
BDD-based Two Variable Sharing Extraction

Dennis Wu, Jianwen Zhu

Department of Electrical and Computer Engineering
University of Toronto, Toronto, Ontario, Canada

{

wudenni, jzhu
}

@eecg.toronto.edu

Abstract

It has been shown that Binary Decision Diagram (BDD) based logic
synthesis enjoys faster runtime than the classic logic synthesis sys-
tems based on Sum of Product (SOP) form. However, its synthesis
quality has not been on par with the classic method due to the lack
of an effective sharing extraction strategy. In this paper, we present
the first sharing extraction algorithm that directly exploits the struc-
tural properties of BDD. While our sharing extraction algorithm is
limited to two-variable, disjunctive factors, and therefore may miss
sharing opportunities, we show that it can be made exact, incre-
mental and polynomial. Our experimental results under a compre-
hensive BDD-based synthesis tool show that this technique inflates
runtime by a mere 6% while enabling area savings of over 25%.

1. Introduction

Logic synthesis, the task of optimizing gate level networks,
has been the corner stone of modern electronic design automation
methodology since the 1990s. As the chip size grows exponen-
tially, and as the logic synthesis task increasingly becomes cou-
pled with physical design, the synthesis runtime has emerged as a
new priority, in addition to the traditional metrics of synthesis qual-
ity, including area, speed and power. To this end, there is a grow-
ing interest in migrating from an algebraic method, exemplified by
SIS [7], to a Binary Decision Diagram (BDD) based method, ex-
emplified by BDS [8]. Compared with the former, which uses cube
set as the central data structure for design optimization, the latter
exploits the compactness and canonicality of BDD so that Boolean
decomposition, Boolean matching and don’t care minimization can
be performed in an efficient way. Despite these advantages, our
experiments on publicly available packages show that BDD-based
methods are not yet competitive with cube set based methods in
terms of area quality.

A major reason for this shortcoming is the lack of a sharing
extraction strategy. Sharing extraction is the process of extract-
ing common functions among gates in the Boolean network to save
area. Their usefulness have long been proven in cube set based sys-
tems. One example implementation is kernel extraction, which has
been central in producing low area designs in the SIS [7] synthesis
package and commercial tools. In contrast, BDD-based systems

have provided relatively low support for sharing extraction.
In this paper, we show the first sharing extraction algorithm that

directly exploits the structural properties of BDDs. More specif-
ically, we make the following contributions. First, we demon-
strate that by limiting our attention to a specific class of extrac-
tors (similar to limiting to kernels in the classic method), namely
two-variable disjunctive extractors, effective area reduction can be
achieved. Second, we show that an exact, polynomial time algo-
rithm can be developed for the full enumeration of such extractors.
Third, we show that just like the case of kernels, there are inher-
ent structures for the set of extractors contained in a logic function,
which we can use to make the algorithm incremental and as such,
further speed up the algorithm. Our experiments indicates that an
overhead of merely 6% is needed to run our sharing extraction algo-
rithm, whereas 25% area reduction can be achieved. As the result,
our logic synthesis system performs consistently better than state-
of-the-art BDD synthesis packages both in terms of runtime and
synthesis quality.

The remainder of the paper is divided into eight sections. Sec-
tion 2 introduces related works. Section 3 gives an overview of
the extraction flow. Section 4 describes the extraction problem for
arbitrary functions. Section 5 describes the extraction problem for
two-variable, disjunctive extractors. Section 6 gives an incremental
solution to finding good extractors. Section 7 uses a heuristic based
on the transitive property of good extractors to further improve run-
time. In Section 8, experimental results are presented before we
conclude the paper in Section 9.

2. Related Works

Perhaps the most widely used sharing extraction algorithm is
the cubeset based kernel extraction by Brayton and McMullen [1].
Their algorithm works by enumerating candidate factors, for all
gates, followed by selecting the factor that generates the most area
reduction, as measured by their size and number of repetitions.
Their factorizations take the form F = AB+C, where supp(A) and
supp(B) are disjoint. Here they make the simplification, that a vari-
able and it’s compliment are treated as two independent variables,
in order to make the algorithm fast. Their sharing extraction algo-
rithm is active, because at each step, an attempt is made to extract
the best sharing opportunity. In contrast, passive sharing extraction
finds sharing only after a complete decomposition is performed.

Sawada et al [6] describe a BDD-based equivalent for kernel ex-
traction. While they use BDDs to represent logic functions, they are
represented in Zero-Suppressed Decision Diagram (ZDD) form,
which implicitly represents cubesets. Essentially, the algorithm is

cubeset based and cannot use the advantages of the BDD as de-
scribed earlier.

A subproblem of sharing extraction, and one that has garnered
the most attention in BDD-based systems, is decomposition. The
purpose of decomposition, like sharing extraction, is to break large
gates down into smaller ones. It differs in that decompositions are
judged by area savings with respect to a single gate, without con-
sidering external opportunities for sharing. Because of it’s strength
in decomposition, BDD-based synthesis systems often perform de-
composition first and then apply a passive form of sharing extrac-
tion.

BDS [8] takes an approach to synthesis that moves away from
cubesets altogether. They identify good decompositions by rely-
ing heavily on structural properties of BDDs. For example, 1, 0
and X dominators produce algebraic AND, OR and XOR decom-
positions respectively. They also describe structural methods for
non-disjunctive decomposition based on their concept of a general-
ized dominator. They also perform other non-disjunctive decompo-
sitions, such as variable and functional mux decompositions. Af-
ter performing a complete decomposition of the circuit, they per-
form sharing extraction by computing BDDs for each node in the
Boolean network, in terms of the primary inputs. Nodes with equiv-
alent BDDs can be shared. For obvious reasons, this passive form
of sharing extraction produces sharing results inferior to kernel ex-
traction.

Mishchenko et al [3] developed a BDD-based synthesis system
centered on the Bi-decomposition of functions. They give a theory
for when strong or weak bi-decompositions exist and give expres-
sions for deriving their decomposition results. Their sharing extrac-
tion step is interleaved with decomposition so that sharing can be
found earlier, avoiding redundant computations. They also retain
don’t care information across network transformations to increase
flexibility in matching. However, their’s is still a passive sharing
extraction.

3. Overview

Our sharing extraction algorithm, like kernel extraction, de-
composes sharing extraction into a two-step flow. In the first step,
the candidate extractors are enumerated for each gate in the net-
work. For practicality, not all extractors can be enumerated because
they are too numerous. In kernel extraction, extractors are limited
to those of the algebraic kind, because they can be found efficiently
on the cube set. Similarly, we limit our extractors to two variable,
disjunctive extractors because they can be found efficiently on the
BDD.

In the second step, common extractors are selected to share.
Committing some extractors destroy others so ordering is important
in choosing the extractors that have the most impact. One method
that works well, is to select the extractors greedily, based on the size
of the extractor and the number of times the extractor is repeated
(frequency). In two variable extraction, all extractors have size of
two, so selection is based solely on the frequency of the extractor.
Extractors are matched in a hash table using a key based on their
two variable support and gate type.

With the selection step described, the remainder of the paper
will focuses on the process of enumerating extractors. We use the
following conventions for notations. Uppercase letters F,G,H rep-
resent functions. Lowercase letters a,b,c represent the variables of
those functions. Supp(F) is the support set of F. F|x is the cofactor
of F with respect to x. [F,C] represents an incompletely specified
function with F as it’s completely specified function and C as it’s
care set. ⇓ represents the restrict operation.

4. Functional Extraction

Given two functions F and E, the extraction process breaks F
into two simpler functions, extractor E and remainder R.

F(X) = R(e,XR) (1)

R(e,XR) = eR1(XR)+ eR2(XR) (2)

e = E(XE) (3)

X is the support set of F . XE is the support set of E. XR is the
support set of R. XE

�
XR = X .

Both R1 and R2 have multiple solutions. The range of solutions
can be characterized by an incompletely specified function [F,C],
where F is a completely specified solution and C is the care set.
One solution is R1 = F and R2 = F . We obtain the C conditions
by noting R1 is a don’t care when E is false and R2 is a don’t care
when E is true.

R1 = [F,E] (4)

R2 = [F,E] (5)

We want a completely specified solution that minimizes the
complexity of R1 and R2. To do this, we assign the don’t care
conditions in a way that minimizes the resulting node count. This
problem was found to be NP complete [5] but a solution can be
obtained using one of several don’t care minimization heuristics.
One well known heuristic, which has been shown to be fast, is the
restrict operation [2]. Applying the restrict operator, the final equa-
tions for the remainder and extractor are shown below:

R(e,XR) = e(F ⇓ E)+ e(F ⇓ E)

e = E(XE)

5. Disjunctive Two Variable Extraction

The last section described how to compute the remainder for
an arbitrary function and extractor. In this section we describe a
specialized extraction algorithm tailored to good extractors.

DEFINITION 1. Given function F, extractor E and remainder
R, good extractors are two variable extractors whose variables are
disjunctive from R. E and R are disjunctive when they do not share
support.

It is important to note, the limitations of good extractors will
force us to miss some good sharing opportunities. Not all good
sharing opportunities use disjunctive extractors. Nor are all dis-
junctive extractors the combination of two variable disjunctive ex-
tractors. Restricting candidate extractors is necessary however, to
keep the runtime reasonable. Nevertheless, good extractors are
good candidates because they can be found and matched quickly.
We show experimentally that they are effective in reducing area.

5.1 Extractor Types

All two variable functions are considered potential good extrac-
tors. A two variable function has four unique input values. Each of
these input values have two possible outputs. That makes 42 = 16
unique, two variable, functions. The one and zero constants and the
single variable functions (F = a, F = a, F = b and F = b) make six
trivial functions. These functions cannot produce good extractions.
The ten remaining functions are listed below:

Condition Extractor Remainder
F|ab = F|ab = F|ab AND R = eF|ab + eF|ab
F|ab = F|ab = F|ab OR R = eF|ab + eF|ab
F|ab = F|ab = F|ab AND10 R = eF|ab + eF|ab
F|ab = F|ab = F|ab AND01 R = eF|ab + eF|ab
F|ab = F|ab XOR R = eF|ab + eF|ab
& F|ab = F|ab

Table 1: Cofactor conditions for good extraction

ALGORITHM 1. Finding Good Extractors

f indExtractors(F) {
forall(pairs of variables (a,b)) { 1

A = F|ab; 2
B = Fab; 3
C = F |ab; 4
D = F |ab; 5

6
if(B = C = D) 7
// Found good AND (ab) extractor. 8

else if(A = B = C) 9
// Found good OR (a+b)extractor. 10

else if(A = B = D) 11
// Found good ab extractor. 12

else if(A = C = D) 13
// Found good ab extractor. 14

else if(A = D and B = C) 15
// Found good XOR (a⊕b) extractor. 16

}} 17

F = ab F = a +b

F = a+b F = ab

F = a⊕b F = a⊕b

F = ab F = a +b

F = ab F = a+b

The right five functions are compliments of the left five. They
will produce the same extractions so half can be discarded. In total,
there are five functions to consider when looking for good extrac-
tions.

5.2 Computing Extraction

The same procedure used for computing extraction for arbitrary
functions and extractors (shown earlier) can also be applied to good
extractors. However, a faster algorithm is available for the special
case of good extractors. Essentially, good extractors require equiv-
alence between certain cofactors of F .

THEOREM 1. E = ab is a good extractor of F iff F|ab = F|ab =
F|ab.

The theorem states that there is a disjunctive, two variable,
AND extractions can be detected by comparing three cofactors for
equivalence. Cofactor conditions also exist for the four other ex-
tractor types, and are listed in Table 1.

The complete extraction search algorithm is shown in Algo-
rithm 1. The for loop iterates O(N2) times, where N is the number
of variables, and each time performs a O(G) cofactor operation.
Thus the total worst case complexity for finding the good extrac-
tors of a function is O(N2G).

6. Incrementally Finding Extractors

In this section we discuss techniques that speed up the extrac-
tion algorithm further. The first improvement uses the property that
good extractors of a function continue to be good extractors in their
remainders. Instead of rediscovering these good extractors, they
can be copied over.

THEOREM 2. Let E1 and E2 be arbitrary good extractors of F.
Supp(E1) = {a,b}, Supp(E2) = {c,d} and Supp(E1) � Supp(E2) =
�. If R is the remainder of F extracted by E1, then E2 is a good
extractor of R.

We call these extractors “copy” extractors. Copy extractors
do not account for all good extractors of R. The good extractors
missed are those formed with variable e. To find these extractors,
cofactor conditions between e and every other variables of R must
be checked. Extractors found in this way are called “new e” ex-
tractors. These two types of extractors, in fact, account for all good
extractors of R. The benefit is that good extractors of R can be ob-
tained through “copy” and “new e” extractors. This is faster than
computing good extractors directly.

THEOREM 3. Let R be the remainder of F extracted by E1. E
is a good extractor of R iff E is a “copy” extractor or “new e”
extractor.

The complexity of transferring extractors from F to R is O(N2).
The complexity for finding new extractors involving variable e is
O(NG). The total complexity for finding extractors for a remainder
is O(N2 +NG). The incremental algorithm only applies when find-
ing extractors for remainders. When finding extractors for func-
tions whose parent extractors have not been computed, the O(N2G)
complexity still applies.

7. Transitive Property of Good Extractors

The O(N2G) complexity required to find the initial set of ex-
tractors can be reduced if we are willing to relax the condition that
all good extractors be found.

THEOREM 4. E1(a,b) and E2(b,c) are good extractors of F ⇒
∃ E3(a,c) such that E3(a,c) is a good extractor of F.

The transitive property of good extractors allows us to reduce
the complexity of finding good extractors. In our previous algo-
rithm, the O(N2G) complexity arose from the need to explicitly
find extractors between every pair of variables. Using the transitive
property of extractors, we only look for extractors between vari-
ables that are adjacent in the BDD order. This reduces the number
of pairs we consider from O(N2) to O(N). The transitive prop-
erty then, is applied across successively adjacent extractors to find
additional extractors. The new algorithm relies on a heuristic: If
two variables a and b form a good extractor, then they are likely to
satisfy one of two conditions:

1. They are adjacent in the BDD variable order.

2. They are separated by variables that form good extractors
with their adjacent variables.

This is not a rule however, as good extractors can be formed that
do not satisfy the above conditions. The heuristic works well how-
ever, because variables that form good extractors are likely clus-
tered together in the BDD variable order; It reduces node count.
What we have is a trade off between finding all extractors, and find-
ing them quickly. In our experimental results however, the tradeoff
in using this heuristic is minimal, degrading area quality by only
0.1%.

Table 2: Area results for MCNC benchmark.
Circuit XY XY (NSE) SIS BDS
C1355 15820 16537.5 4.5% 15855.0 0.2% 16222.5 2.5%
C1908 15802.5 19897.5 25.9% 15715.0 -0.6% 16502 4.4%
C2670 20965 22382.5 6.8% 22225.0 6.0% 22645 8.0%
C3540 37292.5 43382.5 16.3% 36977.5 -0.9% 39165 5.0%
C5315 54705 61530.0 12.5% 52395.0 -4.4% 61565 12.5%
C6288 95602.5 95252.5 -0.4% 90265.0 -5.9% 109130 14.1%
C7552 67462.5 67427.5 -0.1% 67060.0 -0.6% 70805 5.0%
alu4 26162.5 27020.0 3.3% 21892.5 -19.5% 29960 14.5%
dalu 33827.5 39637.5 17.2% 28997.5 -16.7% 42122.5 24.5%
des 137970 148715.0 7.8% 110582.5 -24.8% 176680 28.1%
frg2 29732.5 40512.5 36.3% 26390.0 -12.7% 36435 22.5%
i10 76580 88760.0 15.9% 71242.0 -7.5% 81235 6.1%
i8 32567.5 48212.5 48.0% 30975.0 -5.1% 39760 22.1%
i9 18060 25322.5 40.2% 18060.0 0.0% 20317.5 12.5%
k2 34510 81550.0 136.3% 34160.0 -1.0% failed!
pair 57750 58310.0 1.0% 52395.0 -10.2% 57470 -0.5%
rot 22435 23922.5 6.6% 22120.0 -1.4% 25095 11.9%
t481 1277.5 1277.5 0.0% 12057.5 843.8% 1277.5 0.0%
too large 26337.5 31727.5 20.5% 8855.0 -197.4% 55492.5 110.7%
vda 18567.5 42280.0 127.7% 18987.5 2.3% 25060 35.0%
x3 29697.5 31552.5 6.2% 25322.5 -17.3% 29872.5 0.6%
AVG 25.4% 25.1% 17.0%

8. Experimental Results

To evaluate our proposal we implemented a complete logic syn-
thesis system that includes the sharing extraction algorithm de-
scribed in this paper. We perform many of the steps present in
typical synthesis flows. Logic minimization is performed through
BDD variable reordering using the sifting heuristic [4]. The sifting
heuristic, like bubble sort, swaps adjacent variables in search of the
minimum BDD size. The sweep stage, further simplifies gates by
propagating constant values, and merging support that is repeated
more than once within a single gate. In the elimination stage, gates
of the network are selectively collapsed in an attempt to remove
inter-gate redundancies. Finally, the sharing extraction and decom-
position steps are interleaved. Sharing extraction is applied first to
find as much disjunctive sharing as possible. Decomposition then
breaks down gates where sharing extraction cannot, such as where
conjunctive decompositions are required. As decompositions are
applied, new good extractors may be created and sharing extrac-
tion is re-applied.

The experiments were conducted on a dual processor Solaris
Blade 1000 with 2.5 GB memory running SunOS version 5.8. The
benchmarks were taken from the combinational multi-level exam-
ples of MCNC91. Only those circuits that were reported by [9] to
have an approximate gate count of 500 or more were selected for
testing. We put the benchmarks through three synthesis systems for
comparison. We run our synthesis system with an without sharing
extraction. These are labeled XY and XY(NSE) respectively in Ta-
ble 2. We also run the benchmark on BDS, a BDD-based synthesis
system, and SIS a cube set based synthesis system. The optimized
results are then mapped to a 0.35um CMOS TSMC standard cell
library using Synopsis Design Compiler.

Table 2 shows the area produced for each synthesis system in
squared micrometers. Percent differences compared to XY (with
sharing extraction is calculated as

pd = (area−XY area)/min(area,XY area).

The area saving from sharing extraction is quite substantial, reduc-
ing area by 25% over XY without sharing extraction. Compared
with BDS, XY produces circuits with 17% less area. XY, on aver-
age, produces circuits with 25% less area than SIS. However, this
result is heavily skewed by one circuit, t481. In fact, SIS produced
better results for the majority of circuits.

In terms of runtime, XY runs over 500% faster than SIS. It
runs 6% slower than the version of XY without sharing extraction,
and runs 35% faster than BDS. The run time results are shown in

Table 3: Run time results for MCNC benchmark.
Circuit XY XY(NSE) SIS BDS
C1355 4010 3290 -21.9% 4200 4.7% 2850 -40.7%
C1908 7210 6180 -16.7% 5100 -41.4% 5310 -35.8%
C2670 4290 3860 -11.1% 117900 2648.3% 2470 -73.7%
C3540 15400 12360 -24.6% 52200 239.0% 6920 -122.5%
C5315 6060 5910 -2.5% 7800 28.7% 8990 48.3%
C6288 16530 16460 -0.4% 18200 10.1% 10400 -58.9%
C7552 57170 26420 -116.4% 32400 -76.5% 25250 -126.4%
alu4 8900 9920 11.5% 53900 505.6% 8870 -0.3%
dalu 6420 4030 -59.3% 36200 463.9% 8520 32.7%
des 26210 65160 148.6% 58500 123.2% 35830 36.7%
frg2 5980 4600 -30.0% 9400 57.2% 9930 66.1%
i10 21110 39020 84.8% 172000 714.8% 17640 -19.7%
i8 11740 12100 3.1% 9400 -24.9% 14220 21.1%
i9 4360 2930 -48.8% 3000 -45.3% 6640 52.3%
k2 112500 249790 122.0% 23500 -378.7% failed!
pair 8280 7370 -12.3% 9300 12.3% 18220 120.0%
rot 4470 5010 12.1% 3600 -24.2% 15540 247.7%
t481 9140 6160 -48.4% 33400 265.4% 7750 -17.9%
too large 31040 38280 23.3% 1976000 6266.0% 190840 514.8%
vda 10700 23160 116.4% 11100 3.7% 9270 -15.4%
x3 3200 3030 -5.6% 2800 -14.3% 5530 72.8%
AVG 5.9% 511.3% 35.1%

Table 3.

9. Conclusions

In this paper, two variable disjunctive extractors are used as
candidates for sharing extraction. With the BDD, these extractors
can be found quickly by computing the result of a few, single cube,
cofactors. Old, good extractors remain valid in their remainder
functions, enabling a fast, incremental solution. And good extrac-
tors are transitive, enabling us to reduce the search to extractors
of adjacent variables, while sacrificing very little in terms of area
quality.

References

[1] R. Brayton and C. McMullen. The decomposition and factorization of
boolean expressions. In ISCAS Proceedings, pages 49–54, 1982.

[2] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous
sequential machines based on symbolic execution. In Automatic Verifi-
cation Methods for Finite State Systems, pages 365–373, 1989.

[3] A. Mishchenko, B. Steinbach, and M. Perkowski. An algorithm for
bi-decomposition of logic functions. In Proceeding of the 38th Design
Automation Conference, pages 103–108, 2001.

[4] R. Rudell. Dynamic variable ordering for ordered binary decision dia-
grams. In Proceedings of the International Conference on Computer-
Aided Design, pages 42–47, 1993.

[5] M. Sauerhoff and I. Wegener. On the complexity of minimizing the
OBDD size of incompletely specified functions. In IEEE Transactions
on Computer Aided Design, pages 1434–1437, 1996.

[6] H. Sawada, S. Yamashita, and A. Nagoya. An efficient method for
generating kernels on implicit cube set representations. In International
Workshop on Logic Synthesis, 1999.

[7] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Sal-
danaha, H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-
Vincentelli. SIS: A system for sequential circuits synthesis. Techni-
cal Report UCB/ERL M92/41, Department of Electrical Engineering
and Computer Science, University of California, Berkeley, CA 94720,
1992.

[8] C. Yang, M. Ciesielski, and V. Singhal. BDS: A BDD-based logic
optimization system. In Proceeding of the 37th Design Automation
Conference, pages 92–97, 2000.

[9] S. Yang. Logic synthesis and optimization benchmarks user guide ver-
sion 3.0. Technical report, Microelectronics Center of North Carolina,
P. O. Box 12889, Research Triangle Park, NC 27709, 1991.

