
Abstract
The power consumption of a sequential circuit can be reduced by
decomposing it into subcircuits which can be turned off when
inactive. Power can also be reduced by careful state encoding.
Modeling a given circuit as a finite-state machine, we formulate
its decomposition into submachines as an integer linear
programming (ILP) problem, and automatically generate the ILP
model with power minimization as the objective. A simple, but
powerful state encoding method is used for the submachines to
further reduce power consumption. We present experimental
results which show that circuits designed by our approach
consume 30% to 90% less power than conventional circuits.

Categories and Subject Descriptors:
B.7 INTEGRATED CIRCUITS. Additional classification: F.1
COMPUTATION BY ABSTRACT DEVICES.

General Terms:
Algorithms, design, experimentation.

Keywords
Finite-state machine, decomposition, low power, integer
l inear programming.

1. INTRODUCTION
With increasing integration scale and clock frequency, power
dissipation forms an important design constraint for
integrated circuits. Various technologies, from the transistor
and gate levels to the operating system and application levels,
have been studied to reduce system power consumption [7],
[12].

For a sequential circuit, an effective way to reduce power
dissipation is to turn off part of the circuit when inactive.
Finite state machine (FSM) decomposition is usually applied
to facil i tate this approach [1], [2], [8], [9]. The states of the
target FSM M are partitioned to form a set of submachines,
and each submachine implements the functions of M in one
state partition. When one submachine is active, we can
disable all the other submachines, leading to a reduction of
the switching activities involved in state transitions.

Two different FSM decomposition structures have been
studied. The first approach lets the submachines maintain
their own states and compute their own state transitions [1],
[8], [9]. Figure 1a shows the circuit structure of this type of
decomposition. We refer to this approach as sequential logic
decomposition (SLD). The second approach separates the state
update and state transition computation. Dedicated logic is

used to maintain circuit states and schedule submachine
activities, while the submachines are used just for computing
the next states and outputs [2]. This can be regarded as the
decomposition of the combinational logic of the target
system, and is hence called combinational logic
decomposition (CLD). The circuit structure produced by this
method is i llustrated in Figure 1b. The approaches in [1], [2],
[8], [9] decompose the target FSMs incrementally using
heuristic or generic algorithms, and are only able to explore a
very limited design space.

Circuit power consumption can be further reduced by taking
advantage of the flexibi li ty possible in submachine state
encoding. FSM encoding has been studied for decades.
Traditionally, encoding algorithms aim to minimize area [4],
[17]. Several encoding algorithms explicitly targeting low
power have also been proposed recently [10], [13], [16].
However, the submachines obtained by decomposition differ
from traditional FSMs in that they have transitions to and
from other submachines. Therefore, the state assignment of
one submachine affects the state assignments of other
submachines.

In this paper, we formulate FSM decomposition as an integer
linear programming (ILP) problem with power minimization
as the objective, and generate the ILP model automatically. A
simple, but powerful way to encode interactive submachine
states is also proposed. We present experimental results which
show that the decomposed FSMs consume 30% to 90% less
power than conventional designs, and incur 20% to 120% area
overhead. Experiments on technology-mapped circuits show
similar results (30% to 70% power reduction at the cost of
10% to 100% area overhead).

The remainder of this paper is as fol lows. Some notation and
our system model are introduced in Section 2. The
optimization procedure, including the ILP model generation
and the state encoding for interacting machines, are detailed
in Section 3. In Section 4, we present our experimental
results. Section 5 concludes the paper.

2. NOTATION AND SYSTEM MODEL
A finite-state machine (FSM) M is defined as a 6-tuple { I, S,
δ, O, λ, S0} , where I is the set of inputs, S is the set of states,
δ: I × S → 2S is the state transition function, O is the set of
outputs, λ: I × S → 2O is the output function, and S0 ⊆ S is the
set of initial states [6]. We use |S| to represent the size of set S.
An FSM can also be described using a state transition graph
(STG). The STG of M is denoted by GM(VM, EM), where VM
is the set of nodes, representing the state set of M and EM
={ <u, v>, u, v ∈ VM} is the set of edges, representing the state
transition set of M. Each edge <u, v> is labeled with a set of
input-output pairs, each of which denotes an input that
triggers the state transition and the corresponding output. A

ILP-Based Optimization of Sequential Circuits
for Low Power

Feng Gao and John P. Hayes
Advanced Computer Architecture Lab.

University of Michigan, Ann Arbor, MI 48109, USA
{fgao, jhayes}@umich.edu

submachine of M based on state set S’⊆ S contains all the
transitions starting from or ending at states in S’ . Consider
FSM dk27 in Figure 2. We divide its states into two subsets S1
= { s1, s4, s6} and S2 = { s2, s3, s5, s7} and obtain submachines
M1 and M2. Note that a submachine differs from a classical
FSM in that it contains transitions that start from or end at
states in other submachines. The existence of such transitions
introduces inter-dependence in the submachines’ state
encoding, and hence complicates the design problem.

We adopt the FSM decomposition structure shown in
Figure 1b and l imit the number of submachines to two.
Suppose the FSM M has u input signals, w output signals and N
states. The scheduling logic, which controls the activities of
submachines, has a 1:2 decoder, 2(u + n) AND gates, 2(n + 1 +
w) 2:1 multiplexers, and n + 1 state fl ip-f lops. The fl ip-flops
are allocated as fol lows. We use n f l ip-flops for submachine
states, and the remaining one (FF0) as a scheduling flip-f lop to
identify the submachine that is active in the current cycle. The
flip-f lop FF0 determines which submachine inputs should be
enabled, and which submachine outputs should be chosen as
the outputs of the circuit. Since the state f l ip-f lops are shared
by both submachines, they should be able to hold the states in
the larger submachine, whose number is between and
N. The number of f l ip-flops to store these n states is hence
between and , which differ by at most
one. Therefore, the number of AND gates and multiplexers
varies only sl ightly (at most by two), so does the area of the
scheduling logic.

The state probability Pr(s) for state s in M is the probabil i ty
that M is in state s, while the state transition probability Pr(s1,
s2) from s1 to s2 is defined as the probabil i ty that M transits
from s1 to s2. The state probabil i ty Pr(Mi) of a submachine Mi
is the sum of the state probabili ties of al l states in Mi, that is,

Pr(Mi) = (1)

On the other hand, the state transition probability Pr(Mi, Mj)
from submachine Mi to Mj is the sum of the state transition
probabili ties from any state in Mi to any state in Mj.

Pr(Mi, Mj)= (2)

In the bipartition case where there are just two submachines,
we have

 Pr(M1) = Pr(M1, M1) + Pr(M2, M1) (3)

If a transition is within the same submachine Mi, the submachine
label does not change. Therefore, the inputs to the other
submachine are kept disabled, causing no activity in that
submachine. On the other hand, if a transition occurs from
submachine Mi to submachine Mj, the inputs to Mi change to all-0s,
while the primary inputs of Mj change to new values.
Consequently, both machines become active, and the probabili ty
P(M1) that M1 is active is Pr(M1) + Pr(M1, M2). Consider dk27
in Figure 2, whose state probabil i ties are given in the figure
beside the states. Pr(M1) = Pr(s1) + Pr(s4) + Pr(s6) = 1/2.
Pr(M1, M2) = Pr(s7, s6) + Pr(s5, s1) = 1/2 * 7/42 + 1/2 * 1/21 =
9/84. P(M1) = Pr(M1) + Pr(M1, M2) = 51/84.

The area of the combinational logic (CL) associated with a
state s is denoted A(s), and the area of a submachine Mi is
denoted A(Mi). The power consumption of the decomposed
FSM Pw(M) is P(M1) × A(M1) + P(M2) × A(M2) + P(SL) ×
A(SL), where A(SL) is the area of the scheduling logic and
P(SL) is the probabili ty that the scheduling logic is active.
Since the scheduling logic is never turned off, P(SL) is always
one. Furthermore, A(SL) is also approximately a constant, as
shown before. The power consumption of the scheduling logic
is hence approximately a constant.

3. ILP-BASED FSM DECOMPOSITION
The optimization algorithm follows the procedure depicted in
Figure 3. Given an FSM, we first calculate the state probabili ty
and the CL area of each state. The ILP generator automatically
constructs the ILP model using the calculated data. The ILP
model is then exported to a commercial ILP solver cplex [5],
which computes a state partition as its solution. The state
partition defines a decomposition of the original FSM. We use
jedi [14] to encode the submachines. Finally, the circuit is

Figure 1. Two FSM decomposition methods: (a) sequential logic decomposition (SLD), and
(b) combinational logic decomposition (CLD)

 ...

(b)

EO

OUT

EN

NS

M1

FF
EN

M2

Input

Output

CL

(a)

FF
EN

EO

OUT

EN

NS

FF0 Input

Decoder

M1 M2

Output

MUX MUX MUX MUX

FF1 FFn

N 2⁄

N 2⁄log Nlog

Pr sk()
k 1 sk Mi∈,=

S

�

Pr sk sl,()
sk Mi∈

sl Mj∈

�

optimized using SIS [14] and the Synopsys Design Analyzer
[15] CAD tools. We describe these steps in detail in this
section.

3.1 State probability and area estimation
The state probabil ities for a completely specif ied FSM can be
computed with the Chapman-Kolmogorov equations for a
discrete-time, discrete-transition process [11]. For each state
sk, we have the fol lowing equation

 ∀ k∈ [1, |S|] (4)

where Pr(sk | si) is the conditional probabil i ty that the machine
makes a transition to state sk if i t is in state si. An additional
constraint is that the overall state probabili ty of al l states is 1,
namely,

(5)

We next estimate the area of the combinational logic (CL). For
the purpose of area measurement, we view the CL of a state as
a PLA and estimate its number of l i terals [2]. Each row of a
PLA, represented as { <PI, CS>, <NS, PO>} , has u + n inputs,
where u = |PI| and n = |CS| = |NS| are the numbers of primary
inputs and state f l ip-f lops, respectively, of the FSM. The PLA
has w + n outputs, where w = |PO| is the number of primary
outputs. We estimate the number of li terals in the PLA as
follows. Assume that each row corresponds to w + n cubes, and
the size of a cube is proportional to its number of inputs u + n.
Suppose the CL for state s has m rows; its area is hence
approximated by m × (u + n) × (w + n)/2. Note that we divide
the last term by two because the probabil ity for a bit in <NS,
PO> to be zero is assumed to be 0.5, in which case the cube
should not be counted.

To estimate the area of a submachine, we must also estimate
the area of the CL shared by each state pair. We also view the
CL in terms of PLAs and count the number of shared l i terals.
We compare any two rows of the two PLAs { <PIi, CSi>, <NSi,
POi>} and { <PIj, CSj>, <NSj, POj>} . If PIi = PIj and NSi = NSj,
they share n = |CS| cubes. If PIi = PIj and one bit of POi equals
the corresponding bit in POj, they share one cube. Therefore,

the total number of shared cubes is (sw + sn × n)/2, where sw is
the number shared outputs, and sn is the number of shared next
states. For the same reason as before, this number is divided by
two. The number of l iterals shared by two PLAs is hence (u +
n) × (sw + sn × n)/2.

3.2 Problem formulation
The objective function to be minimized is the power
consumption of the whole circuit. Since the scheduling logic
consumes a constant amount of power, we exclude it from our
objective function, which is therefore as follows.

(Pr(M1) + Pr(M1, M2)) × A(M1) + (Pr(M2) +Pr(M2, M1))

 × A(M2)

 = Pr(M1) × A(M1) + Pr(M2) × A(M2) + ((Pr(M1, M2)

 × A(M1) + Pr(M2, M1) × A(M2))

Since the inter-submachine transitions activate both
submachines and should be avoided as much as possible, we
only consider decompositions where the probabil ity of inter-
machine transitions is less than 0.1. Under this constraint, the
last term Pr(M1, M2) × A(M1) + Pr(M2, M1) × A(M2) in the
objective function can be neglected, leading to the simpler
objective function

 Pr(M1) × A(M1) + Pr(M2) × A(M2)

If M1 has only two states si and sj, i ts state probabili ty is Pr(si)
+ Pr(sj). Its area is A(si) + A(sj) − SA(si, sj), where SA(si, sj)
denotes the area of the CL shared by si and sj. Although the
power estimation is more accurate if we consider logic sharing
among three or more states, the estimation complexity
increases significantly. Consequently, we only consider logic
sharing between any two states of a submachine.

(6)

Let sisj be a binary variable, which is 1 if and only if si and sj
are in the same submachine. The objective function can be
restated as:

(7)

Figure 2. An example FSM dk27

 s1 s4

 s6

 s5

 s2 s7

 s3

1/00

0/00
0/00

0/010/10

1/
01

0/
00

1/
10

1/00

0/00

1/00

1/10

1/10

0/00

M1

M2

Pr = 4/21

Pr = 2/21

Pr = 9/42

Pr = 7/42

Pr = 4/21

Pr = 2/21

Pr = 1/21

Pr si() Pr sk si()×
i 1=

S

� Pr sk()=

Pr si()
i 1=

S

� 1=

Figure 3. Flowchart of the optimization process

 FSM analyzer

 ILP generator

 Cplex

 Jedi

 SIS and

 FSM specification

State probability
 Area

 ILP problem

 State partition

State assignment

Design Analyzer

 Pr si() Pr sj()+() A si() A sj() SA si sj,()–+()×
i j≠
�

k 1=

2

�

 sisj Pr si() Pr sj()+() A si() A sj() SA si sj,()–+()××
i j, 1 i j≠,=

S

�

Note that Pr(si), A(si), and SA(si, sj) can be calculated
beforehand. Therefore, the above function is actually a l inear
function of sisj, and so is used as the objective function of the
ILP problem. We wil l try to minimize the objective function
under the constraints derived below.

The ILP constraints fall into two main categories: quality
constraints and correctness constraints. The quality constraints
guide the solution to the desired decomposition. First, the
interaction between submachines should be l imited. In
addition, we would like to generate one submachine with fewer
states and larger state probabil ity than the other. To this end,
we define variables p1si, p2si for al l , which are 1 if
and only if si is in M1 or M2, respectively. The above quality
constraints are formulated as fol lows.

(8)

(9)

(10)

The correctness constraints ensure the variables have
reasonable values. First, a state must belong to one and only
one submachine.

 p1si + p2si = 1, for

Second, i f si and sj are both in M1 or M2, they belong to the
same submachine. This constraint is formulated as

 sisj = p1si AND p1sj OR p2si AND p2sj

Because of the complementary relation between p1si and p2si,
the above formulation is equivalent to

sisj = p1si XNOR p1sj (11)

We l inearize (11) as fol lows.

p1si + p1sj +1 = 2ci, j + sisj (12)

where ci, j is also a binary variable.

The ILP model is summarized in Figure 4. Solving the ILP
model via cplex, we obtain an FSM bipartition that minimizes
the objective function. We can further reduce circuit power
consumption by taking advantage of the flexibi l ity of the
submachine state assignment, as described in the next
subsection.

3.3 Submachine state assignment
We know of no FSM state assignment tool specif ically
designed for interactive submachines. We therefore modify the
submachines so that we can solve their state assignment
problem with the available FSM state encoding tools.

We first add a dummy state for the outgoing and incoming
transitions of each submachine Mi. A new output signal is also
added to Mi, which is for the scheduling fl ip-flop of the next
cycle. Then we perform state assignment for Mi using the
traditional state assignment tool jedi from the SIS suite [14],
with the command jedi -e c. The dummy state is added to
represent the inactive state, which is the all-0s state in our
implementation. Therefore, we shift the submachine state
assignments such that the dummy state is assigned the all-0s

state. This shift signif icantly impacts the submachine power
consumption. Consider the example FSM dk27 and the
indicated decomposition in Figure 2 again. We encode the
states in M1 as { s1 = 000, s4 = 010, s6 = 011, dummy = 001} ,
and the states in M2 as { s2 = 001, s3 = 111, s5 = 100, s7 = 101,
dummy = 000} . The power consumption estimated by SIS is
250µW assuming a 20MHz operating clock frequency and a
5V supply voltage. However, if we shift the state assignment
for M1, the overall power consumption reduces to 140µW.

After state assignment, we generate the FSM implementation
in SIS’s bli f format. We optimize the circuits in SIS using the
standard optimization script script.rugged, followed by the
command full_simplify. We also performed technology
mapping using the Synopsys Design Analyzer to estimate the
area and power consumption of the technology-mapped
circuits.

4. EXPERIMENTAL RESULTS
To examine the effectiveness of our approach, we applied it to
a subset of the MCNC FSM benchmarks [3]. We compared the
area and power consumption of circuits designed using our ILP
approach with those using the standard SIS (no decomposition)
and the CLD approaches. We carried out area and power
evaluation both before and after technology mapping. The run
times of the ILP solver cplex varied from seconds to 20
minutes.

First, we use SIS to estimate the area and power consumption
of the pre-mapping netl ists. The power is estimated using the
command power_estimate -t S, where 5V supply voltage and
20MHz working frequency are assumed. The results are
presented in Figure 5. Under the FSM column, we l ist the
FSMs and the number of their states, input signals and output
signals, respectively. The area, in terms of the number of
l iterals, and the corresponding power consumption for each
FSM are then l isted. SIS refers to a design directly optimized
by SIS, while CLD and ILP refer to designs obtained with the

i 1 S,[]∈

1 s– isj() Pr si sj,()×
i j, 1=

S

� 0.1<

 p1si

i 1=

S

� p2si

i 1=

S

�≤

 p1si Pr si()×
i 1=

S

� p2si Pr si()×
i 1=

S

�≥

i 1 S,[]∈

Minimize

subject to the following constraints.

 p1si + p2si = 1, for

 p1si + p1sj +1 = 2ci, j + sisj, for

All variables are binary.

 sisj Pr si() Pr sj()+() A si() A sj() SA si sj,()–+()××
i j, 1 i j≠,=

S

�

1 s– isj() Pr si sj,()×
i j, 1=

S

� 0.1<

 p1si

i 1=

S

� p2si

i 1=

S

�≤

p1si Pr si()×()
i 1=

S

� p2si Pr si()()×
i 1=

S

�≥

i 1 S,[]∈

i j, 1 S,[]∈

Figure 4. The ILP model

approaches proposed in [2] and in this paper, respectively. For
the FSMs obtained using CLD and ILP methods, we also
compare their area and power ratios to those in SIS. The data
for the SIS and CLD approaches are taken from [2].

Compared with the FSMs obtained by SIS without considering
power consumption, our approach generated FSMs with 30%
to 90% less power at the cost of 20% to 120% area overhead,
as shown in the ratio columns. In particular, we obtained two
designs with extremely lower power consumption. Circuits
s1488 and s1494 consume less than 10% power of the SIS
designs. The reason is that both circuits have one or two states
whose state probabil ities are very high. We can hence disable
most of the CL in most cycles, leading to large power
reduction. Compared with the data of the CLD approach,
circuits generated by our ILP method consume half or less
power in nine of the eleven benchmarks. The ILP design of
s1494 consumes only around one tenth the power of i ts CLD
counterpart. The area overhead varies from 20% to 100% more
than that of the CLD approach. We believe that the power
reduction is mainly due to the larger design space our
technique can explore and its eff icient state assignment
algorithm.

We also evaluated these benchmarks after technology
mapping. We export the same netl ists as in the first set of
experiments to the Synopsys Design Compiler and set the
frequency to 20MHz. We used the TSMC18 0.18µm static
CMOS standard cell library. The area and power consumption
are estimated by Design Compiler. Figure 6 shows the
experimental results in a similar way to Figure 5. We do not
list the results for the CLD approach because we do not know
the implementation of the decomposed circuits in [2]. The
FSMs obtained using the ILP approach consume less power
than the original implementation, with a reduction between
30% and 70%. The area overhead ranges from 10% to 100%.

Finally, we estimated the post-layout power consumption of
these circuits. we performed place and routing using Cadence’ s
Sil icon Ensemble tool. We set the aspect ratio to 1.0 and row
util ization to 0.85. The areas of the designs were manually

measured, and the parasitic parameters were extracted. We
then exported the parasitic capacitance to Design Compiler,
which calculated the power consumption. The results are
presented in Figure 7, and can be seen to be quite consistent
with those in Figure 6, with just small variations.

5. DISCUSSION
We have presented a new way to optimize sequential circuits
for low power. The problem of decomposing the circuits is
modeled using integer linear programming, which explores a
relatively large design space. An efficient method to encode
interacting submachines has also been proposed. Experimental

Figure 5. Comparison of area and power consumption of FSMs obtained using the SIS, ILP and CLD techniques.

FSM SIS [2] CLD[2] ILP

Name States Inputs Outputs
Area

As

Power
Ps

Area
Ac

Power
Pc

Ac/As Pc/Ps
Area

Ai

Power
Pi

Ai/As Pi/Ps

s1494 48 8 19 514 1276 625 938.3 1.22 0.74 829 87.3 1.61 0.07

tbk 32 6 3 330 978.2 293 744.0 0.89 0.76 725 369.1 2.20 0.38

styr 30 9 10 407 1073 501 695.8 1.23 0.65 613 252.5 1.51 0.24

bbsse 16 7 7 103 373.0 152 318.0 1.48 0.85 212 138.7 2.06 0.37

cse 16 7 7 186 422.0 245 257.0 1.32 0.61 299 112.5 1.61 0.27

sand 32 11 9 527 1525 488 635.0 0.93 0.41 778 880.8 1.48 0.58

pma 24 8 8 202 965.1 237 622.0 1.17 0.64 423 188.5 2.09 0.20

s1488 48 8 19 503 1448 593 592.9 1.18 0.41 785 94.6 1.56 0.06

dk16 27 2 3 224 1238 251 868.0 1.12 0.70 314 874.0 1.40 0.71

ex1 20 9 19 214 789.8 257 409.0 1.20 0.52 255 200.8 1.19 0.25

keyb 19 7 2 168 599.0 246 492.0 1.46 0.82 290 135.0 1.72 0.24

FSM

SIS ILP

Area
As

Power
Ps

Area
Ai

Power
Pi

Ai/As Pi/Ps

s1494 4643.7 653.4 6266.9 278.6 1.35 0.43

tbk 3216.6 678.9 5235.8 478.7 1.63 0.71

styr 3752.2 755.2 4996.3 324.3 1.33 0.43

bbsse 1131.0 233.9 1393.8 168.2 1.23 0.72

cse 1789.6 303.7 2511.4 170.9 1.40 0.56

sand 4733.5 904.0 5814.6 422.8 1.23 0.47

pma 1739.7 279.7 3699.0 118.0 2.13 0.42

s1488 4820.0 682.0 6270.3 222.3 1.30 0.33

dk16 2162.2 498.1 2627.9 280.2 1.22 0.56

ex1 2085.7 407.0 2222.0 117.3 1.07 0.29

keyb 1909.4 423.5 2434.9 199.2 1.28 0.47

Figure 6. Comparison of area and power after technology
mapping.

results show that the ILP problem can be solved quickly and
the resulting circuits consume much less power (30% to 90%
less) than those obtained without considering power
consumption. The results for technology-mapped and post-
layout circuits show similar trends.

The ILP model is greatly simplif ied by the constraint that
limits inter-submachine state transitions. However, this
constraint also limits the design space being explored. In some
cases where the number of states is very large, or many states
are tightly coupled and hard to partition, an ILP solution may
not be found, even though one exists. A possible way of
tackling this problem is to add a pre-processing step that forms
low-power state clusters and allows the inter-submachine
transition constraint to be relaxed.

Acknowledgment
This research was supported by the National Science
Foundation under Grant No. CCR-0073406.

6. REFERENCES
[1] L. Benini, G. De Micheli, and F. Vermulen, “Finite State

Machine Partitioning for Low Power” , Proc. International
Symposium on Circuits and Systems, 1998, pp. 5-8.

[2] S. H. Chow, Y. C. Ho, T. Hwang and C. L. Liu, “Low Power
Realization of Finite State Machines−A Decomposition
Approach” , ACM TODAES, vol. 1, 1996, pp. 315-340.

[3] Collaborative Benchmarking Lab., North Carolina State
Univ., http://www.cbl.ncsu.edu/benchmarks.

[4] S. Devadas, et al., “MUSTANG: State Assignment of Finite
State Machines Targeting Multilevel Logic
Implementations” , IEEE Trans. on CAD, vol. 7, 1988, pp.
1290-1300.

[5] ILOG cplex webpage. http://www.ilog.com/products/cplex/.

[6] H. R. Lewis and C. H. Papadimitriou, Elements of the Theory
of Computation, Englewood Cliffs, NJ: Prentice-Hall, 1981.

[7] E. Macii, M. Pedram, and F. Somenzi, “High-Level Power
Modeling, Estimation, and Optimization” , IEEE Trans. on
CAD, vol. 17, 1998, pp. 1061-1079.

[8] J. C. Monterio and A. L. Oliveria, “Finite State Machine
Decomposition for Low Power” , Proc. Design Automaton
Conference, 1998, pp. 758-763.

[9] J. C. Monterio and A. L. Oliveria, “FSM Decomposition by
Direct Circuit Manipulation Applied to Low Power Design” ,
Proc. Asia South Pacific Design Automation Conference,
2000, pp. 351-358.

[10] E. Olson and S. Kang, “Low-Power State Assignment for
Finite State Machines” , Proc. International Symposium on
Low Power Design, 1994, pp. 63-68.

[11] A. Papoulis, Probability, Random Variables, and Stochastic

Processes, 2nd Edition, New York: McGraw-Hill, 1984.

[12] M. Pedram, “Power Minimization in IC Design: Principles
and Application” , ACM TODAES, vol. 1, 1996, pp. 3-56.

[13] K. Roy and S. Prasad, “Circuit Activity Based Logic
Synthesis for Low Power Reliable Operations” , IEEE Trans.
on VLSI, vol. 1, 1993, pp. 503-513.

[14] E. Sentovich, et al., “Sequential Circuit Design Using
Synthesis and Optimization” , Proc. International Conference
on CAD, 1992, pp. 328-333.

[15] Synopsys, Design Analyzer data sheet, http://www.
synopsys.com/products/logic/design_compiler.html.

[16] C. Y. Tsui, M. Pedram, and A. Despain, “Low-Power State
Assignment Targeting Two and Multilevel Implementations” ,
IEEE Trans. on CAD, vol. 17, 1998, pp. 1281-1291.

[17] T. Villa and A. Sangiovanni-Vincentelli, “NOVA: State
Assignment of Finite State Machines for Optimal Two-Level
Logic Implementation” , IEEE Trans. on CAD, vol. 9, 1990,
pp. 905-924.

FSM

SIS ILP

Area
As

Power
Ps

Area
Ai

Power
Pi

Ai/As Pi/Ps

s1494 5402.3 1149.0 7430.4 481.3 1.38 0.42

tbk 3757.7 1163.0 6178.0 834.8 1.64 0.72

styr 4422.3 1343.4 5969.8 568.6 1.34 0.42

bbsse 979.7 366.5 1608.0 269.1 1.64 0.73

cse 2450.3 512.3 2926.8 280.7 1.19 0.55

sand 5520.5 1621.8 6806.3 825.2 1.23 0.51

pma 2304.0 444.8 4984.4 200.8 2.16 0.45

s1488 5745.6 1179.2 7430.4 378.4 1.29 0.32

dk16 2550.3 844.5 3433.96 471.2 1.16 0.56

ex1 2430.5 677.3 2560.4 206.0 1.05 0.30

keyb 2180.9 686.0 2840.9 314.9 1.30 0.46

Figure 7. Comparison of area and power after placement
and routing.

