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Abstract. Embedded control applications such as drive-by-wire in cars re-
quire dependable interaction between various sensors, processors, and actu-
ators. This paper addresses the design of low-cost communication networks
guaranteeing to meet both the performance and fault-tolerance requirements
of such distributed applications. We develop a fault-tolerant allocation and
scheduling method which maps messages on to a minimum-cost multiple-
bus system to ensure predictable inter-processor communication. The pro-
posed method targets time-division multiple access (TDMA) communica-
tion protocols, and is applicable to protocols such as FlexRay and TTP which
have recently emerged as networking standards for embedded systems such
as automobile controllers. Finally, we present a case study involving some
advanced automotive control applications to show that our approach uses the
available network bandwidth efficiently to achieve jitter-free message trans-
mission.

1 Introduction

Embedded computer systems are being increasingly used in cost-sensitive consumer
products such as automobiles to replace safety-critical mechanical and hydraulic sys-
tems [2]. Drive-by-wire is one example where traditional hydraulic steering and brak-
ing are replaced by a networked microprocessor-controlled electro-mechanical system
[1]. Sensors measure the steering-wheel angle and brake-pedal position, and processors
calculate the desired road-wheel and braking parameters which are then applied via
electro-mechanical actuators at the wheels. Other computerized vehicle-control appli-
cations including adaptive cruise control, collision avoidance, and autonomous driving
are also being developed. These applications will be realized as real-time distributed
systems requiring dependable interaction between sensors, processors, and actuators.
This paper addresses the design of low-cost communication networks to meet both the
performance and fault-tolerance requirements of such applications.

Related work in communication synthesis for distributed embedded systems be-
longs in two broad categories−those that assume a fixed network topology and schedule
messages to meet deadlines [3] [4] [5], and those that synthesize a topology satisfying
message deadlines [6] [8]. Ortega and Boriello [3] assume a fixed network topology us-
ing the controller area network (CAN) protocol and schedule messages by assigning
appropriate priorities to help meet their deadlines. Abdelzaher and Shin [4] present an



off-line algorithm which schedules both tasks and messages in combined fashion to
minimize the overall schedule length. Rhodes and Wolf [7] assign priorities to proces-
sors and schedule messages on a single communication bus using fixed priority, or
round-robin arbitration for network access. A network topology satisfying message
deadlines can also be constructed from application requirements. Given task graphs
corresponding to embedded applications, Yen and Wolf [6] estimate the communica-
tion delay for inter-processor messages and schedule them on the minimum number of
buses, while [8] generates point-to-point communication links.

Unlike [3] [4] [5] which assume a given topology, the approach proposed in this
paper synthesizes the network topology from application requirements. Moreover,
while synthesis methods such as [6] assume an underlying CAN communication pro-
tocol and arbitrate bus access using message (processor) priorities, we target TDMA
communication protocols where processors are allotted transmission slots according to
a static, periodic, and global communication schedule [9]. Recently, TDMA protocols
such as TTP [10] and FlexRay [11] have emerged as possible networking standards for
an important class of embedded systems−automobiles.

Rather than generate arbitrary networks, we restrict the topology space to multiple-
bus systems. Figure 1 shows an example where each processor Pi connects to a subset
of the communication buses. A co-processor handles message communication without
interfering with task execution on Pi. A multiple-bus topology allows fault-tolerant
message allocation. Also, since communication protocols for the embedded systems of
interest are typically implemented over low-cost physical media, individual buses have
limited bandwidth; multiple buses may be needed to accommodate the message load.

Given a set of distributed applications represented by task graphs { Gi} , our ap-
proach constructs a low-cost communication network that satisfies the performance
and fault-tolerance requirements of each Gi. Messages are allocated and scheduled on
the minimum number of buses {Bi}  where each Bi has a specified bandwidth. We now
summarize the major features of our approach:

• It assumes a multi-rate system where each graph Gi may have a different execu-
tion period period(Gi).

• It targets a generic TDMA communication protocol.

Fig. 1. An example multiple-bus system where each processor connects to a subset 
of the communication buses
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• It supports fault-tolerant message communication by establishing redundant
transmission paths between processors.

Finally, using some representative automotive control applications, we show that the
proposed method guarantees jitter-free and predictable message transmission.

The rest of this paper is organized as follows. Section 2 presents an overview of the
proposed approach, while Section 3 discusses some preliminaries. The message alloca-
tion method is developed in Section 4, and Section 5 presents the case study. We briefly
discuss some related issues and conclude the paper in Section 6.

2 Design Overview

As the primary objective, we construct a network topology meeting the fault-tolerance
and performance goals of the embedded applications. The secondary objective is to
minimize hardware cost in terms of communication buses. An iterative method is de-
veloped where a feasible network topology satisfying performance goals is first ob-
tained. Its cost is then reduced via a series of steps which minimize the number of buses
by appropriately grouping (clustering) messages while preserving the feasibility of the
original solution. Since clustering is an NP-complete problem [12], we use heuristics
to obtain a feasible solution.

Figure 2 shows the main steps of the proposed heuristic approach. For a given al-
location of tasks to processors, FT-DESIGN accepts a set of task graphs { Gi}  and proc-
essors {Pi}  as inputs, and returns as output, a low-cost network topology comprising
identical buses { Bi} . Redundant routes are provided for messages with specific fault-
tolerance requirements; for a k-fault-tolerant (k-FT) message mi, k replicas or copies
are allocated to separate buses. The network is designed assuming a generic TDMA
protocol, and can accommodate specific cases such as TTP and FlexRay after some
modification.

We assume that each task graph Gi must meet its deadline by the end of its period
period(Gi). First, the graph deadline is distributed over its tasks to generate a schedul-

Fig. 2. The overall approach to fault-tolerant communication network synthesis

Procedure FT-DESIGN({ Gi} , { Pi} ) /*  { Gi}  := Task graphs, { Pi}  := Processors * /
for (each Gi) 

Distribute Gi’s deadline to obtain the scheduling range [ri, di] for each task Ti;
for (each k-FT message mi) begin /*  Obtain the initial network topology * /

Determine mi’s transmission delay tdelay(mi);
Allocate each copy of mi to a separate bus Bj;

end; 
for (each task Ti) begin /*  Determine task schedulability * /

wi := Worst-case response time of Ti on its allocated processor Pi;
if (wi + tdelay(mi) > di − ri) return ∅; /*  Solution is infeasible * /

end;
s := CLUSTER ({ mi} ); /*  Reduce topology cost via message clustering */
Allocate each cluster Ci in s to a separate bus Bj;
return { Bj} ; /*  Return the set of communication buses * /



ing range [ri, di] for each task Ti where ri and di denote its release time and deadline,
respectively. The initial network topology is obtained by simply allocating each mes-
sage mi to a separate bus. Without bus contention, mi’ s transmission delay is given by
the message size and bus bandwidth. The overall solution is feasible if all tasks com-
plete before their respective deadlines. Section 3 discusses these initial steps in greater
detail.

The number of communication buses in the initial solution is then minimized via
an iterative message clustering procedure which groups multiple messages on bus Bi.
A message mi is grouped with an existing cluster Cj = { mi}  if the resulting communi-
cation schedule satisfies the following requirements: (1) No two replicas of a k-FT mes-
sage are allocated to Cj. (2) All messages belonging to Cj continue to meet their dead-
lines. (3) The duration (length) of the communication schedule corresponding to Cj
does not exceed a designer-specified threshold; if a dedicated co-processor handles
message communication as in Fig. 1, the schedule must be compact enough to fit within
the available memory. (4) The schedule provides jitter-free message transmission,
where jitter is the uncertainty in the time intervals between successive transmissions of
a message mi. The proposed clustering approach also uses bus bandwidth efficiently by
sharing or re-using transmission slots between multiple messages whenever possible.
Each message cluster is allocated to a separate bus in the final topology. Section 4 de-
scribes this procedure in greater detail.

3 Preliminaries

This section shows how to obtain the initial solution where tasks are assigned deadlines
and scheduled on processors, and messages allocated to separate communication buses.

Deadline Assignment. Initially, only entry and exit tasks having no predecessors
and successors, respectively, have their release times and deadlines fixed. To schedule
an intermediate task Ti in the task graph, however, its scheduling range [ri, di] must first
be obtained. This is termed the deadline assignment problem where the deadline Di of
the task graph Gi must be distributed over each intermediate task such that all tasks are
feasibly scheduled on their respective processors. Deadline distribution is NP-complete
and various heuristics have been proposed to solve it. We use the approach of Natale
and Stankovic [14] which maximizes the slack added to each task in graph Gi while still
satisfying its deadline Di. Their heuristic is simple, and for general task graphs, its per-
formance compares favourably with other heuristics [13].

We now describe the deadline distribution algorithm. Entry and exit tasks in the
graph are first assigned release times and deadlines. A path pathi through Gi comprises
one or more tasks { Ti} ; the slack available for distribution to these tasks is

 where Di is the deadline of pathi and ci the execution time of a task
Ti along this path. The distribution heuristic in [14] maximizes the minimum slack add-
ed to each Ti along pathi by dividing slacki equally among tasks. During each iteration
through Gi, pathi minimizing , where n denotes the number of tasks along
pathi, is chosen and the corresponding slack added to each task along that path. The
deadlines (release times) of the predecessors (successors) of tasks belonging to pathi

slacki Di ci
�

–=

slacki n⁄



are updated. Tasks along pathi are then removed from the original graph, and the above
process is repeated until all tasks are assigned release times and deadlines.

We use the graph in Fig. 3(a) to illustrate the above procedure. First, the release
time of entry task T1 and the deadline of exit task T5 are set to r1 = 0 µs and d5 = 2000
µs, respectively. Next, we select the path T1T2T4T5 shown in Fig. 3(b); the total execu-
tion time of tasks along this path is 800 µs, and as per the heuristic, a slack of

 µs is distributed to each task. Once their release times and
deadlines are fixed, these tasks are removed from the graph. Figure 3(c) shows the re-
maining path comprising only task T3−it has its release time and deadline fixed by T1
and T4, respectively. Figure 3(d) shows the resulting scheduling range for each task.

Task Scheduling. Once the scheduling ranges of tasks in the graph are fixed, each
Ti may now be considered independent with release time ri and deadline di, and sched-
uled as such. To tackle multi-rate systems, we use fixed-priority scheduling where tasks
are first assigned priorities according to their periods [15], and at any time instant, the
processor executes the highest-priority ready task. Again, the schedule is feasible if all
tasks finish before their deadlines; Feasibility analysis of schedules using simple
closed-form processor-utilization-based tests has been extensively studied under fixed-
priority scheduling [15]. However, in addition to feasibility, we also require a precise
estimate of task Ti’ s response time wi, given by the time interval between Ti’s release
and finish times; the response time is used in the next stage of our algorithm to deter-
mine the message delays to be satisfied by the network. 

For multi-rate task graphs, the schedules on individual processors are simulated for
a duration equal to the least common multiple (LCM) of the graph periods [16]. Since
this duration evaluates all possible interactions between tasks belonging to the different
graph iterations, the worst-case response time for each task Ti is obtained. Figure 4(a)
shows a simple multi-rate system comprising two task graphs with periods 2000 µs and
3000 µs; Figs. 4(b) and 4(c) show the task allocation and scheduling ranges, respective-
ly. Figure 4(d) shows the corresponding schedule for 6000 µs−the LCM of the graph
periods. Task response times within this time interval are shown in Fig. 4(e). Multiple

Fig. 3. (a) Example task graph; (b) and (c) paths selected for deadline distribution, and 
(d) the resulting scheduling ranges for each task
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iterations of a task are evaluated to obtain its worst-case response time. For example,
in Fig. 4(e), the first iteration of tasks T1, T2, and T4 (in bold) has the maximum re-
sponse time among the iterations within the given time duration. The task scheduling
on processors is successful if, for each task Ti, . However, for the overall so-
lution to be feasible, all messages must also meet their deadlines.

Initial Network Topology. A k-FT message mi sent by task Ti has deadline
 where wi denotes Ti’ s worst-case response time. Initially, the

network topology allocates a separate communication bus for each message copy.
Therefore, in this topology, mi experiences no network contention and its transmission
delay is  where size(mi) and  denote the message size in bits
and bus bandwidth in Kb/s, respectively. The solution is feasible if, for each mi, de-
lay(mi) is greater than the corresponding transmission delay.

4 Fault-Tolerant Message Clustering

We now develop a message clustering approach to reduce the cost of the initial network
topology obtained in Section 3. Multiple messages are grouped on a single bus while
preserving the feasibility of the original solution. The fault-tolerance requirement of
each k-FT message is also satisfied.

First, we briefly review message transmission in a generic TDMA communication
protocol. As an example, we choose the FlexRay protocol currently under development
by a consortium of automotive companies to provide predictable and high speed mes-
sage communication for distributed control applications [11]. Figure 5 shows a a typi-

Fig. 4. (a) An example multi-rate system, (b) task-to-processor allocation, (c) task 
scheduling ranges, (d) task schedule for the duration of the least common multiple of 

the task periods, and (e) the response times of different task iterations over the 
simulated time interval
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cal TDMA scheme where messages are transmitted according to a static, periodic, and
global communication schedule called a TDMA round. Each processor Pi is allotted
one or more sending slots during a round comprising a fixed number of identical-sized
slots−both size and number of slots per round are fixed by the system designer and de-
termine the round duration or period. Though successive rounds are constructed iden-
tically, the messages sent by individual processors may vary during a given round.

Clustering Algorithm. We now state the fault-tolerant message clustering problem
as follows. Given the communication deadline delay(mi) for each k-FT message mi sent
by processor Pj, construct TDMA rounds on the minimum number of communication
buses such that during any time interval corresponding to delay(mi), Pj is allotted a suf-
ficient number of transmission slots to transmit mi.

We treat each mi as a periodic message with period period(mi) equal to its deadline
delay(mi) and generate message clusters { Cj} , such that the corresponding TDMA
round round(Cj) satisfies the constraints previously introduced in Section 2: (1) No two
replicas of a k-FT message mi are allocated to Cj. (2) the duration of round(Cj) does not
exceed a designer-specified threshold. (3) the slots within round(Cj) provide jitter-free
message transmission, i.e., the time interval between successive sending slots for a
message mi equals its period.

Each message cluster Cj is allocated to a separate communication bus in the final
network topology. Our method also makes efficient use of bus bandwidth by minimiz-
ing the number of transmission slots needed to satisfy message deadlines within a
TDMA round. This is achieved by reusing slots among the messages sent by a proces-
sor whenever possible. The following discussion describes the clustering procedure in
greater detail. We assume an upper bound on TDMA-round duration provided by the
designer in terms of the maximum number of slots nmax and slot duration ∆slot. Typi-
cally, the choice of nmax depends on the memory available within the communication
co-processor such as the number of transmit and receive buffers. Each transmission slot
slot(i) within the round has duration  µs. The message
period delay(mi), originally expressed in time units, is now discretized as

 and expressed in terms of transmission-slot intervals. To simplify
the notation, we use delay(mi) to denote this discrete quantity from here on.

The clustering procedure in Fig. 6 takes as input messages { mi}  sorted in terms of
increasing period(mi) and returns a set of message clusters where each Cj is allocated
to a separate communication bus. Given a set of clusters { Cj}  and a k-FT message mi,
we first obtain all feasible message to cluster allocations by grouping mi with Cj and
generating round(Cj ∪ mi). New clusters are created if needed to accommodate all cop-
ies of mi. Also, if for the k-FT message mi, n feasible message-cluster allocations are
obtained, where n > k, then the k best solutions are chosen based on bandwidth-utiliza-

Fig. 5. A TDMA-based allocation of transmission slots to processors on 
communication bus Bj
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tion efficiency−the exact evaluation criterion is discussed later this chapter. The com-
putational complexity of the clustering procedure is O(n3) where n is the number of
messages; the outer while loop iterates through all n messages, and during each itera-
tion, ALLOC explores all message to cluster allocations, a process of complexity
O(n2).

Transmission-Slot Allocation. Given a message cluster Cj and mi, the ALLOC
procedure generates a feasible TDMA round for the new allocation Cj ∪ mi. Allocation
of messages to multiple buses is related to bin-packing where fixed-size objects (mes-
sages) are packed into a bin (round) of finite size while minimizing the number of bins.
The general bin-packing problem is NP-complete and heuristics are typically used to
obtain a solution [17].

An important requirement during slot allocation for the messages in cluster Cj is
jitter-free communication. Unpredictable delay or jitter during transmission may lead
to missed message deadlines. Figure 7(a) shows multiple TDMA rounds corresponding
to messages m1 and m2 with periods delay(m1) = 2 and delay(m2) = 5, respectively.
Transmission slots are allocated in first-fit (FF) fashion where messages are ordered in
terms of increasing period and the first available slots allocated to each mi within the
round. Though this allocation satisfies the periodicity requirements of m1 and m2, it re-
sults in timing jitter−the minimum and maximum distances between two successive
slots for m2 are 4 and 6 slots, respectively. Clearly, this results in a timing violation.
Therefore, a minimum-distance constraint between two successive transmission slots
for m2 must also be satisfied during allocation. Fortunately, jitter-free transmission can
be achieved by appropriately modifying the message periods; Fig. 7(b) shows a jitter-
free slot allocation for both messages when m2’ s period is modified to 4 slots.

Fig. 6. The clustering algorithm generating the reduced-cost network topology

Procedure CLUSTER(smsg) /* smsg := Messages { mi}  sorted by increasing period * /
sclust := ∅; /*  Initialize set of message clusters * /
while (smsg ≠ ∅) begin

mi := k-FT message in smsg with minimum period;
scand := ∅; /*  Initialize set of possible candidate clusters * /
for (each compatible cluster Cj in sclust) /*  Allocate k-FT message to clusters * /

if (ALLOC(Cj, mi) returns a feasible round(Cj)) scand := scand ∪ Cj;
ncand := Number of clusters in set scand;
if (ncand < k) begin /*  New clusters are needed to accommodate copies of mi * /

sclust := sclust ∪ Scand;
Allocate mi to (k − ncand) new clusters and add them to sclust;

end;
if (ncand ≥ k) begin /*  Select the best k clusters in terms of slot reuse */

Sort clusters in Scand in terms of decreasing slot reuse;
Select the first k clusters in the sorted set Scand and add to Sclust;
Remove mi from the non-selected clusters;

end;
Smsg := Smsg − mi;

end; 



The above discussion suggests that the original message periods need modification
prior to allocating slots within the TDMA round. Clearly, message periods may be
modified in a variety of ways; we adopt a strategy where the periods of all messages
within a cluster Cj are constrained to be harmonic multiples of each other. Two mes-
sages mi and mj have harmonically-related periods if . A
similar concept is used in task scheduling in multi-processors where tasks having har-
monic periods are allocated to the same processor to increase utilization and minimize
completion-time jitter [18] [19]. In [20], we formally prove that allocating messages
with harmonically-related periods in FF fashion within Cj guarantees jitter-free trans-
mission. It also maximizes bus utilization and results in a shorter TDMA-round dura-
tion thereby reducing the memory requirements of the communication co-processor.
Let  denote the smallest period among cluster Cj’ s messages.
Then, when allocating a new message mi to Cj, we select its period to be the maximum
integer  satisfying .

Figure 8 shows the ALLOC procedure which accepts an existing message cluster
Cj and a message mi and generates a feasible TDMA round (if possible) for the new
allocation Cj ∪ mi. As discussed above, message mi’s period period(mi) is first trans-
formed to relate harmonically to those in Cj and the messages are sorted in increasing
period order. The duration of the new round round(Cj ∪ mi) is

. To allocate transmission slots for message mi, ALLOC di-
vides round(Cj) into k disjoint time intervals { Ik}  where  and Ik
has duration period(mi). Transmission slots are then allotted within each interval using
the FF packing strategy. Jitter-free transmission of each message mi is guaranteed if the
allotted transmission slots occur in the same positions within each interval Ik. Again,
the interested reader is referred to [20] where we formally prove that ALLOC generates
a communication schedule guaranteeing jitter-free message transmission.

Fig. 7. (a) A clustering of multiple messages resulting in jitter, and (b) jitter-free slot 
allocation by appropriately modifying message periods
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Transmission-Slot Reuse. During clustering, each message mi is treated as period-
ic with period period(mi). However, if the task Ti transmitting mi does not execute at
that rate, then the bus bandwidth is over-utilized. We can improve bandwidth utiliza-
tion by reusing the transmission slots allotted to processor Pk among multiple messag-
es. Let {mi}  be the set of messages sent by the processor within the message cluster Cj.
Now, assume message mi+1, also transmitted by Pk, to be allotted slots within
round(Cj). Each message mi is allotted a number of transmission slots ni within the time
interval period(mi+1) in round(Cj). If nreuse denotes the number of slots available for
reuse by mi+1 with the time interval period(mi+1), then

where period(Ti) denotes the period of task Ti transmitting message mi. Therefore, the
number of transmission slots to be allotted to message mi+1 is  −
nreuse. Given clusters { Cj}  and the message mi+1 to be allocated to one, CLUSTER ex-
plores all possible cluster-message allocation scenarios. Slot reuse is used as the decid-
ing factor in selecting the best allocation since the cluster allocation resulting in maxi-
mum reuse minimizes the bandwidth utilization.

5 Case Study

We now illustrate the proposed network construction method using some advanced au-
tomotive control applications as examples. These include adaptive cruise control
(ACC), electric power steering (EPS), and traction control (TC), and are detailed in
Figs. 9(a)-(c). The ACC application automatically maintains a safe following distance
between two cars, while EPS uses an electric motor to provide necessary steering as-
sistance to the driver. The TC application actively stabilizes the vehicle to maintain its
intended path even under slippery road conditions. These applications demand timely
interaction between distributed sensors, processors, and actuators, i.e., have specific
end-to-end deadlines, and therefore require a dependable communication network. Fig-

Fig. 8. The transmission-slot allocation procedure

Procedure ALLOC (Cj, mi) /*  Cj := Message cluster; mi := Message * /
Smsg := Set of messages {Cj ∪ mi}  sorted in increasing period order;
Create an empty TDMA round round(s) with  slots; 
while (Smsg ≠ ∅) begin

mi := Message with shortest period in Smsg; 
; /*  k := Number of intervals * /

Divide round(Smsg) into k intervals { Ik} , each of duration period(mi);
n := ; /*  Number of slots needed to accommodate mi * /
for (each interval Ik) begin 

if (n free slots are unavailable) return ∅; /*  Allocation is infeasible * /
Allocate n slots within Ik to message mi in first-fit (FF) fashion; 

end;
end;
return round(Smsg); /*  Return the feasible allocation * /

pmax max period mi( ){ }
i

=

k pmax period mi( )⁄=

size mi( ) ∆sl ot⁄

nreuse ni
i

� period mi( )
period Ti( )
---------------------------- ni×

i

�
–=

size mi 1+( ) ∆sl ot⁄



ure 10(a) shows the physical architecture of the system where sensors and actuators are
directly connected to the network and the task-to-processor allocation, while Fig. 10(b)
summarizes the various message attributes affecting network topology generation. We
assume 1-FT messages throughout. Columns 2 and 3 list the sending and receiving
tasks for each message and the message size size(mi) in bits, respectively, while col-
umns 4 and 5 list the communication delay delay(mi) for messages in µs, and the trans-
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mission-slot intervals. These delay values are obtained by first assigning deadlines to
tasks and then performing a schedulability analysis on their respective processors−a
topic discussed previously in Section 3.

We assume a version of the FlexRay communication protocol having a bandwidth
of 250 kb/s and a minimum width of 50 µs for the transmission slots in a TDMA round.

Fig. 10. (a) The physical architecture including task-to-processor allocation, and (b) 
the message attributes required for network generation

speed

FT Multiple-bus network

P3P2P1

LR
wheel

speed

LF
wheel

speed

RR
wheel

speed

RF
wheel speed

LRCar

Brake
RF

Brake
RR

Brake
LF

Brake

Throttle
valve

Hand-

motor
wheel

Steering
rack

motor

Hand-
wheel
angle

Accel-
arator

Throttle 
position

Steering
rack 

force

Object
distance

(a)

(b)

Message 
mi (Sender, receiver) 

size(mi) 
(bits)

 delay(mi) 
(µs)

delay(mi) 
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m1 (T1, T3)
(T1, T4) 12 300 6

m2 (T2, T4) 12 275 5

m3 (T3, T5) 20 300 6

m4 (T4, T6) 12 350 7

m5 (T7, T10) 12 500 10

m6 (T8, T10) 12 650 6

m7 (T9, T11) 10 1425 28

m8 (T10, T11)
(T10, T12) 12 500 10

m9 (T11, T13) 10 500 10

m10 (T12, T14) 10 500 10

m11 (T15, T20) 12 475 9

m12 (T16, T20) 12 475 9

m13 (T17, T20) 12 475 9

m14 (T18, T20) 12 475 9

m15 (T19, T22) 10 1100 22

m16 (T20, T22) 22 275 5

m17 (T21, T22) 20 1025 20

m18 (T22, T23)
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Figure 11(a) shows the communication schedules generated on buses B1, B2, B3, and
B4 without reusing transmission slots. We now show how to share transmission slots
between appropriate messages and reduce the number of buses. Consider messages m3
and m10 sent by tasks T3 and T12, respectively, where both tasks are allocated to proc-
essor P2. Message m3’ s period is set to its transmission deadline of 300 µs (5 slots)
when constructing the TDMA round. Note, however, that the EPS application compris-
ing task T3 has a 1500 µs period; this also corresponds to the time interval between suc-
cessive m3 transmissions. Therefore, in Fig. 11(a), m3’ s transmission needs only one of
two allocated slots on bus B1. (Task T3, however, may request m3’s transmission any-
time during a TDMA round). Message m10 with a period of 10 slots can use the remain-
ing slot. Figure 11(b) shows the schedules obtained by ALLOC with slot reuse; the
shared slots between messages {m4, m9}  and { m3, m10} , transmitted by processors P1
and P2, respectively, are shaded. Also, slot reuse eliminates the bus B4 in Fig. 11(a).

When TDMA slots are shared between messages sent by a processor, as in Fig.
11(b), the communication co-processor must correctly schedule their transmission, i.e.,
given a slot, decide which message to transmit in it. Though this paper does not address
message-scheduling logic, an earliest-deadline first approach seems appropriate.

6 Conclusion

This paper has addressed the design of low-cost TDMA communication networks for
distributed embedded applications. We have developed a fault-tolerant clustering
method which allocates and schedules k-FT messages on the minimum number of bus-
es to provide jitter-free and predictable transmission. Finally, a case study involving
some advanced automotive control applications was discussed and it was shown that
the efficient use of communication bandwidth by sharing transmission slots among
multiple messages can reduce network topology cost.

This paper does not address the design and implementation of the message sched-
uler on the co-processors. The message scheduler is responsible for transmitting and
receiving messages in their respective slots. We also do not address the fault-tolerant
allocation of tasks to processors. The message allocation scheme can be easily incor-
porated as a subfunction into an overall scheme that deals with both the problems. The
above issues will be investigated as part of future work.

Fig. 11. Communication schedules generated by ALLOC (a) without slot reuse, and 
(b) with reuse where the shared transmission slots are shaded
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