Tutorial: Basic Concepts in Quantum Circuits

John P. Hayes
Advanced Computer Architecture Laboratory
EECS Department
University of Michigan,
Ann Arbor, MI 48109, USA

Outline

• Motivation
• Quantum vs. Classical
• Quantum Gates
• Quantum Circuits
• Physical Implementation
Outline

- Motivation
- Quantum vs. Classical
- Quantum Gates
- Quantum Circuits
- Physical Implementation

Computational Limits

- Some important computational problems seem to be permanently intractable
 - Their complexity grows exponentially with problem size, e.g. factoring large numbers—the basis for “unbreakable” Internet codes
- Performance improvements in “classical” computer circuits may be approaching a limit
 - This is described by Moore’s Law
Computational Limits

• **Question:** Is there a faster and more compact way to compute?
• **Answer:** Yes!
 Quantum mechanics can form the basis for an entirely new type of computation—

quantum computing — if some huge practical implementation problems can be solved

Quantum Information

• A classical logic state can be 0 or 1, but not both
• A quantum state *can* be 0 and 1 at the same time!
• More precisely, a quantum state is a superposition of the zero and one states called a **qubit**
 \[c_0 |0\rangle + c_1 |1\rangle \]
 The coefficients c_0 and c_1 are complex numbers called (probability) amplitudes
The Good News

- N qubits can store 2^N binary numbers simultaneously, suggesting massive parallelism

$$N = 2: \quad |\Psi\rangle = c_0|00\rangle + c_1|01\rangle + c_2|10\rangle + c_3|11\rangle$$

- or, in general,

$$|\Psi\rangle = \sum_{i=0}^{2^N-1} c_i |b_{i,n-1}b_{i,n-2} \ldots b_{i,0}\rangle$$

- Quantum states have wavelike properties that allow powerful nonclassical operations (interference, entanglement)
Quantum Information

The Good News
- N qubits can store 2^N binary numbers simultaneously, suggesting massive parallelism
 - $N = 2$: $|\Psi\rangle = c_0|00\rangle + c_1|01\rangle + c_2|10\rangle + c_3|11\rangle$
 - or, in general,
 $$|\Psi\rangle = \sum_{i=0}^{2^n-1} c_i \sum_{j=0}^{n-1} b_{i,n-1} b_{i,n-2} \ldots b_{i,0}$$

- Quantum states have wavelike properties that allow powerful nonclassical operations (interference, entanglement)

The Bad News
- Measurement yields just one of the 2^N superimposed numbers $|b_{i,n-1} b_{i,n-2} \ldots b_{i,0}\rangle$
 - and destroys the superposition

- Quantum states are very fragile due to
 - Tiny (nano) scale and low energy levels
 - Interaction with the environment (decoherence)

Implications
- Physical quantum circuits are extremely hard to build
- Fault-tolerant design is believed to be essential
Quantum Computing

A Little History

- **1982**: Richard Feynman suggested quantum mechanics could provide an exponential speed-up in simulation
- **1985**: David Deutsch described a simple algorithm exhibiting quantum parallelism
- **1994**: Peter Shor showed how to factor integers into primes in polynomial time using quantum methods, thus “breaking” RSA encryption
- **1996-now**: First quantum computing devices built at LANL, Oxford, etc. employing a few (≤ 10) qubits
Outline

- Motivation
- Quantum vs. Classical
- Quantum Gates
- Quantum Circuits
- The Future

Classical Logic Circuits

- Behavior is governed implicitly by classical physics: no restrictions on copying or measuring signals
- Signal states are simple bit vectors, e.g. \(X = 01010111 \)
- Signal operations are defined by Boolean algebra
- Small well-defined sets of universal gate types exist, e.g. \{\text{NAND}\}, \{\text{AND, OR, NOT}\}
- Circuits use fast, scalable and macroscopic technologies such as transistor-based CMOS integrated circuits
Quantum Circuits

- Behavior is governed by quantum mechanics
- Signal states are qubit vectors
- Operations are defined by linear algebra over Hilbert space and represented by unitary matrices
 - Gates and circuits must be reversible (information-lossless)
 - Number of output lines = Number of input lines
 - States cannot be copied so fan-out ("cloning") is not allowed
- Many universal gate sets and physical implementation technologies exist (the best ones are not obvious)

Classical vs. Quantum Circuits

- **Example: Classical Half Adder**
 - Compute the sum and carry for two bits x_1, x_0
Classical vs. Quantum Circuits

- Example: Quantum Half Adder
 > Compute the sum and carry for two qubits x_1, x_0

```
<table>
<thead>
<tr>
<th>x_1</th>
<th>x_0</th>
<th>sum</th>
<th>carry</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>sum</td>
<td>carry</td>
</tr>
</tbody>
</table>
```

Outline

- Motivation
- Quantum vs. Classical
- **Quantum Gates**
- Quantum Circuits
- Physical Implementation
Quantum Gates

- **One-Input gate:** NOT
 - Input state: $c_0|0\rangle + c_1|1\rangle$
 - Output state: $c_1|0\rangle + c_0|1\rangle$
 - Graphic symbol: \[\text{X}\]
 - Basic states $|0\rangle$ and $|1\rangle$ are mapped thus:
 - $|0\rangle \rightarrow |1\rangle$
 - $|1\rangle \rightarrow |0\rangle$

Quantum Gates

- **NOT gate** (contd.)
 - Vector notation for states: $|0\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $|1\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 - Matrix notation for gate operation: $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
 - Gate connection corresponds to matrix multiplication:
 - $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
 - Identity matrix
 - NOT matrix
Quantum Gates

• Hadamard Gate

\[
\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}
\]

\[\text{H} \]

> Maps \(|0\rangle \rightarrow \frac{1}{\sqrt{2}} |0\rangle + \frac{1}{\sqrt{2}} |1\rangle \) and \(|1\rangle \rightarrow \frac{1}{\sqrt{2}} |0\rangle - \frac{1}{\sqrt{2}} |1\rangle \)
so it “randomizes” the basic states

\[
\frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

\[\text{H} \quad \text{H} \quad = \quad \]

Quantum Gates

• Phase-Shift Gate

\[
\begin{pmatrix} 1 & 0 \\ 0 & e^{i\phi} \end{pmatrix}
\]

\[\phi \]

> Maps \(|0\rangle \rightarrow |0\rangle \) and \(|1\rangle \rightarrow e^{i\phi} |1\rangle \) so it “twists”
the 1 state by an angle \(\phi\)

> If \(\phi = \pi\), it maps \(|1\rangle \rightarrow -|1\rangle\)

> Note that the entries of a gate matrix can be complex numbers
Two-Input Gate: Controlled NOT (CNOT)

CNOT maps

\[|x\rangle|0\rangle \rightarrow |x\rangle|x\rangle \]

and

\[|x\rangle|1\rangle \rightarrow |x\rangle||\text{NOT}(x)\rangle \]

"Standard" Universal Gate Set

CNOT Hadamard Phase T (\(\pi/8\)) gate
Outline

- Motivation
- Quantum vs. Classical
- Quantum Gates
- Quantum Circuits
- Physical Implementation

Quantum Circuits

- A quantum “circuit” is a sequence of quantum “gates”
- The signals (qubits) may be static while the gates are dynamic
- The circuit has fixed “width” corresponding to the number of qubits being processed
- Logic design (classical and quantum) attempts to find circuit structures for needed operations that are
 > Functionally correct
 > Independent of physical technology
 > Low-cost, e.g. uses the minimum number of qubits or gates
Example 1: Quantum Half Adder

> Compute the sum and carry for two qubits x_1, x_0

Data in $|x_1\rangle$ \hspace{1cm} Data out $|x_1\rangle$

Data in $|x_0\rangle$ \hspace{1cm} sum

Control in $|y\rangle$ \hspace{1cm} $|y\rangle \oplus carry$

\begin{itemize}
 \item Toffoli gate
 \item CNOT gate
\end{itemize}

Example 2: Implementing Deutsch's Algorithm

Problem: Determine whether a one-variable Boolean function $f(x)$ is constant, i.e. $f(0) = f(1)$, or balanced, i.e. $f(0) \neq f(1)$.

Classical algorithms require two evaluations of f.

This algorithm uses just one quantum evaluation by, in effect, computing $f(0)$ and $f(1)$ simultaneously.

Circuit:

\begin{itemize}
 \item H
 \item x \hspace{1cm} x
 \item U_f
 \item y \hspace{1cm} $y \oplus f(x)$
 \item H
 \item M
\end{itemize}
Quantum Circuits

- **Deutsch’s Algorithm** (contd.)

 $|0\rangle \rightarrow H |\Psi_0\rangle \rightarrow H |\Psi_1\rangle \quad \begin{array}{c}
 x \\
 y = y \oplus f(x)

 U_f \\
 H \\
 M

 |\Psi_2\rangle \rightarrow |\Psi_3\rangle$

 - Initialize with $|\Psi_0\rangle = |01\rangle$
 - $|0\rangle = \text{constant}; |1\rangle = \text{balanced}$
 - Create superposition of x states using the first Hadamard (H) gate. Set y control input using the second H gate
 - Compute $f(x)$ using the special unitary circuit U_f
 - Interfere the $|\Psi_2\rangle$ states using the third H gate
 - Measure the x qubit

Quantum Computation

- **Generic Structure to Compute $F(\chi)$**

 \[\begin{array}{c}
 \text{Superimpose inputs (X)} \\
 \text{Compute $F(\chi)$} \\
 \text{Interfere the results} \\
 \text{Measure the outcome}
 \end{array} \]
Outline

• Motivation
• Quantum vs. Classical
• Quantum Gates
• Quantum Circuits
• Physical Implementation

Physical Implementation

Main Contenders
• Nuclear magnetic resonance (NMR)
• Ion traps
• Semiconductor quantum dots
• Optical lattices
 etc.

Main Deficiency
• Poor scalability
Ion Traps

- String of charged particles is trapped by a combination of static and oscillating electric fields in a high-vacuum device

- Each ion has two long-lived electrical states representing $|0\rangle$ and $|1\rangle$
- The individual ions can be addressed by laser beams
- Means exist for initializing (optical pumping and laser cooling) and measuring the quantum state
Summary: State of the Art

- Quantum circuits can solve some important problems with exponentially fewer operations than classical algorithms
- Small quantum circuits have been demonstrated in the lab using various physical technologies
- Quantum cryptography has been demonstrated over long distances
- Current technologies are fragile, and appear to be limited to tens of qubits and hundreds of gates
- Big gaps remain in our understanding of quantum circuit and algorithm design, as well as the necessary implementation techniques