
Solving Real-World Linear Programs:

A Decade and More of Progress

Robert E. Bixby

ILOG, Inc. and Rice University

1 Abstract

This paper is an invited contribution to the 50th anniversary issue of the journalOper-

ations Research, published by the Institute of Operations Research and Management

Science (INFORMS). It describes one persons perspective on the development of com-

putational tools for linear programming. The paper begins with a short, personal his-

tory, followed by historical remarks covering the some 40 years of linear-programming

developments that predate my own involvement in this subject. It concludes with a

more detailed look at the evolution of computational linear programming since 1987.

2 Introduction

I am a relative newcomer to computation. For the �rst half of my scienti�c career,

my research focused exclusively on the theoretical aspects of operations research and

discrete mathematics. That focus began to change in the early 1980s with the ap-

pearance of personal computers.

My �rst PC was used primarily to implement simple algorithms used in teaching.

At �rst these algorithms did not include a simplex algorithm; eventually, however,

I concluded that it would be useful to incorporate computation in the LP courses

that I was teaching. I wrote a letter to Linus Schrage at the University of Chicago,

inquiring about the cost of using LINDO in my classes. I don't remember the cost,

but I do remember it was more than I could a�ord. As a result, I started writing my

own code, initially a simple tableau code.

At that time, in the early 1980s, I knew nothing about the computational aspects

of linear programming (LP). I knew a great deal of theory, but numerical analysis and

the computational issues associated with numerical algorithms were not subjects that

were part of my graduate education. I had no idea that tableaus were numerically

unstable.

Fortunately for me, by the time my interests in computation had started, the

Department of Industrial Engineering and Management Sciences at Northwestern

University had hired Bob Fourer, one of the creators of the AMPL modeling language.

Bob had worked for several years at the National Bureau of Economic Research doing

practical linear programming, followed by a graduate career at Stanford. He knew

a lot about the computational aspects of mathematical programming, and he passed

on a great deal of that knowledge to me in informal conversations.

1

Linear programming become more central to what I was doing when a friend

of mine, Tom Baker, founded Chesapeake Decision Sciences (now a part of Aspen

Technologies). Shortly thereafter, Tom asked if I had an LP code that he could

possibly use in the LP module of the product he was building. I said yes, converted

my code to C (that was one of Tom's conditions), and delivered it to him.

To this day, I'm not quite sure why Tom thought my code would eventually be

reasonably good. Initially it certainly was not.

After the code was delivered to Chesapeake, there followed a period of about two

years during which I received a steady stream of practical LPs from Chesapeake, LPs

on which my code did not do very well. In each case, I poked around in my code and

the LP itself to see what ideas I could come up with, never looking in the literature

(this wasn't my area of research). Slowly the code got better, until some time around

1986, one of Tom's colleagues informed me that my code had actually gotten good

enough that one of their customers was interested in obtaining it separately. I was, to

say the least, surprised, and immediately set about doing my �rst actual comparisons

to other LP codes. I chose Roy Marsten's [1981] quite successful, and portable (that

was key for me) XMP code. I discovered, to my amazement, that for a substantial

subset of the netlib1 testset my code was indeed pretty good, running on average two

times faster than XMP. In addition, it appeared that my code was signi�cantly more

stable than XMP.

This comparison to XMP was an important part of what transformed LP com-

putation into a serious part of my scienti�c research. Another, equally important

consideration was integer programming.

This was the mid 1980s, and integer programming computational research was

beginning to ower, with work by Martin Gr�otschel, Ellis Johnson, Manfred Padberg,

Laurence Wolsey and others. Linear programming was an essential component in that

work, but the tools available at that time were proving to be inadequate. The then

state-of-the-art codes, such as MPSX/370, simply were not built for this kind of

application; in addition, they did not deal well with issues such as degeneracy. The

situation at the time is well-described by some remarks of Gr�otschel and Holland

[1991], commenting on their use of MPSX/370 in work on the traveling salesman

problem: They note that if the LP-package they were using had been \better suited

for a row generation process than MPSX is, the total speed-up obtained by faster (cut)

recognition procedures might be worth the higher programming e�ort," and \Some

linear programs that arose were hard to solve, even for highly praised commercial

codes like IBM's MPSX."

What was needed was a numerically robust code that was also exible enough to

be embedded in these integer-programming applications. It had to be a code that

made it easy to handle the kinds of operations that arose in this context, a context

in which it was natural to begin with a model instantiated in one form followed by a

sequence of problem modi�cations (such as row and column additions and deletions

1See http://netlib.lucent.com/netlib/lp/data/index.html.

2

and variable �xings) interspersed with resolves starting from resident advanced bases.

These needs were among the fundamental motivations behind the development of the

callable-library version of the CPLEX2 code. This connection between linear and

integer programming also o�ered me the opportunity to work on something that

would not only be of potential commercial value, but would �t nicely with a research

program in integer programming. The �rst version of the resulting product, CPLEX

1.0, was released in 1988.

3 How far have we come?

At lot has happened in the subject of linear programming since 1987 when I became

seriously involved in the computational aspects of this subject. The question I would

like to address here { as quantitatively as possible { is, how have the developments

during this period a�ected our ability to solve real-world LPs. The size and magnitude

of the real models that are regularly solved today was, I believe, unimaginable ten

years ago.

It will come as no surprise that in most of what I present, I will make use of

the CPLEX LP code. However, it is my sense that similar improvements could be

demonstrated using other modern LP codes as a vehicle. Much of what I will discuss

is based upon technological advances that have bene�tted LP in general.

While the focus of this paper will be on linear programming, a few comments

are also in order on integer programming. Integer programming, and most partic-

ularly the mixed-integer variant, is the dominate application of linear programming

in practice. Integer programming makes direct use of all the advances we will dis-

cuss in LP algorithms. In addition, there have been other, major advances that

are domain speci�c to integer programming, such as the use of \cutting-planes"3 and

integer-programming-speci�c presolve techniques. These two classes of methods alone

often transform models from being unsolvable to being straightforward. There is lit-

tle doubt that the overall improvement in present-day integer-programming codes

exceeds that for linear programming.

It will be assumed throughout this paper that the reader has a general familiarity

with LP algorithms, particularly the primal and dual simplex algorithms and the

primal-dual log barrier algorithms. For a general reference on simplex algorithms see

Chvat�al [1983], and for a more detailed discussion of some of the speci�c computa-

tional issues discussed here see Applegate et al [2002]. For a reference on barrier

algorithms see Wright [1997].

2CPLEX is a trademark of ILOG, Inc.
3CPLEX, for example, now includes routines for generating nine di�erent kinds of cutting planes,

including, what seem to be the most powerful of all, Gomory mixed-integer cuts { see Bixby et al
[2000]

3

4 Advances in computing machinery

We all recognize that advances in computing machinery have had an enormous e�ect

on the practical application of linear programming. Without computing machines,

linear programming as we know it would not exist.

During the period since 1987, the inuence of computing advances have been

particularly strong. Indeed, it is sometimes asserted that machine advances are the

main reason that linear programming has become such a powerful tool. While it

is my conviction that algorithmic and software improvements have been equally as

important, there is no doubt that hardware e�ects are large and pervasive. Indeed,

today's desktop computers have reached the stage that their power exceeds by a

considerable factor even that of the best supercomputers available just 10 years ago.

Beyond simply the issue of speed, huge increases in computer memory capacity

have made it possible to handle much larger problems, and also have made it possible

to consider entirely di�erent solution strategies and implementations of these strate-

gies. Many of the basic algorithmic ideas that are key to modern LP codes simply

could not have been implemented if memory were not so plentiful. The improvements

in computer programming languages and systems have also made it much simpler to

build large, complex systems. Improvements in computer-human interfaces have im-

proved not only the usability of the tools that we create, but greatly facilitated the

creation of the tools themselves, including the basic improvements in the underlying

algorithms. The insights for many of these improvements have come from the simple

ability to examine larger and more interesting real instances in real time.

I give separate estimates for machine speed improvements for simplex algorithms

and barrier algorithms. To estimate simplex speedups I make use of computational

results from studies carried out in 1988 using CPLEX 1.0 combined with results on

the same models using CPLEX 1.0 on current machines.

The situation for barrier algorithms di�ers somewhat from that for simplex al-

gorithms. In barrier algorithms there is a single computational step that usually

dominates: The computation of the Cholesky factorization. There is no such single

step that dominates in simplex computations. In addition, the computation of the

Cholesky factorization is very regular; we are much more able to exploit the capa-

bilities of modern computing architectures than we are in simplex algorithms. As a

result, the standard Linpack benchmarks4 provide a good measure of the e�ects of

machine improvement for barrier algorithms.

The Sun 3/50 was the machine on my desk in the late 1987. I do have compu-

tational results for Intel processors available at this time, but the usability of these

machines based upon these processors was severely hampered by their 16 bit, 640K

memory limit. The 25 MHz 386 listed in the Table 1 was the �rst of the PC proces-

sors available to me where these limitations could be overcome, using so-called 32 bit

\DOS extenders".

4See http://www.netlib.org/performance/html/PDSbrowse.html.

4

Table 1: Machine improvements{Simplex algorithms

Old machine/processor New machine/processor Estimated speedup

Sun 3/50

Sun 3/50

25 MHz Intel 386

IBM 3090/108S

Cray X-MP/416

Compaq Server ES40, 667 MHz

Pentium 4, 1.7 GHz

Compaq Server ES40, 667 MHz

Compaq Server ES40, 667 MHz

Compaq Server ES40, 667 MHz

900

800

400

45

10

Table 2: Machine improvements{Barrier algorithms

Old machine/processor New machine/processor Estimated speedup

Sun 3/50

Sun 3/50

33 MHz Intel 386

IBM 3090/108S

Cray X-MP/416

Pentium 4, 1.7 GHz

Compaq Server ES40, 667 MHz

Compaq Server ES40, 667 MHz

Compaq Server ES40, 667 MHz

Compaq Server ES40, 667 MHz

13000

12000

4000

10

5

The IBM 3090 is included here because, into the mid 1980s, these machines were

typical of the mainframes that dominated LP practice. It is worth noting that the

simplex speedup listed is surely a signi�cant overestimate of the speedup relative

to a code such as MPSX. The C compilers for these machines were not very good;

moreover, the CPLEX code took no account of the special properties of the 3090

architecture. MPSX, by contrast, was written largely in machine assembly code and

tuned to the speci�cs of the 3090 architecture.

The �nal machine listed, the Cray X-MP, was never in wide use as an LP com-

puting environment. However, signi�cant testing was carried out on these machines

in the late 1980s and early 1990s, and they do illustrate the upper limit of computing

power available at that time.

What I conclude from Tables 1 and 2 is that for desktop computing, machine

speedups have contributed a factor between 500 and 1000 to the speed of simplex

algorithms. Barrier algorithms, on the other hand, have experienced speedups an

order of magnitude greater. This di�erence is fundamental to the fact that barrier

algorithms have emerged as a powerful computational tool in linear programming.

5 LP computation: 1947 { late 1980s

George Dantzig is widely recognized as the father of linear programming. A central

part of his many contributions to this subject was the recognition that linear pro-

gramming was more than simply a qualitative tool. It was important to be able to

solve linear programs and compute actual answers:

5

\A certain wide class of practical problems appears to be just beyond the

range of modern computing machinery. These problems occur in everyday

life; they run the gamut from some very simple situations that confront

an individual to those connected with the national economy as a whole.

Typically, these problems involve a complex of di�erent activities in which

one wishes to know which activities to emphasize in order to carry out

desired objectives under known limitations." Dantzig [1948].

LP computation began with Dantzig's introduction of the simplex method in 1947.

The above quotation is taken from the paper in which, to my knowledge, the simplex

algorithm �rst appeared. Perhaps the �rst instance of a non-trivial LP solved with

the simplex algorithm was Laderman's solution (see Dantzig [1963]) of Stigler's [1945]

diet problem. This LP had 9 constraints and 77 variables. Reportedly nine co-workers

working on electronic calculators an estimated total of 120 man days were needed to

carry out the computations.

The �rst computer implementation of the simplex method seems to have been

developed at the National Bureau of Standards, the present day National Institute of

Standards and Technology, on the SEAC computer. Orden [1952] and Ho�man et al

[1953] report computational tests with this machine. One instance with 48 equations

and 71 variables was solved in 18 hours and 73 simplex iterations.

William Orchard-Hays began his pioneering work on implementations of the sim-

plex method in 1953{54. This work was the beginning of the development of com-

mercially available LP codes. The computing machine used was an IBM \card pro-

grammable calculator", hardly a real computer by today's standards. In the words of

Orchard-Hays [1990] \The CPC was an ancient conglomeration of tabulating equip-

ment, electro-mechanical storage devices, and an electronic calculator (with tubes and

relays), long since forgotten. One did not program in a modern sense, but wired three

patch-boards which became like masses of spaghetti." The �rst code implemented

by Orchard-Hays used an explicit basis inverse, with the inverse freshly recomputed

at each iteration. Again, in the words of Orchard-Hays, \One could have started an

iteration, gone to lunch, and returned before it �nished . . . " The initial results were

not encouraging. However, in 1954, Dantzig recalled the idea of the product-form of

the inverse, proposed by Alex Orden, and this device led to a second, more eÆcient

CPC implementation. Orchard-Hays [1990] reports that the largest instance solved

with this code had 26 constraints and 71 variables, and took \eight hours of hard

work feeding decks to hoppers" to complete the solution.

As computers continued to get better, so did implementations of simplex algo-

rithms. In 1956 a code named RLSL1 was implemented on an IBM 704, a machine

with 4K of core storage, miniscule by today's standards. The maximum number of

constraints was limited to 255, with an essentially \unlimited" number of variables.

RSLP1 was distributed through the SHARE organization and was used by larger

petroleum companies. In the period 1962{1966 LP/90 was implemented for the IBM

7090 followed by LP/90/94 for the IBM 7094. The number of allowed constraints

grew to 1024. By then the use and application of LP had grown as well.

6

In 1966, IBM introduced a major advance in computing hardware, the family of

IBM 360 computers. At about the same time, the development of an LP system

designed to run on these computers was commissioned by IBM. That system became

known as MPS/360. MPS/360 was followed by MPSX and later by MPSX/370. Dur-

ing that period, motivated by Kalan's [1971] work on supersparsity, Ketron Corpora-

tion developed MPS III with Whizard; this work was supported by Exxon Corpora-

tion through the urging of Milt Guttermann. Tuned for the new, fast IBM platforms,

these codes, most particularly MPS III, represented quantum leaps both in speed and

problem size, accepting models with up to 32000 constraints. Other powerful systems

were also developed during that period, including the UMPIRE system for the UNI-

VAC 1108, APEX III for CDC machines, and in the mid to late 70s LAMPS, written

independently by John Forrest. With modest updates and machine improvements,

these systems were the dominant LP computing environments into the late 1980s.

6 LP computation: 1987 { present

I will begin with a summary of important algorithmic ideas. This summary will

be followed by computational results comparing LP computation in 1987 with LP

computation today, �rst in anecdotal form, and then through more extensive tests

carried out on several di�erent collections of LP models. The �nal, and and by far

most extensive of these will involve a testset with 680 models, the largest of which

has more than six million constraints.

6.1 Algorithmic improvements

Some of the topics discussed here, such as primal-dual log barrier algorithms, will

be well known to all readers. Others, such as \bound shifting", an device used in

primal simplex algorithms, will be less known. For a detailed presentation of the

simplex-speci�c parts of this discussion, see Applegate et al [2002].

� The dual simplex algorithm with steepest edge.

The dual simplex algorithm was introduced by Lemke [1954]. It is not a new

algorithm. However, to my knowledge, commercial implementations of this algo-

rithm were not available in 1987 as full-edged alternatives to the primal simplex

algorithm. MPSX/370 and MPS III, as well as the other widely used mainframe

codes, surely included rudimentary implementations of the dual algorithm for

use in solving mixed-integer programs with branch-and-bound. However, these

implementations were not exported.

All that has changed. The dual simplex algorithm is now a standard alternative

in modern codes. Indeed, computational tests, some of which will be presented

later in this paper, indicate that the overall performance of the dual algorithm

may be superior to that of the primal algorithm.

7

There are a number of reasons why implementations of the dual simplex algo-

rithm have become so powerful. The most important is an idea introduced by

Goldfarb and Forrest [1992], a so-called \steepest-edge" rule for selecting the

\leaving variable" at each dual simplex iteration. This method requires rela-

tively little additional computational e�ort per iteration and is far superior to

\standard" dual methods, in which the selection of the leaving variable is based

only upon selecting a basic variable with large primal infeasibility.

� Linear algebra.

Linear algebra improvements touch all the parts of simplex algorithms and are

also crucial to good implementations of barrier algorithms. Enumerating all

such improvements is beyond the scope of this paper. I will mention only a few.

For simplex algorithms, two improvements stand out among the rest. The �rst

of these to be introduced was dynamic LU-factorization using Markowitz thresh-

old pivoting. This approach was perfected by Suhl and Suhl [1990], and has

become a standard part of modern codes. In previous-generation codes, \preas-

signed pivot" sequences were used in the numerical factorization (see Hellerman

and Rarick [1971]). These methods were very e�ective when no numerical dif-

�culties occurred, but encountered serious diÆculties in the alternative case.

The second major linear algebra improvement is that LP codes now take ad-

vantage of certain ideas for solving large, sparse linear systems, ideas that have

been known in the linear-algebra community for several years (see Gilbert and

Peierls [1988]). At each major iteration of a simplex algorithm, several size-

able linear systems must be solved. The order of these systems is equal to the

number of constraints in the given LP. Typically these systems take as input

a vector with a very small number of nonzero entries, say between one and

ten { independent of overall model size { and output a vector with only a few

additional nonzeros. Since it is unlikely that the sparsity of the output is due

to cancellation during the solve, it follows that only a small number of nonze-

ros in the LU-factorization (and update) of the basis could have been touched

during the solve. The trick then is to carry out the solve so that the work is

linear in this number of entries, and hence, in total, essentially a constant time

operation, even as problem size grows. The e�ect on large linear programs can

be enormous.

For primal-dual log barrier algorithms, as previously noted, one computation

typically dominates the time per iteration, the computation of the Cholesky

factorization of AAT , where A is the constraint matrix of the given LP. A crucial

part of this computation is a preprocessing step, carried out in advance of the

actual barrier solve, in which the rows of A are ordered so that an associated

symbolic factorization of AAT will realize as little numerical \�ll" as possible.

While ordering techniques for minimizing �ll in Cholesky factorizations have

been under study for years, long before barrier algorithms became important

for linear programming, the kinds of matrices that arise in linear programming

8

are quite di�erent from those that had previously been studied. Subsequent

advances in this domain have been crucial to the present-day performance of

barrier algorithms. See Rothberg and Hendrickson [1998] for a description of

the state of the art.

� Primal-dual log barrier algorithms.

Karmarkar's [1984] paper started a virtual revolution in the theory of linear

programming, and also played a major role in leading to the development of

present-day primal-dual log barrier algorithms for linear programming.

As we shall see, for the CPLEX implementation, barrier algorithms have emerged

as overall the most powerful single algorithm for solving LPs. However, one fac-

tor has limited the overall importance of barrier algorithms in practice: Their

inability to replicate the performance of simplex algorithms, and in particular

dual simplex algorithms, when resolving an LP from an advanced basis after

�xing a small number of variables and/or adding a small number of new con-

straints. This fact largely limits the applications of barrier algorithms in the

domain of integer programming to solving the initial LP relaxation, typically

leaving the majority of the work to a simplex algorithm. Since the solution of

integer programs, particularly mixed-integer programs, is the dominant appli-

cation of linear programming in practice, the simplex algorithm remains the

dominant algorithm in practice. In addition, even for very large models, where

the advantages of barrier algorithms tend to grow, simplex algorithms are still

the winning approach in a signi�cant number of cases.

� Other ideas.

Presolve: This idea is made up of a set of problem reductions: Removal of

redundant constraints, �xed variables, and other extraneous model elements.

The seminal reference on this subject is Brearley et al [1975].

Presolve was available in MPS III, but modern implementations include a much

more extensive set of reductions, including so-called aggregation (substituting

out variables, such as free variables, the satisfaction of the bounds of which

are guaranteed by the satisfaction of the bounds on the variables that remain

in the model). The e�ects on problem size can be very signi�cant, in some

cases yielding reductions by factors exceeding an order of magnitude. Modern

presolve implementations are seamless in the sense that problem input and

solution output occur in terms of the original model.

Perturbation, shifting, and the Harris ratio test: The previous generation of

LP developers were fully aware of the problems posed by degeneracy, stalling

(long sequences of degenerate pivots), and cycling, at least in theory, but, by

and large, chose not to implement explicit procedures to deal with these phe-

nomena. The e�ects of degeneracy did not seem to pose a serious threat to

performance for the size and diÆculty of models being solved. However, as

diÆculty has increased, such measures have become essential. Research in inte-

9

ger programming accelerated this process by often focusing on structures with

combinatorial origins in which degeneracy was particularly pervasive.

In the CPLEX simplex implementations, the key ideas for dealing with degen-

eracy are an expanded, two-pass ratio test, introduced by Paula Harris [1974],

a bound shifting idea (which temporarily expands bounds that become violated

during the application of a simplex algorithm), and an associated notion of

bound perturbation that is applied simultaneously to all bounds of non-basic

variables if it is determined that the �rst two measures (the expanded ratio test

and shifting) have not led to suÆcient progress during optimization.

Corresponding ideas are used in dual simplex algorithms, but applied to objective-

function coeÆcients rather than problem bounds.

Hybrid pricing: Hybrid pricing, or variable selection, is a technique used by

CPLEX primarily in the primal simplex algorithm. Two alternative pricing

techniques that work well in practice are some form of partial pricing, in which

one attempts to examine only a small subset of potential entering variables

at each iteration, and devex pricing, introduced by Harris [1974], a relatively

inexpensive form of approximate steepest-edge pricing.

Partial pricing typically does well on easier LPs or at the beginning of an op-

timization when good, potential entering variables are plentiful. Devex pricing

does better on more diÆcult models and near the end of an optimization, but

incurs more cost at each iteration. Hybrid pricing is any scheme that begins

an optimization using partial pricing (or some other inexpensive scheme), and

switches to devex (or some other more-powerful, and more-expensive scheme)

later in the optimization. The result is a much more robust version of the primal

simplex algorithm.

6.2 Performance improvements: Examples

Unless otherwise stated, in this section and subsequent sections, the computing plat-

form used was a 667 MHz Compaq Server ES40.

Example 1: A eet-assignment model.

The statistics for this model, degen4, are displayed below followed by a set if solution

times in Table 3. The order of the results in Table 3 roughly represents the chronology

of events that eventually led to the e�ective solution of degen4.

Model: degen4

Rows 4420

Columns 6711

Nonzeros 101377

The degen4 model is a larger version of the netlib models degen2 and degen3, and

is much more diÆcult. It is an early instance of an airline eet-assignment model. In

10

Table 3: Solution times{degen4

Version Remark Seconds

CPLEX 1.0

CPLEX 1.0

CPLEX 2.2

CPLEX 2.2

CPLEX 2.2

CPLEX 2.2

CPLEX 2.2

primal (default)

perturbation

barrier

primal (default)

primal on explicit dual

dual standard pricing

dual (default)

119364.0

1545.7

125.8

170.2

33.4

102.3

12.0

late 1989, degen4 was presented as a challenge problem to optimizers and computer

vendors.

In my �rst attempt at solving degen4, working together with John Gregory, then

at Cray Corporation, I tried using CPLEX 1.0 on a Cray Y-MP. This attempt failed

miserably. After 7 hours of computing, the solution was still infeasible, and had been

stuck on the same objective value for several hours. Largely because of the e�ects of

degeneracy, it appeared very unlikely that one could solve this model with CPLEX

1.0. As it turned out, this conclusion was wrong. If running on a Cray hadn't been

so expensive, and there hadn't been so many competing users, it now seems apparent

that degen4 would eventually have solved.

Running CPLEX 1.0 on a current, fast workstation (a 667 MHz Compaq Server

ES40), with no competing users, degen4 solved after about 1.5 days of computing

and over 26,000,000 iterations. This run did illustrate clearly the potential e�ects of

stalling. For one period in the computation, lasting some 4,897,095 iterations, the

objective appeared to remain identically constant. As the results in Table 3 indicate,

by simply introducing a perturbation (in this case a random perturbation reducing

each lower bound by 1.0E-5 multiplied by a uniform random [0; 1] variable), CPLEX

1.0 was able to solve degen4, taking about one-half hour on a present day machine.

Following the above attempt, degen4 was successfully solved using the OB1 barrier

code of Lustig et al [1994]. The solution time was about 20 minutes on a Y-MP,

corresponding roughly to the CPLEX 2.2 barrier time in Table 3. The conclusion of

some at the time was that barrier was the right way to solve this model, and that

there was little point in further investigating the use of simplex algorithms. That

conclusion was wrong.

CPLEX 2.2 included the measures described in the previous section for dealing

with degeneracy { shifting and perturbation { and also included a hybrid primal pric-

ing algorithm using devex. The result was a greatly reduced number of iterations

(about 50000) and a running time that was at least competitive with the barrier ap-

proach. We then �nally recognized what turned out to be the key idea behind solving

this model correctly: Look at the dual. By explicitly constructing the dual problem

and applying the default primal algorithm, all traces of degeneracy disappeared, and

11

the solution time was reduced to a time much smaller than that for the barrier al-

gorithm. This observation was among the important motivations for implementing

dual simplex algorithms in CPLEX.

However, simply dualizing degen4 was not the end of the story. As one can see

from Table 3, using the dual alone, with \textbook" variable selection, choosing as

the leaving variable the basic variable with the largest primal infeasibility, resulted in

performance signi�cantly worse than simply applying the primal to the explicit dual.

The reason was that maximum-infeasibility variable selection just didn't work very

well, and doesn't work very well in general. The primal was using devex in this case, a

version of steepest edge. What was missing was steepest edge for the dual. That �nal

piece of the puzzle was provided by Forrest and Goldfarb [1992], who introduced a

particularly e�ective approach to steepest-edge pricing for the dual. This modi�cation

not only works well on degen4, but in general. It is one of the key reasons why the

dual simplex algorithm has emerged as a powerful all purpose algorithm for linear

programming.

Example 2: The PDS models.

These models are described in Carolan et al [1990]. They are military logistics models;

\PDS" stands for patient-distribution system. The smaller instances, from pds02

through pds20 are now part of the standard netlib testset.

Table 4: PDS models

Instance Rows Columns Nonzeros

pds100

pds90

pds80

pds70

pds60

pds50

pds40

pds30

pds20

pds10

pds06

pds02

156171

142823

129181

114944

99431

83060

66844

49944

33874

16558

9881

2953

546469

507771

467192

422356

367268

304348

242649

177628

119438

52712

28655

7535

1193533

1112089

1025706

929346

809094

671605

536690

393657

265793

118283

62524

16390

The PDS models have an underlying multi-commodity ow structure, often a

source of diÆcult LP models. When �rst introduced, they were considered very

diÆcult indeed. Taking CPLEX as a measure, solving pds20 on a 1990's vintage

workstation would have taken an estimated 40 days, and solving pds70 would have

been practically impossible (see Table 5).

Because of the diÆculty of these models, they have received considerable attention

in the LP literature, and several special-purpose algorithms have been developed.

12

To my knowledge, the most recent, and best of these algorithms is described in

Castro [2000]. The largest model solved by Castro was pds90, with a solution time

of 21781 seconds on a 200 MHz UltraSparc. As we shall see, Castro's algorithms

is now dominated by current, general-purpose implementations of the dual simplex

algorithm.

In the Table 5, run times are given for three versions of CPLEX, starting with

CPLEX 1.0. All runs were all made on a 300 MHz Sun UltraSparc. Note that CPLEX

1.0 times are missing for the largest of the models. These runs were omitted because

of their anticipated length.

Table 5: PDS models{Solution times

Instance CPLEX 1.0 CPLEX 5.0 CPLEX 7.1 CPLEX 7.1

Dual Primal Dual

pds100

pds90

pds80

pds70

pds60

pds50

pds40

pds30

pds20

pds10

pds06

pds02

{

{

{

335292.1

205798.3

122195.9

58920.3

15891.9

5168.8

208.9

26.4

0.4

50413.1

59981.0

42055.4

21120.4

7442.6

8509.9

2816.8

1154.9

232.6

13.0

2.4

0.1

2414.8

2452.2

2201.5

1504.1

852.4

493.2

188.3

74.8

27.9

3.7

1.4

0.1

256.3

320.3

304.4

197.8

160.5

114.6

79.3

39.1

20.9

2.6

0.9

0.1

Signi�cant progress did occur between CPLEX 1.0 and CPLEX 5.0. I have in-

cluded solution times only for the dual, but solution times for the primal were similar.

This progress was due mostly to the e�ects of presolve (CPLEX 1.0 had no presolve)

and the use of strong pricing algorithms (steepest edge in the dual and hybrid pricing

in the primal).

The most recent improvements, between versions 5.0 and 7.1, dwarf earlier im-

provements when applied to the PDS models, and transform these models, once

considered diÆcult, into large, but easy LPs. CPLEX 7.1 performance on these mod-

els is due to the fact that CPLEX 7.1 fully exploits sparsity, uses more aggressive

perturbation in the dual (treating this idea as an algorithmic technique rather than

simply a remedy for degeneracy), and and also bene�ts from an idea called \bound

ipping". See Applegate et al [2002] for a description. Note that the primal simplex

method has also bene�tted from properly exploiting sparsity.

While not illustrated in the above table, barrier algorithms have also become a

viable approach for the largest PDS instances. Current ordering algorithms are able

to directly exploit multi-commodity-like structures in constraint matrices: CPLEX

13

5.0 barrier solves pds20 in 880.8 seconds, while CPLEX 7.1 takes only 69.3 seconds,

an improvement of over a factor of ten.

Finally, I would like to note the e�ect of problem size on the relative improvements

from CPLEX 1.0 to 7.1.

Table 6: PDS models{Relative improvements

Model CPLEX 1.0 CPLEX 7.1 Dual Ratio

pds70

pds60

pds50

pds40

pds30

pds20

pds10

pds06

pds02

335292.1

205798.3

122195.9

58920.3

15891.9

5168.8

208.9

26.4

0.4

197.8

160.5

114.6

79.3

39.1

20.9

2.6

0.9

0.1

1695.1

1282.2

1066.3

743.0

406.4

247.3

80.3

29.3

4.0

For the largest models in this set, the performance improvements well exceed

machine improvements for this time period, while for smaller models this is not the

case. Ratios for the very largest PDS instances would likely be larger yet. Indeed, I

performed a related test on one additional model studied by Castro [2000], mnetgen24.

This model has 66641 constraints, 370739 variables and 1039461 nonzeros and a mult-

commodity structure. CPLEX 7.1 dual solved this model in 114.5 seconds, while

CPLEX 1.0 took 1221920.3 seconds (a little over two weeks) on the same machine, a

ratio of over 10500!

Example 3: A large test model.

We recently received a very large LP from a customer. This LP was generated to

test the viability of a new modeling approach. Model size statistics before and after

presolve are as follows:

Test model

Rows Columns Nonzeros

Original size

After presolve

5034171

1296075

7365337

2910559

25596099

10339042

Solution times were as follows:

Test model{Solution times

14

Algorithm

Version Barrier Dual Primal

CPLEX 5.0

CPLEX 7.1

8642.6

5642.6

350000.0

6413.1

71039.7

1880.0

The barrier algorithm did not see a substantial improvement version to version,

but the dual algorithm improved by a factor of 54.6 and the primal by a factor of

37.8. The e�ect of presolve on the solution times for this problem are also substan-

tial. While the CPLEX 7.1 primal run took only 131016 iterations using presolve

(the default), running on the unpresolved model, the same code had completed over

875,000 iterations in slightly over 15000 seconds, and the solution was far from even

being feasible. A corresponding run with CPLEX 1.0 completed only 2500 iterations

in a similar time period, a factor of about 350 times slower per iteration running on

the unpresolved model. Clearly, while hard to estimate with any accuracy, the ratio

of the best CPLEX 7.1 solve time to the potential CPLEX 1.0 solve time is easily in

the thousands.

It is worth noting that from the same customer we received a supposedly similar

LP with approximately 750,000 constraints. CPLEX 7.1 dual solved this model in

48.3 seconds, and it was solvable in reasonable time with CPLEX 5.0 dual, 4489.0

seconds. However, CPLEX 7.1 barrier took 28161.0 seconds and 5.0 barrier 302072.0

seconds. What about primal? CPLEX 7.1 primal was allowed to run for an incredible

1,826,981 seconds (over 3 weeks), and the objective was far from optimal.

Example 4: Barrier.

It is not diÆcult to �nd examples where barrier algorithms dominate the best of

the available simplex algorithms. These instances obviously represent models where

algorithmic improvements have been the di�erence between solving and not solving.

One particularly striking example is the following relatively large model from a car

manufacturer:

Model: CARS

Rows 196400

Columns 205040

Nonzeros 604060

CARS solved in 583 seconds using barrier followed by crossover to a basic solution,

where the crossover step consumed 481 of these seconds. Neither CPLEX 7.1 primal

nor dual �nished solving this model in 350,000 seconds.

6.3 Performance improvements: Larger test sets

How should one carry out a systematic comparison of LP technology in 1987 with that

of today? Perhaps the ideal approach would be to put together a large, representative

testset of models, run these models with some appropriate code, vintage 1987, run

15

the same models with a present-day code, and compare the results. Indeed, I do have

access to an excellent testbed of models, and these could be the basis for such a test.

However, as we saw in the case of the PDS models, speedups can be substantially

greater for larger models, and many of these models, even with the best codes now

available, take several thousands of seconds to solve. If one is to solve the same models

with older codes and really expect to see the full e�ect of the speedups { some of which

would likely exceed four orders of magnitude { then run times could easily range to

signi�cant fractions of a year. Carrying out such a program is clearly impractical.

As an alternative, I will present a sequence of results making comparisons that move

forward in time. These results will, I believe, make a convincing case when taken as

a whole.

Where should the comparison begin? With what code? I could choose to use as a

baseline a state-of-the-art code from the late 1980's, MPSX/370 or MPX III. However,

there are several reasons why I believe that would be the wrong approach. Leaving

aside software design issues that are critical to the current state of linear-programming

practice (such as portability and embeddability), the simple speed comparison is of

limited interest. These solvers were tied to mainframe computing, and those main-

frames were no more than 50 times slower than current workstations. The results

presented below will easily demonstrate that the algorithmic improvements between

CPLEX 1.0 and CPLEX 7.1 exceed a 50 fold machine improvement. Given that

test results from 1989 comparing MPSX/370 and CPLEX 1.0 both running on an

IBM 3090 showed comparable running times on several more diÆcult models, the

conclusion is clear.

The code that I have chosen for the starting point of my comparisons is the

XMP code of Roy Marsten [1981]. Because it was portable and embeddable, XMP

was heavily used in the late 1980s in integer-programming research. While certainly

not comparable in speed to MPSX or MPS III, it was in some ways more advanced

algorithmically, including state-of-the-art factorization and factorization-update rou-

tines. MINOS, developed by Murtagh and Saunders [1998], was another portable

code available in the same period (and still available, in much improved form). It was

signi�cantly more stable than XMP, and somewhat faster (based upon comparisons

I did at that time with CPLEX 1.0), but not as easy to embed.

Besides XMP and MINOS, there were already several PC codes on the market in

the late 1980s; however, I have seen no evidence to suggest that the performance of

any of these codes signi�cantly exceeded that of XMP.

Table 7 is taken from a talk I gave in 1988 at Columbia University. It compares

CPLEX 1.15 to XMP on a subset of the netlib testset. Runs were made on a Sun

3/50. Two models which were included in the original test runs do not appear in the

table, grow22 and pilotnov, both of which prematurely terminated due to numerical

singularities when running XMP.

One possible comparison from this table is the ratio of the total solution times.

5The simplex implementations in CPLEX 1.1 were essentially identical to those in CPLEX 1.0

16

Table 7: A 1988 comparison

CPLEX 1.1 XMP

Model Itns. Seconds Itns. Seconds

share2b

bore3d

standat

seba

sc205

share1b

scorpion

brandy

forplan

israel

capri

bandm

e226

stair

sierra

scagr25

shell

gfrd-pnc

ganges

sctap3

scrs8

��f800

etamacro

scfxm3

ship12l

czprob

scsd8

nesm

25fv47

103

115

179

187

191

197

227

241

249

300

329

374

421

446

459

508

530

613

701

795

812

834

883

1018

1035

1138

1890

3810

4559

3.0

6.3

9.0

11.9

11.1

9.9

13.8

20.8

17.9

25.6

15.8

41.1

26.5

134.6

49.7

46.9

32.2

43.9

108.8

92.8

81.1

66.4

55.8

133.7

144.2

137.8

230.7

413.8

1742.3

138

5801

75

1433

273

411

429

8521

2313

242

550

1679

653

1667

950

1470

830

983

1769

3404

1271

1611

1140

2860

1510

3014

1818

7255

10859

6.6

736.6

8.2

244.4

23.0

28.8

44.9

1144.0

244.5

27.0

48.0

250.9

71.3

530.9

270.0

248.9

123.3

144.1

587.6

1293.6

182.7

297.2

144.6

864.8

515.7

936.3

346.7

1844.4

4753.2

17

These yield a speedup of approximately 4.3 (= 15979:2=3733:3). Another possible

comparison is to compute the ratio of each individual CPLEX time divided by the

corresponding XMP time and compute the arithmetic mean of these ratios. The

result is an average ratio of 9.6. However, both of these measures are overly sensitive

to single, large entries, either in the total solve time or in the ratios. A much better,

more robust, and more conservative measure is the geometric mean of the individual

ratios. The geometric mean in this case is 4.70.

It is obvious, but worth noting, that the models used in comparing XMP and

CPLEX are trivial in size by today's standards. It is my view that they likely lead

to an underestimate of the di�erence between XMP and CPLEX 1.0, and they are

certainly too small to yield any useful information about current codes: The total

running time for the entire set on a 667 MHz Compaq Server ES40 is 3.5 seconds

with CPLEX 1.0 and 2.7 seconds with CPLEX 7.1.

For a second comparison, I will use a testset from a study that was published in

Bixby [1994], motivated by Lustig et al [1994], comparing CPLEX 1.0 to CPLEX 2.2

on a set of models that, at that time, were considered quite diÆcult and quite large.

The original sizes and names of these models are given in Table 8. The sizes after

application of CPLEX 7.1 presolve are given in Table 9.

Table 8: Model sizes{Original

Model Rows Columns Nonzeros

car

continent

energy1

energy2

energy3

fuel

initial

schedule

43387

10377

16223

8258

27145

18800

27441

23259

107164

57253

28568

21200

31053

38540

15128

29342

189864

198214

88340

145329

268153

219880

96118

75520

Table 9: Model sizes{After presolve

Model Rows Columns Nonzeros

car

continent

energy1

energy2

energy3

fuel

initial

schedule

32194

6808

10470

6553

9464

8732

18913

5044

73512

45728

19262

17899

28649

21313

10788

12176

145019

157812

68799

126438

185988

149129

78567

37828

18

Tables 10 and 11 give solution times for the models in Table 8 using CPLEX 1.0,

2.2, 5.0, and 7.1. Runs were made on a 300 MHz UltraSparc. In the �rst table I have

tabulated the best of the primal and dual solution times for each of the eight models

and for each of the CPLEX versions. The �nal column speci�es which algorithm was

the winner for each of the eight models running CPLEX 7.1. The second table records

the best of all three algorithms, barrier, primal, and dual, with the �nal column again

recording the winners for version 7.1.

Table 10: Solution times{Best simplex

Model CPLEX 1.0 CPLEX 2.2 CPLEX 5.0 CPLEX 7.1 Algorithm

car

continent

energy1

energy2

energy3

fuel

initial

schedule

1555.0

364.7

1217.4

10130.1

21797.1

5619.5

3832.2

152404.0

701.1

110.5

275.0

736.0

271.9

1123.2

102.2

252.3

275.8

104.4

260.5

664.0

229.1

698.6

51.3

220.8

120.6

46.7

22.6

693.9

161.7

675.0

15.5

64.6

primal

primal

dual

dual

dual

primal

dual

dual

Table 11: Solution times{Best of three

Model CPLEX 1.0 CPLEX 2.2 CPLEX 5.0 CPLEX 7.1 Algorithm

car

continent

energy1

energy2

energy3

fuel

initial

schedule

1555.0

364.7

1217.4

10130.1

21797.1

5619.5

3832.2

152404.0

203.0

110.5

46.5

171.4

152.6

999.1

102.2

252.3

117.1

99.5

31.5

71.7

113.4

340.5

51.3

132.0

67.3

46.7

22.4

32.4

82.2

124.7

15.5

47.9

barrier

primal

barrier

barrier

barrier

barrier

dual

barrier

Table 12 compares CPLEX 1.0 to the various other versions using geometric means

of individual ratios of solve times. According to this table, the best simplex algorithm

in CPLEX 7.1 is almost 52 times faster than CPLEX 1.0 on these models, and the

best of three is 114 times faster.

A shortcoming of the testset in Table 8 is that these models are no longer \large,"

though they were certainly considered large in 1994. In addition, a single algorithm,

barrier, is dominant6. To construct a more comprehensive, less biased measure of

recent improvements I will use a larger, more comprehensive testset, and focus on

6Lustig et al [1994] e�ectively acknowledge this fact, pointing out that seven of these models
came into their possession precisely because they were apparently diÆcult to solve with simplex
algorithms.

19

Table 12: Ratios{Geometric means

Version Best simplex Best of three

CPLEX 1.0

CPLEX 2.2

CPLEX 5.0

CPLEX 7.1

1.0

15.8

22.0

51.8

1.0

30.3

54.0

114.1

comparing only the last two CPLEX versions, CPLEX 5.0 and 7.1. CPLEX 5.0 was

the last release prior to introducing a number of improvements for exploiting sparsity

in large models.

For my �nal testset I have made use of the CPLEX library of LPs, a library that

has been collected over the last 13 years from industry and academia. In total it

contains approximately 2000 distinct models. Since many of these models represent

multiple instances with di�ering sizes but identical structure, I began by screening

the set to remove some of these multiple instances, generally keeping only the largest

two or three from a given set. In addition, all models were removed from the set that

solved in under 0.25 seconds with both CPLEX 5.0 and CPLEX 7.1 and all three

default algorithms, barrier, primal, and dual. The set that remained contained 680

models.

Rather then presenting an entire table of model statistics, I o�er the summary

statistics in Table 13 indicating the numbers of models in various ranges of row counts.

Row count is the best simple predictor of model diÆculty that I have found. I ran

Table 13: Big testset{Summary statistics

{

Row-count range Number

0{999 93

1000{2499 124

2500{4999 86

5000{9999 88

10000{24999 105

25000{49999 70

50000{99999 40

100000{249999 39

250000{499999 15

500000{6662791 19

the 6 di�erent default algorithms on all 680 models using a 350,000 second time limit

(about four days): Barrier (with crossover), dual, and primal for CPLEX 5.0 and

CPLEX 7.1. All runs were made on 667 MHz Compaq Server ES40.

There were three models, one with approximately 20000, one with 50000, and

one with 1300000 rows that did not solve with any of the algorithms inside the time

20

limit. These models are omitted in further comparisons. It should be noted, however,

that each of these models did solve with barrier alone, omitting crossover; moreover,

the solutions appeared to be of high quality. However, omitting crossover is not the

default when using barrier in CPLEX. Indeed, crossover is considered an integral

part of this algorithm, being invoked in a signi�cant number of cases to complete

the optimization of non-optimal barrier solutions, including models that are declared

infeasible.

The results of the indicated runs, excluding the three models mentioned above,

are summarized in Table 14. To see how these numbers were generated, consider

the \Best simplex" column. To compute it, the best of the primal and dual simplex

running times were extracted for CPLEX 5.0 and CPLEX 7.1, producing two lists of

677 running times each. From these two lists, 677 ratios were computed by dividing

the best simplex time for each model using CPLEX 5.0 by the best simplex time for

that model using CPLEX 7.1. To then compute an individual entry such as that

for \� 25000 rows", the geometric mean was computed of all ratios for the models

with at least 25000 rows, of which there were 182. The result was 3.7, indicating an

average of almost a four fold speedup.

Table 14: CPLEX 5.0 vs. CPLEX 7.1

Row range Best Best Primal Dual Barrier

simplex of three

� 0 rows

� 1000 rows

� 2500 rows

� 5000 rows

� 10000 rows

� 25000 rows

� 50000 rows

�100000 rows

�250000 rows

�500000 rows

2.0

2.3

2.7

3.1

3.7

5.0

6.7

7.0

10.6

10.6

2.3

2.5

3.1

3.7

4.8

6.6

9.3

9.4

15.6

20.4

2.0

2.2

2.6

3.1

4.0

5.7

8.3

9.5

19.1

24.8

2.7

3.0

3.5

4.2

5.5

7.4

9.9

9.6

14.9

23.0

2.1

2.2

2.5

4.0

3.6

4.7

6.0

7.2

8.4

7.2

What can one conclude in total from the results of this section? I have claimed an

improvement of 4.7 for CPLEX 1.0 relative to XMP, both codes using exclusively the

primal simplex algorithm. Using the results of the eight problems taken from Bixby

[1994], one can conclude an improvement in simplex algorithms from CPLEX 1.0

to CPLEX 5.0 of 22.0, yielding a total of approximately 103 from XMP to CPLEX

5.0, for problems of moderate size. Now using the comparison of CPLEX 5.0 to

CPLEX 7.1 for models with, for example, 50000 rows and more, one obtains a total

speedup that can be estimated at 960, roughly the same as the magnitude of machine

improvements for simplex algorithms.

Including barrier algorithms in this analysis, one obtains an estimated improve-

ment of 250 from XMP to CPLEX 5.0, and for models with 50000 rows and more

21

a total improvement of approximately 2400! Really quite remarkable. However, the

proper way to compare this improvement with machine improvements is far less clear,

given the huge machine e�ect enjoyed by barrier algorithms.

I would like to close with a brief comparison among the three core algorithms,

using CPLEX 7.1. Table 15 was extracted from the same set of test runs as Table

14.

Table 15: Algorithm comparison

Row range Primal/ Dual/ Barrier/ Primal/

Dual Barrier Best simplex Best of three

� 0 rows

� 1000 rows

� 2500 rows

� 5000 rows

� 10000 rows

� 25000 rows

� 50000 rows

�100000 rows

�250000 rows

�500000 rows

1.5

1.6

1.7

1.8

2.0

2.0

2.0

2.1

1.6

2.5

1.1

1.1

1.0

1.1

1.0

1.2

1.4

1.6

1.7

1.5

0.9

0.9

0.8

0.8

0.8

0.9

1.0

1.1

1.1

0.9

3.3

3.5

3.7

4.1

4.4

5.1

6.8

8.5

7.0

8.9

The results in Table 15 indicate that dual simplex is about twice as fast as primal

simplex, on average, and that barrier is, overall, the fastest algorithm, by a narrow but

growing margin over dual as problem size increases. Interestingly, taking the best of

primal and dual simplex performance yields an algorithm with average performance

roughly the same as barrier. However, it is important to note that the numbers

in Table 15 do measure only average performance. A detailed examination of the

data indicates that each of primal, dual, and barrier wins in a signi�cant number of

cases, an observation con�rmed by the fact that the best of three outperforms each

individual algorithm by a signi�cant margin.

7 Conclusion

In this paper I have focused on one issue, solving larger, more diÆcult linear programs

faster. The numbers presented speak for themselves. Three orders of magnitude in

machine speed and three orders of magnitude in algorithmic speed add up to six

orders of magnitude in solving power: A model that might have taken a year to solve

ten years ago, can now solve in less than 30 seconds. Of course, no one waits one year

to solve a model, at least no one I know of. The real meaning of such an advance is

much harder to measure in practice, but it is real nevertheless. There is no doubt that

we now have optimization engines at our disposal that dwarf what was available only

22

a few years ago, making possible the solution of real-world models once considered

intractable.

How do these speed improvements �t into the overall picture of linear-programming

practice? They are only a part of that picture, though an essential, enabling part.

The pervasive availability of powerful, usable desktop computing, the availability of

data to feed our models, and the emergence of algebraic modeling languages to rep-

resent our models have all combined with the underlying engines to make operations

research and linear programming the powerful tools they are today. However, there

are still important issues to be solved. In spite of all the advances, the application of

linear-programming remains primarily the domain of experts. The need for abstrac-

tion still stands as a hurdle between technology and solutions. While the existence

of this hurdle is disconcerting, it is at least gratifying to know that the bene�ts from

overcoming it are now greater than ever.

8 Acknowledgement

It would be remiss of me not to mention here the other people who have had a

signi�cant role in the development of CPLEX.

Zonghao Gu, Irv Lustig, Ed Rothberg, and Roland Wunderling all have made

fundamental contributions to the CPLEX linear-programming algorithms. Mary

Fenelon, John Gregory, and Ed Klotz, while not contributing directly to these al-

gorithms, deserve considerable credit for persistent and signi�cant insights.

I would also like to acknowledge Janet and Todd Lowe for transforming a collection

of algorithms into a successful commercial product.

References

D. Applegate, R. Bixby, V. Chvat�al, and W. Cook (2002). Solving Traveling Salesman

Problems, forthcoming.

R. .E. Bixby (1994). \Commentary: Progress in Linear Programming," ORSA Jour-

nal on Computing 6 15{22.

R. E. Bixby, M. Fenelon, Z. Gu, E. Rothberg and R. Wunderling (2000). \MIP:

Theory and practice { Closing the gap" in System Modelling and Optimization:

Methods, Theory and Applications, Kluwer, (eds.) M. J. D. Powell and S. Scholtes.

A. L. Brearley, G. Mitra, and H. P. Williams (1975). \Analysis of Mathematical

Programming Problems Prior to Applying the Simplex Algorithm," Mathematical

Programming 8, 54{83.

23

W. J. Carolan, J. E. Hill, J. L. Kennington, S. Niemi, and S. J. Wichmann (1990). \An

empirical evaluation of the KORBX algorithms for military airlift applications",

Operations Research 38, No. 2, 240{248.

J. Castro (2000). \A specialized interior-point algorithm for multicommidity network

ows," SIAM Journal on Optimization 10 No. 3, 852{877.

V. Chvat�al (1983). Linear Programming, Freeman, New York.

G. Dantzig (1948), \Programming in a linear structure", U. S. Air Force Comptroller,

USAF, Washington, D. C..

G. Dantzig (1963). Linear Programming and Extensions, Princeton University Press,

Princeton, New Jersey.

J. J. Forrest and D. Goldfarb (1992). \Steepest-edge simplex algorithms for linear

programming", Mathematical Programming 57, 341{374.

J. R. Gilbert and T. Peierls (1988). \Sparse partial pivoting in time proportional to

arithmetic operations," SJSSC 9, 862{874.

M. Gr�otschel and O. Holland (1991). \Solution of large-scale symmetric travelling

salesman problems", Mathematical Programming 51 141{202.

P. M. J. Harris (1974). \Pivot selection methods of the devex LP code", Mathematical

Programming 5, 1{28.

E. Hellerman and D. Rarick (1971). \Reinversion with the preassigned pivot proce-

dure," Mathematical Programming 1, 195{216.

A. Ho�man, M. Mannos, D. Sokolowsky, and D. Wiegmann (1953). \Computational

experience in solving linear programs," SIAM Journal 1 1{33.

J. E. Kalan (1971), \Aspects of large-scale in-core linear programming", Proceedings

oof ACM Conference, Chicago, 304{313.

N. Karmarkar (1984). \A new polynomial-time algorithm for linear programming",

Combinatorica 4, 373{395.

C. E. Lemke (1954). \The dual method of solving the linear programming problem,"

Naval Res. Logist. Quart. 1 36{47.

I. J. Lustig, R. Marsten, and D. F. Shanno (1994). \Interior Point Methods for Linear

Programming: Computational State of the Art," ORSA Journal on Computing 6

No. 1, 1{14.

A. Orden (1952). \Solution of systems of linear inequalities on a digital computer,"

Proceedings of the ACM.

24

R. E. Marsten (1981). \XMP: A structured library of subroutines for experimen-

tal mathematical programming", ACM Transactions on Mathematical Software 7,

481{497.

B. A. Murtagh and M. A. Saunders (1998), \MINOS 5.5 User's Guide," Report SOL

83-20R, Dept of Operations Research, Stanford University.

W. Orchard-Hays (1990). \History of the development of LP solvers", Interfaces 20:4,

July-August, 61{73.

E. Rothberg and B. Hendrickson (1998). \Sparse matrix ordering methods for interior

point linear programming," INFORMS Journal on Computing 10 No. 1, 107{113.

G. J. Stigler (1945). \The cost of subsistence," J. Farm Econ. 27 No. 2, 303{314.

U. H. Suhl and L. M. Suhl (1990). \Computing sparse LU factorizations for large-scale

linear programming bases", ORSA Journal on Computing 2, 325{335.

S. J. Wright (1997), Primal-Dual Interior-Point Methods, SIAM, Philadelphia.

25

