recursive algorithm. It is important to note that the recursive consequence
finding algorithm described in [6] applies in a general setting of distributed theories
sharing variables. As a result, its completeness is only guaranteed if the acquaintance
graph satisfies a certain property: if two local theories have a common variable, there
must exist in the acquaintance graph a path between those two theories, all the edges
of which are labeled with that variable. In our setting, the variables that may be com-
mon to two theories necessarily comes from the encoding of mapping statements, and
the above property is always satisfied by the acquaintance graphs resulting from the
propositional encoding of the schemas of SomeWhere peer-to-peer networks.

In the following theorems, let T be the propositional encoding of the schema S(P)
of a peer-to-peer SomeWhere network, let ¬q the negation of an atomic query q, let T
be the propositional encoding of the local schema and mappings of the asked peer.

Theorem 1. If T receives from the user the message m(User, T, query, ∅,¬q), then:
– a finite number of answer messages will be produced ;
– each produced answer message m(T, User, answer, [(¬q, T,)], r) is such that r

is an implicate of ¬q wrt S(P) which belong to T arget(P).

Theorem 2. If each local theory is saturated by resolution and if T receives from the
user the message m(User, T, query, ∅,¬q), then for each proper prime implicates r of
¬q wrt S(P) belonging to T arget(P), an answer message m(T, User, answer, [(¬q,
T,)], r) will be produced.

Theorem 3. If r is the last result returned through an answer message m(T, User,
answer, [(¬q, T,)], r) then the user will be notified of the termination by a message
m(T, User, final, [(¬q, T, true)], true).

5 Experimental analysis

Evaluating the performances of SomeWhere peer-to-peer networks amounts to evalu-
ate our message passing algorithm on propositional encodings of OWL PL ontologies.
Experimental data corresponding to such encodings are missing, therefore our exper-
iments have been performed on random generated distributed propositional theories.
Instances used during experiments may be characterized by the structure of the acquain-
tance graph and the structure of peer propositional theories. The acquaintance graphs
used in all instances are uniform random connected graphs, characterized by the number
d of nodes and e edges, c = e/d being the graph’s connection ratio. For all instances,
peer theories are generated randomly using the same model, n denotes the number of
variables in each theory, p the number of (randomly chosen) target variables, and q the
number of variables shared by connected peers (we fixed q = 2 in all instances).

SomeWhere has been developed in Java. All experiments have been done on two
clusters of Linux machines with 1Gb memory1. Two kinds of experiments have been
performed. In the first one, peer theories correspond to uniform random 3-CNF theories,
that have been widely studied in the propositional reasoning community and for which
the problem of prime implicates computation is known to be hard [7, 8]. The main goal
of these experiments is to evaluate the robustness of the SomeWhere architecture in the
context of large networks of complex theories. Because of the tremendous amount of
possible rewritings in such networks, we only study those obtained in a limited time.
However, random 3-CNF theories are not necessarily representative of taxonomy-like
encodings. Therefore, a second kind of experiments has been conducted, intended to be
more realistic, in which peer theories encode random trees.

5.1 3-CNF theories, witnesses for robustness

In the first experiments each peer contains a set of m random clauses of length 3 (on
n variables) and additional equivalence clauses relating variables shared by connected
peers. Although it has received little attention until now, proper prime implicate compu-
tation is a difficult problem. As an illustration, the figure 3.a describes, for m = 30 and
different values of n, the average values of the total number of proper prime implicates
(# PPI) and of their distribution according to their size. Since we wanted to connect a
large number of such peers we fixed m to 30 and n to 15 for each peer (i.e., an average
of 20 PPI for each peer, about half of which contain more than 3 literals). We asked
1000 random queries equally distributed on all the peers of Cluster1. Because of the
inherent intractibility of the global theory, we could not expect all the queries to finish.
We tried to run zres [8], a state of the art prime implicate solver, on the (centralized)
global theory (14392 clauses, 5400 variables) but it blowed-up with billions of clauses.
Therefore, we used a time cut off of 90s, which seems to be a good candidate treshold
for human interactive queries.

Results are summarized on figure 3.b The plain curve (first one in the legend) rep-
resents the (average) total number of rewritings returned within the elapsed time. The
two other curves correspond to (normalized) cumulative distribution function (CDF)

1 Cluster1: 18 diskless Pentium IV 2800 MHz and Cluster2: 71 Athlons(>1800 MHz)

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

80

90

Size of proper prime implicates

N
um

be
r

of
 p

ro
pe

r
pr

im
e

im
pl

ic
at

es

3CNF with m=30 clauses, 100.n experiments

n=11 vars (#PPI=3)
n=13 vars (#PPI=8)
n=15 vars (#PPI=20)
n=17 vars (#PPI=45)
n=19 vars (#PPI=69)
n=21 vars (#PPI=127)
n=23 vars (#PPI=163)
n=25 vars (#PPI=199)
n=27 vars (#PPI=286)
n=29 vars (#PPI=313)

0 10 20 30 40 50 60 70 80 90
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Time (s)

N
um

be
r

of
 r

ew
rit

in
gs

360 peers (e=468, q=2, m=30 and n=15), 1000 queries

number of rewritings
CDF of last failed rewritings (norm.)
CDF of last complete rewrit. (norm.)

Fig. 3. (a), left figure, Proper Prime Implicates characteristics in a (single) random 3CNF theory;
and (b), right figure, speed-up of rewritings on distributed 3-CNF theories

of the last returned rewriting. We distinguish completed queries (i.e. those terminated
within the time cutoff) from failed queries (i.e. still waiting for further results at time
cutoff). The failed curve (second one) thus characterizes, for a given time, the propor-
tion of queries that will not obtain any new rewriting within the remaining time. For
instance, after 20s 37% of the queries are waiting for results from other peers and will
not obtain further answer before the 90s limit. The last curve describes the proportion
of queries completed at a given time (before 90s). The first striking result is the expo-
nential variation of the number of rewritings. Waiting a little bit longer may result in an
exponentially increasing number of new rewritings. The important part of queries that
quickly “fail” (waiting for rewritings from the beginning) may be explained by rewrit-
ings of clauses with shared variables but no target variable. They need a lot of time but
do not return any result. However, it is interesting to note that this curve is linear. Half
of the queries were still producing new results after 50s.

Another interesting result concerns the origin of target literals in the returned rewrit-
ings. We observed that the mean number of peers producing these literals is about 8. In
average, the total number of literals composing the returned rewritings is 6157. Among
them, 2381 come from a first peer, 1810 from second peer, ... but only 1 comes from
an 8th peer. However the median values are much smaller (688 for a first peer, 483
for a second peer,...). This suggests an exponential behavior where some of the pro-
duced rewritings are quite large. Moreover we observed that the median number of
peers making up the rewritings is more than two times greater than the graph degree,
which suggests that more than half of the rewritings were composed by at least two
degrees of knowledge (needing friends of friends to produce rewritings).

5.2 Distributed theories encoding trees

In the second experiments, each peer theory corresponds to the CNF encoding of a
random tree and contains only binary clauses (a ∨ ¬b encoding ”b is a son of a”). We
focused on trees of 50 nodes and a depth of 6. As opposed to 3-CNF case, the number
of rewritings in each peer is now quadratic (it corresponds to the number of paths in
the tree rooted at the node labelled by the queried literal). We chose p = 25 for each

0 0.5 1 1.5 2 2.5 3 3.5
0

20

40

60

80

100

120

140

160

180

200
1065 peers (e=3195, trees of 50 nodes), 15000 queries

Time (s)

N
um

be
r

of
 r

ew
rit

in
gs

number of rewritings
CDF of completed queries (norm.)

0 1 2 3 4 5 6 7
0

50

100

150

200

250

300
71 peers (e=710, trees of 50 nodes), 1500 queries

Time (s)

N
um

be
r

of
 r

ew
rit

in
gs

number of rewritings
CDF of completed queries (norm.)

Fig. 4. Left: 1065 peers and c = 3 – Right: 71 peers and c = 10

d n Completion time Rewriting heterogeneity Rewriting length
1065 3195 0.06 (0.17) [0.04 0.13] 1.45 (2.09) [1 4] 3.63 (10.31) [1 15]
71 710 0.20 (2.94) [0.04 0.19] 1.49 (2.36) [1 4] 4.37 (16.25) [1 18.5]

Table 1. Experimental results for two configurations (columns d and n) with q=2, m=50, n=50
(CNF encoding of trees). The numbers are: mean (std) [median 95%]. Time is in (real) seconds.

peer. Additional clauses relate variables shared by connected peers, randomly stating
equivalence or implication. Two kinds of benchmarks have been considered. Results
are summerized on figure 4 (in a similar way to figure 3) and on table 1.

The first benchmark focuses on a large number of peers (d = 1065, e = 3195 and
c = 3). The first striking point is that all queries terminate in less than 3.5s, (95% of
them in less than 0.04s). Moreover, the mean number of peers composing rewritings is
1.45 (max=37). Although the curves are not presented here, we observe an exponential
distribution of the number of distinct peers contributing to rewritings. On more than 5%
of the queries, rewritings involve more than 4 different peers.

The second benchmark considers a smaller network with a higher connection ratio
(d = 71, e = 710, c = 10), supposed to be more representative of a small world (i.e.,
a community of users sharing points of interest) . Each peer has 40% of its variables
in a mapping. All the queries terminated in less than 7 seconds (95% in less than 0.19
seconds). We observed a similar heterogeneity of the rewritings which are a bit longer.

We think that acquaintance graphs of more realistic applications should correspond
to large graphs of weakly connected small worlds. The above results suggest that Some-
Where might scale up. Further experiments will be done to validate this hypothesis.

6 Related work & conclusion

Peer-to-peer systems have evolved from keyword-based file sharing systems like Gnutella
(www.gnutella.com) and KaZaA (www.kazaa.com) to semantic peer data management
systems like Piazza [9], Edutella [10] and SomeWhere.
Piazza has XML as data model. Mappings (relying on a subset of XQuery) are in-
clusions and equivalences between documents, which makes Piazza and SomeWhere
architectures quite similar. As in SomeWhere, the main focus of Piazza is to compute
all the answers of a query by rewriting queries using views. A small but realistic Piazza

application had been deployed in order to obtain first experimental results. The appli-
cation relates 15 peers concerning different aspects of the database research field. Five
test queries are given with their respective rewriting times and number of rewritings.
Edutella has RDF as data model and its architecture significantly differs from Piazza
and SomeWhere. First, peers do not play the same role within the network. Some of
them are just data providers. Others are wrapping mediators that distribute queries to
appropriate peers, each of which can answer locally the queries it receives. More com-
plex peers are integrating mediators that are able to mediate distributed queries over
multiple peers. The other difference comes from the mappings which are not declared
between peers. Each peer registers the queries it is able to answer by providing to some
mediator peers information about its schema, constraints and query language.

The contributions of this paper is the SomeWhere system: a peer-to-peer architec-
ture for the OWL W3C emerging standard. First experiments clearly illustrate its ability
to scale up to hundreds of peers. On structured theories, we tested it with more than a
thousand peers and more than fifteen thousands queries. All the queries ended in less
than four seconds, giving rewritings built on multiple peers vocabulary. This architec-
ture is used in a joint project with France Télécom, which aims at enriching peer-to-peer
web applications with reasoning services (e.g., Someone [11]).

We plan to extend SomeWhere in two directions. First, we want to take into account
a larger fragment of OWL DL. This will help in managing and querying more complex
data within a SomeWhere network. We also want to make SomeWhere more robust and
dynamic by using a Chord-like network layer [12] in order to manage the connections,
disconnections and look-up services of peers.

References

1. Berners-Lee, T., Hendler, J., O.Lassila: The semantic web. Scientific American, 279 (2001)
2. Halevy, A., Z.Ives, D.Suciu, I.Tatarinov: Schema mediation in peer data management sys-

tems. In: Proceedings of ICDE. (2003)
3. http://www.w3.org/TR/owl semantics: Owl web ontology language semantics and abstract

syntax. Technical report, W3C (2004)
4. Goasdoué, F.: Réécriture de requêtes en termes de vues dans CARIN et intégration

d’informations. PhD thesis, Université Paris Sud XI - Orsay (2001)
5. Goasdoué, F., Rousset, M.C.: Answering queries using views: a krdb perspective for the

semantic web. ACM Journal - Transactions on Internet Technology (TOIT) 4 (2004)
6. Adjiman, P., Chatalic, P., Goasdoué, F., Rousset, M.C., Simon, L.: Distributed reasoning in

a peer-to-peer setting. Technical Report 1385, Université Paris Sud XI (2004)
7. Schrag, R., Crawford, J.: Implicates and prime implicates in random 3-sat. Artificial Intelli-

gence 81 (1996) 199–221
8. Simon, L., del Val, A.: Efficient consequence finding. In: IJCAI’01. (2001) 359–365
9. Halevy, A., Ives, Z., Tatarinov, I., Mork, P.: Piazza: data management infrastructure for

semantic web applications. In: WWW’03. (2003)
10. Nedjl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A., Nilsson, M., Palmer, M.,

Risch, T.: Edutella: a p2p networking infrastructure based on rdf. In: WWW’02. (2002)
11. Plu, M., Bellec, P., Agosto, L., van de Velde, W.: The web of people: A dual view on the

WWW. In: Int. World Wide Web Conf. (2003)
12. Stoica, I., Morris, R., Karger, D., Kaasshoek, M., Balakrishnan, H.: Chord: A scalable Peer-

To-Peer lookup service for internet applications. In: ACM SIGCOMM. (2001) 149–160

