
A Theorem on Partitioning a Sorted List of Numbers with an Application

to VLSI Floorplanning ∗

Joseph R. Shinnerl
UCLA Computer Science Department

Technical Report TR040006
shinnerl@cs.ucla.edu

February 27, 2004

Abstract

Given a finite nonincreasing sequence of positive numbers a1 ≥ a2 ≥ . . . ≥ an > 0, select index j
such that the absolute value of the difference between the sum of the first j terms and the sum of

the remaining n− j terms is minimized. An analysis shows that the ratio of these two sums is then

bounded between γ ≡ max{2, β} and 1/γ, where β is the maximum pairwise ratio of successive terms

in the original sequence, β ≡ maxi ai+1/ai. An application of this result to zero-dead-space VLSI

floorplanning is described.

Key words: Sequence Partitioning, Floorplanning, Block Packing, Rectangle Packing, Aspect Ratios,
Benchmarking, Dead Space, Area Partitioning

1. Balanced Partitioning of an Ordered Sequence

Given the finite, nonincreasing sequence of positive numbers

a1 ≥ a2 ≥ . . . ≥ an > 0, (1.1)

we select a cut index j such that the absolute difference

Dk =
∣

∣

∣

k
∑

1

ai −

n
∑

k+1

ai

∣

∣

∣
is minimal for k = j. (1.2)

That is, we cut the ordered sequence in “half” so as to make the partial sums of the leading half sequence
and trailing half sequence as nearly equal as possible. The main result of this section is that the ratio of
the sums of these two half-sequences can be bounded above and below in terms of the maximum ratio of
successive terms in the original ordered sequence.

Lemma 1.1. With Dj defined as in (1.2), let Aj =
∑j

1
ai, and let Āj =

∑n
j+1

ai. Then

Dj ≤

{

aj if Aj > Āj

aj+1 if Aj ≤ Āj .

∗Financial Support from Semiconductor Research Consortium Contract 2003-TJ-1091 is gratefully acknowledged.

1



Proof. Suppose Aj > Āj ; in this case, Dj = Aj − Āj . First, observe that Dj < 2aj ; otherwise,
Dj−1 < Dj — contradicting the minimality of Dj . Next, suppose that Dj > aj , i.e.,

2aj >

j
∑

1

ai −

n
∑

j+1

ai > aj .

But then subtracting 2aj gives

0 >

j−1
∑

1

ai −

n
∑

j

ai > −aj ,

and hence

0 <

n
∑

j

ai −

j−1
∑

1

ai < aj ,

another contradiction to the minimality of Dj . The case Aj ≤ Āj is similar.

Theorem 1.1. Let β = maxi ai+1/ai, and let γ = max{2, β}. Then, with the notation of Lemma 1.1,

1

γ
≤

Aj

Āj

≤ γ.

Proof. Let A = Aj + Āj . The conclusion can then be rephrased as

1

γ + 1
A ≤ Aj ≤

γ

γ + 1
A,

or, equivalently,

Dj ≤
γ − 1

γ + 1
A.

Note that for all γ ≥ 2, it suffices to show that Dj ≤ A/3, or

1

3
A ≤ Aj ≤

2

3
A.

Now if j ≥ 3, then Lemma 1.1 ensures that Dj ≤ a3, and since a1 ≥ a2 ≥ a3 ≥ . . . ≥ an, it follows
that a3 ≤ A/3. The same result also holds if j = 2 and Aj < Āj . Therefore, we need only consider the
following two cases.
Case 1: j = 2, and a1 + a2 >

∑n
3
ai.

By Lemma 1.1, a1 + a2 −
∑n

3
ai < a2; hence,

a1 ≤

n
∑

3

ai,

and since a1 ≥ a2, we have a2 ≤
∑n

3
ai as well. Thus, in this case,

1

γ
≤ 1 ≤

Aj

Āj

≡
a1 + a2
∑n

3
ai
≤ 2 ≤ γ.

2



Case 2: j = 1.
Since a2 ≥ a1/γ and

∑n
3
ai ≥ 0,

Aj

Āj

≡
a1

∑n
2
ai
≤

a1

a1/γ +
∑n

3
ai
≤ γ.

Hence, it suffices to show that Aj/Āj > 1/γ in this case. If Aj > Āj , then we are done. Hence, we
assume that a1 <

∑n
2
ai. Lemma 1.1 therefore gives D1 ≡

∑n
2
ai − a1 < a2; i.e.,

a1 ≥

n
∑

3

ai. (1.3)

Now if a2 ≤
∑n

3
ai, then

a1
∑n

2
ai

=
a1

a2 +
∑n

3
ai
≥

a1

a2 + a2

≥
a1

a1 + a1

= 1/2 ≥ 1/γ.

Otherwise, if a2 >
∑n

3
ai, then (1.3) implies

a1
∑n

2
ai
≥

∑n
3
ai

a2 +
∑n

3
ai
≥

1

(a2/
∑n

3
ai) + 1

>
1

2
≥

1

γ
.

Suppose now that a recursive sequence of balanced cuts is applied to the given ordered sequence (1.1)
in order to partition it into balanced fragments. The above results can be trivially propagated through
the recursion to obtain similar bounds on the ratios of subfragment sums. The next section considers an
application of this idea to a novel algorithm for zero-dead-space (ZDS) floorplanning.

2. Application to Zero-Dead-Space Floorplanning

Floorplanning is the shaping and placing of n rectangular blocks of given areas in the plane, given a
hypergraph-netlist specification of the connectivity among the blocks [2]. A floorplan has three main
properties.

1. Estimates of the total weighted wirelength and/or timing performance of a corresponding integrated
circuit represented by the floorplan.

2. Total area, i.e., the area of the smallest rectangle circumscribing the entire configuration or, equiv-
alently, the unused area or dead space within this “bounding box.”

3. The aspect ratios of both the blocks and the bounding box circumscribing them. We define the
aspect ratio ρ of a rectangle to be the ratio of the length its longer side to that of its shorter side;
hence ρ ≥ 1 always.

In the traditional VLSICAD formulation of floorplanning, the objective is some combination of timing
performance, total weighted wirelength, and total area, and the constraints are simple upper bounds
(usually 2 or 3) on aspect-ratios of the blocks.

The remainder of this report considers an alternative floorplanning formulation in which block aspect
ratios are implicitly minimized subject to a zero-dead-space constraint. For simplicity, all connectivity
considerations, including timing performance and wirelength, are ignored. The impetus for the analysis
here is to provide mathematical support for the construction of realistic floorplanning benchmarks with
known optimality properties. For (i) a brief description of floorplanning’s importance in the context
of VLSICAD, (ii) empirical validation of this report’s analysis, and (iii) comparisons of area-optimality
properties of some leading academic floorplanners, the reader is referred to the companion paper [1].

3



2.1. A Top-Down Zero-Dead-Space Floorplanning Algorithm

The ZDS algorithm considered here is based on recursive top-down area bipartitioning. At each step,
the blocks in a region are separated into two groups such that the two groups’ total areas are as nearly
equal as possible. The region is then cut parallel to its shorter side into two subregions such that each
group fits exactly into one of the subregions. Cutting parallel to the shorter side keeps aspect ratios of
subregions bounded in terms of the area variation among the blocks. Blocks are placed once they fill a
sufficient fraction of their subregions; this fraction is expressed as the reciprocal of the parameter γ ≥ 1.

Figure 1 shows the pseudocode for this ZDS algorithm, Algorithm 2.1. The notation for Algorithm
2.1 is as follows. Given n rectangles r1, . . . , rn with fixed areas a1 ≥ a2 ≥ · · · ≥ an but variable lengths `i
and widths wi, we seek to arrange them without overlap in a given rectangle R of area A =

∑n
1
ai such

that the aspect ratios
ρi = ρ(ri) = max(`i/wi, wi/`i)

are bounded close to one.1 The rectangle R is the floorplanning region. The rectangles ri are called
blocks.

Algorithm 2.1 is parameterized by ρ(R) ≥ 1 and γ ≥ 1 and, by construction, has the following
property.

Theorem 2.1. For ρ(R) ≥ 1 and γ ≥ 1, Algorithm 2.1 generates a slicing floorplan with zero dead
space.

Although Algorithm 2.1 can accept as input any values ρ(R) ≥ 1 and γ ≥ 1, the analysis below shows
that the block shapes generated will be most realistic for certain choices of ρ(R) and γ defined as follows.
Let

β = max
i

ai/ai+1. (2.1)

Then good values for γ and ρ(R) are

γ = max{2, β} and ρ(R) ∈ [1, γ + 1]. (2.2)

The utility of Algorithm 2.1 rests on the fact that for nearly all realistic circuits, all the block aspect
ratios it computes are guaranteed to lie within a single small interval of the form [1, γ + 1], when γ is
defined as in (2.2). Hence, if the blocks are arranged in nonincreasing sorted order by area, the aspect
ratios are bounded by one plus the maximum ratio of consecutive block areas, when this latter ratio
exceeds 2. Otherwise, the aspect ratios are bounded above by 3. These facts are established here, under
Assumptions 2.1 below.

Assumptions 2.1. Block-locking threshold; floorplanning-region aspect-ratio bound.

(a) For β as defined in (2.1), γ ≥ max{2, β}.

(b) The aspect ratio of the floorplanning region satisfies ρ(R) ≤ γ + 1.

Assumption 2.1(a) can be rephrased as follows: the threshold fraction of subregion area that a block
must occupy in order to be shaped and locked in place is not set above 1/2. Although these assumptions
are stronger than necessary to achieve zero dead space and acceptably bounded block aspect ratios, they
are not very restrictive on the sets of block areas that may be considered. Further discussion of the
assumptions appears at the end of the next section.

1By this definition, the aspect ratio of any block is always at least 1.

4



Algorithm 2.1. Top-Down ZDS Floorplanning.

input

(i) Rectangles r1, . . . , rn with areas a1 ≥ . . . ≥ an.

(ii) Rectangular region R of area A =
∑n

1
ai and dimensions `× w, with `/w = ρ(R) ≥ 1.

(iii) γ ≥ 1.

end input

if the largest block r1 satisfies a1 ≥
1

γ
A then

(i) make the length of one side of r1 equal to w.
(ii) place r1 with this shape against one side of R.

remark In the analysis, let R(r1) denote this R.
(iii) if n > 1 then

Replace R by the part of R not used by r1.
Reindex {r2, . . . , rn} to {r1, . . . , rn−1}.
if n == 2 then

place the last block in R and return.
else Replace n by n− 1.
end if

else return

end if

remark If R contains more than 2 blocks, we place
at most one block before repartitioning.

end if

if n > 1 then

1. Select j ∈ {1, . . . , n} such that

Dj =
∣

∣

∣

j
∑

1

ai −

n
∑

j+1

ai

∣

∣

∣
is minimized.

Let Aj =
∑j

1
ai and Āj =

∑n
j+1

ai ≡ A−Aj.

2. Cut R parallel to its shorter side into two rectangular subregions Rj and R̄j of areas Aj

and Āj respectively. Assign r1, . . . , rj to Rj and rj+1, . . . , rn to R̄j.

3. Recur on the subregions Rj and R̄j.

end if

output

Rectangle dimensions (li, wi) and locations (xi, yi) for each ri ∈ {r1, . . . , rn}.
end output

Figure 1: A Top-Down ZDS Floorplanning Algorithm.

5



2.2. Analysis

Throughout this section, we consider the properties of Algorithm 2.1 under Assumptions 2.1. The follow-
ing lemma shows that, in order to bound the aspect ratios of the blocks, it suffices to bound the aspect
ratios of the regions in which they are placed.

Lemma 2.1. The aspect ratio ρi of any placed block ri satisfies

ρi ≤ max{γ, ρ(R(ri))},

where ρ(R(ri)) denotes the aspect ratio of the smallest subregion in which ri is placed.

Proof. Suppose that subregion R has aspect ratio ρ = ρ(R). If R contains just one block, then that
block ri will also have ρ(ri) = ρ. Hence, suppose R contains more than one block. By Algorithm 2.1,
the blocks {ri, . . . , rp} in R form a contiguous subsequence of the original set of blocks {r1, . . . , rn} and
therefore satisfy the area decay bounds ak ≥ ak+1 ≥ ak/γ. Moreover, the block ri placed in R will have
one of its side lengths w equal to the shorter side length of R, as shown in Figure 2. Let `i denote the
length of the other side of ri, and let ` denote the length of the longer side of R.

First, suppose `i < w. Because the algorithm requires the area ai of ri be at least 1/γ times the area
of R, the other side `i of ri is at least 1/γ times the length of the longer side ` of R. Hence,

w

`i
≤

w

`/γ
=

γ

ρ
≤ γ,

since ρ ≥ 1. Second, suppose `i ≥ w. Because the blocks rk in R satisfy ak ≥ ak+1 ≥ ak/γ, the subregion
of R containing these other blocks must occupy area at least 1/(γ+1) times the area of R, and therefore
`i ≤ (γ/(γ + 1))`. Hence,

`i
w
≤

γ

(γ + 1)

`

w
=

γ

γ + 1
ρ < ρ. (2.3)

li

li

li

li

ll

w

<< < l

w

lw <w

Figure 2: The aspect ratio of a block (shaded) compared to the aspect ratio of its enclosing subregion.

The following lemma bounds the aspect ratio of sibling subregions in terms of their area ratio and
the aspect ratio of their common parent subregion.

Lemma 2.2. Suppose subregion R is partitioned into subregions R1 and R2 with areas A1 and A2. Let

y = max {A1/A2, A2/A1} .

Then

max{ρ(R1), ρ(R2)} = max

{

y + 1

ρ(R)
,

y

y + 1
ρ(R)

}

.

6



Proof. Following the notation in Figure 3, let A ≡ A1, ρA = ρ(R1), a ≡ A2, ρa = ρ(R2), and assume
without loss of generality that A > a, so that y = A/a. The longer side of R has length `, and the shorter
side has length w. Now

A+ a = (y + 1)a = `w,

and therefore

`a =
a

w
=

`

(y + 1)
, and `A = y`a =

y

y + 1
`.

If ρA ≥ ρa, then ρA = `A/w (otherwise, ρA = w/`A < w/`a = ρa); hence, ρA = (y/(y + 1))ρ(R).

Similarly, if ρa ≥ ρA, then ρa = w/`a, and therefore ρa =
y + 1

ρ(R)
.

l

< lw

la

w

a

A lA

Figure 3: The aspect ratios of two sibling subregions compared to the aspect ratio of their parent
subregion.

Theorem 1.1 shows that if all ratios of consecutive block areas are uniformly bounded above by γ ≥ 2,
then all ratios of sibling partition subregion areas are also uniformly bounded above by γ. From Lemma
2.2 and Theorem 1.1, we immediately obtain the following bound.

Corollary 2.1. Suppose subregion R is partitioned into subregions R1 and R2. Then

max{ρ(R1), ρ(R2)} ≤ max{
γ + 1

ρ(R)
,

γ

γ + 1
ρ(R)}.

Theorem 2.2. Under Assumptions 2.1, the result of Algorithm 2.1 is a slicing floorplan with zero dead
space and every block’s aspect ratio bounded above by γ + 1.

Proof. Follows directly from Corollary 2.1 and Assumptions 2.1, by induction.

2.3. Interpretation and Extensions

The assumption γ ≥ 2 presents no practical restriction on the sets of blocks that may be considered. It
just means that the least upper bound on block aspect ratios guaranteed by the analysis here for the given
algorithm is at least 3. That is, consecutive-pairwise area bounds tighter than 2 (e.g., ai/ai+1 ≤ 1.5) are
not guaranteed to reduce the maximum aspect ratio below what can be attained with ai/ai+1 ≤ 2.

Similarly, a large value of γ does not necessarily indicate any large aspect ratios in the final floorplan,
as Figure 4 illustrates. In the figure, one large block occupies one subregion, and several small blocks
occupy another subregion. Although the area ratio of the subregions may be arbitrarily large, the presence
of sufficiently many small blocks used to fill the small subregion prevents any single block’s aspect ratio
from becoming large.

For some designs, the presence of a few very large or very small blocks may result in a large value of
γ, if γ is defined simply as max{2,maxi ai/ai+1}. However, a few simple preprocessing steps can usually

7



Figure 4: Block aspect ratios may all remain small, even when some subregion has a large aspect ratio.

be used to reduce this value significantly. The basic idea is simply to aggregate smaller, similarly sized
blocks together until the aggregates are more comparable to larger blocks or sets of blocks. Suppose
am/am+1 = maxi ai/ai+1. Define Sm, S̄m, Am, Ām as in Section 2 above, but with j ≡ m instead of j
being chosen to minimize Dj . If Am/Am+1 < am/am+1, then since am+1 and am are placed in separate
subregions, Theorem 1.1 ensures that γ is reduced to

max{Am/Am+1, max
i6=m

ai/ai+1}.

If maxi6=m ai/ai+1 À Am/Am+1, a few recursive iterations on Sm and Sm+1 can be used to reduce the
bound further, until the maximum ratio of successive ri is comparable to the maximum ratio of sibling
Ri. Although it is trivial to construct examples where this preprocessing will be useless (e.g., when n = 2,
or when m = n − 1), on practical examples with large n, the reduction in γ will likely be considerable,
when m is sufficiently less than n.

The above strategy will not help in the case where the smallest block’s area an is abruptly smaller than
an−1. In this case, if the areas of rn−1, rn−2, rn−3, and rn−4 are not too dissimilar, they can be wrapped
around rn in the standard non-slicing “wheel” configuration [2]. The aggregate wheel rn−4, . . . , rn can
then be treated as a single block that is reshaped along with the other blocks. If necessary, block rn−1

and its predecessors may first be clustered prior to wrapping around rn.
Precise rules and analysis for the reduction of the block-locking threshold γ in the presence of mixed

block sizes are left to future work. It is of course very easy to give a set of block areas for which a ZDS
floorplan cannot possibly produce small aspect ratios for all blocks — e.g., n = 2 with a1 À a2. It seems
clear, however, that the above ideas can be used to extend the utility of the ZDS framework to all but
the most contrived block data sets.

3. Acknowledgments

The work here arose in the context of joint work with Jason Cong, Gabriele Nataneli, and Michalis
Romesis on the construction of floorplanning benchmarks in VLSICAD [1]. Without their encouragement
and advice, it would not have been written. A careful reading by Ashok Jagannathan also helped improve
the presentation.

References

[1] J. Cong, G. Nataneli, M. Romesis, and J. Shinnerl. An area-optimality study of floorplanning. In Proceedings of the

ISPD, Phoenix, 2004.

[2] Naveed Sherwani. Algorithms for VLSI Physical Design Automation. Kluwer Academic Publishers, Boston, Dordrecht,
London, second edition, 1995.

8


