
Large-Scale Circuit Placement: Gap and Promise ∗

Jason Cong, Tim Kong,† Joseph R. Shinnerl, Min Xie, and Xin Yuan
UCLA Computer Science Department {cong,shinnerl,xie,yuanxin}@cs.ucla.edu

†Magma Design Automation kongtm@magma-da.com

ABSTRACT
Placement is one of the most important steps in the RTL-
to-GDSII synthesis process, as it directly defines the inter-
connects, which have become the bottleneck in circuit and
system performance in deep submicron technologies. The
placement problem has been studied extensively in the past
30 years. However, recent studies show that existing place-
ment solutions are surprisingly far from optimal. The first
part of this tutorial summarizes results from recent optimal-
ity and scalability studies of existing placement tools. These
studies show that the results of leading placement tools from
both industry and academia may be up to 50% to 150% away
from optimal in total wirelength. If such a gap can be closed,
the corresponding performance improvement will be equiv-
alent to several technology-generation advancements. The
second part of the tutorial highlights the recent progress on
large-scale circuit placement, including techniques for wire-
length minimization, routability optimization, and perfor-
mance optimization.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—placement and
routing ; G.4 [Mathematical Software]: Algorithm De-
sign and Analysis; J.6 [Computer-Aided Engineering]:
Computer-Aided Design

Keywords
Placement, Optimality, Scalability, Large-Scale Optimiza-
tion

1. INTRODUCTION
The exponential growth of on-chip complexity has dra-

matically increased the demand for scalable optimization al-

∗Financial support from the Semiconductor Research Con-
sortium under contracts 98-DJ-605, 98-TJ-686, and 2001-
TJ-910 and from the National Science Foundation under
grant CCR-0096383 is gratefully acknowledged.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro£t or commercial advantage and that copies
bear this notice and the full citation on the £rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci£c
permission and/or a fee.
ICCAD ’03 San Jose, California USA
Copyright 2003 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

gorithms for large-scale physical design. Although complex
logic functions can be composed in a hierarchical fashion
following the logical hierarchy, recent studies [22] show the
importance of building a good physical hierarchy from a flat-
tened or nearly flattened logical netlist for performance op-
timization. Because a logical hierarchy is usually conceived
with little or no consideration of the layout and interconnect
information, it may not map well to a two-dimensional lay-
out solution. Therefore, large-scale global placement on a
nearly flattened netlist is needed for physical hierarchy gen-
eration to achieve the best performance. This approach is
even more important in today’s nanometer designs, where
the interconnect has become the performance bottleneck.
This tutorial highlights state-of-the-art placement opti-

mization techniques. Section 2 presents recent studies on the
quality and scalability of existing placement algorithms on a
set of benchmarks with known optimal solutions. Section 3
reviews scalable paradigms for large-scale wirelength mini-
mization. Timing optimization and routability optimization
are discussed in Sections 4 and 5, respectively. Conclusions
are given in Section 6.

2. GAP ANALYSIS OF EXISTING PLACE-
MENT ALGORITHMS

Placement algorithms have been actively studied for the
past 30 years. However, there is little understanding of how
far solutions are from optimal. It is also not known how
much the deviation from optimality is likely to grow with
respect to problem size. Recently, significant progress was
made using cleverly constructed placement examples with
known optimal wirelength [32, 16]. In this section, we sum-
marize the results from these studies.

2.1 Placement Examples with Known Optima
Recently, four suites of placement examples with known

optimal wirelength (PEKO) were constructed [32, 16]. The
construction method takes as input an integer n and a net-
profile vector of integers D. It then generates a placement
example P with n placeable modules such that (i) the num-
ber of nets of degree i equals D(i), (ii) P has a known glob-
ally optimal half-perimeter wirelength. The values of n and
D used to construct PEKO either were directly extracted
from the netlists of the ISPD98 suite originally from IBM
[3] or were taken as those values scaled by a factor of 10.
The PEKO suite is given in both GSRC BookShelf format
and LEF/DEF format and is available online [1].
All the nets in PEKO are local, i.e., the wirelength of ev-

ery net has the minimum possible value. However, in real

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

0 0.25 0.5 0.75 1 2 5 10 100

Q
ua

lit
y

R
at

io

% of non-local nets

QPlace
mPL

Capo
mPG

Dragon

Figure 1: Average solution quality vs percentage
of non-local nets, from PEKO (0% non-local nets)
through PEKU (0.25% to 10% of non-local nets) to
G-PEKU (100% non-local nets). Each data point is
an average quality ratio for a given placer over all
circuits in the given suite.

circuits, there may also be global connections that span a
significant portion of the chip, even when they are optimally
placed. Additional benchmark circuits were therefore con-
structed to study the impact of global nets [24]. Circuits
in the G-PEKU suite consist only of global nets connecting
either an entire row or an entire column. For such circuits,
an obvious upper bound on optimal wirelength is the sum of
the lengths of the rows and columns. Circuits in the PEKU
suite (Placement Examples with Known Upper bounds on
wirelength) consist of both PEKO-style local nets and addi-
tional, randomly generated non-local nets. An upper bound
on the optimal wirelength is derived simply by adding the
wirelengths of non-local nets to the known total wirelength
of the local nets. In the study [24], the percentage of non-
local nets was gradually increased from 0.25% to 10%. The
G-PEKU and PEKU suites are also available online [1].

2.2 Gap Analysis Results
Four state-of-the-art placers from academia and one in-

dustrial placer were studied for optimality and scalability:
Dragon v.2.20 [62], Capo v.8.5 [12], mPL v.2.0 [14], mPG
v.1.0 [15], and QPlace v.5.1.55 [10]. Experiments with Dragon,
mPL, mPG and QPlace were performed on a SUN Blade
750 MHz running SunOs 5.8 with 4GB of memory. The
experiments with Capo were performed on a Pentium IV
2.20GHz running RedHat 8.0 with 2GB of memory. To
measure how close the placement results are to optimal, the
ratio of a placement’s wirelength to the optimal wirelength
(on PEKO) or its upper bound (on G-PEKU and PEKU)
was computed. This ratio is called the “quality ratio.” An
upper limit of 24 hours was placed on the run time; any
process exceeding this limit was terminated.
The results are summarized in Figure 1 and Figure 2.

Figure 1 shows how the average quality ratios of these tools
change with the percentage of non-local nets. Figure 2 shows
how the run times of these tools changes with increase in cell
number. We make the following three observations.

(i) None of the placers achieves a quality ratio close to 1.
On PEKO, the wirelengths produced by these tools

0

10000

20000

30000

40000

50000

60000

10000 100000 1e+06 1e+07

R
un

tim
e(

s)

#cells

QPlace
mPL

Capo
mPG

Dragon

Figure 2: Run time vs. cell number for several al-
gorithms on the PEKO suite.

range from 1.41 to 2.09 times the optimal on average
(see Figure 1) and 1.66 to 2.50 times the optimal in the
worst case (not shown). On G-PEKU, the gap between
their solutions and the upper bound varies between
79% and 102% in the worst case. Some placers may
try to improve routability by sacrificing wirelength.
However, given the gap between their wirelengths and
the optimal value, there remains significant room for
improvement in existing placement algorithms.

(ii) The quality ratio from the same placer can vary signif-
icantly for designs of similar sizes but different char-
acteristics. None of them produces consistently bet-
ter results than another. On PEKO, mPL gives the
shortest wirelength. However, its quality ratio shows
an increase of more than 40% with a small increase
of non-local nets. On G-PEKU, Capo gives the closest
solution to the upper bound in most cases. On PEKU,
Dragon’s wirelength gradually becomes the closest to
the upper bound. This seems to suggest that more
scalable and stable hybrid techniques may be needed
for future generations of placement tools.

(iii) Different placers displayed different scalability in run
time and solution quality. None of them can success-
fully finish all the circuits of PEKO, because of ei-
ther the run-time limit (e.g., Dragon), or memory con-
sumption (e.g., Capo, mPL, mPG, QPlace). For those
circuits they successfully placed, an average solution
quality deterioration from 4% (on QPlace) to 25% (on
mPL) can be observed when the problem size is in-
creased by a factor of 10.

It is not known whether the gaps on real circuits are sim-
ilar to those observed on the benchmarks discussed above.
The construction of placement examples that resemble real
circuits more closely, including examples optimized for tim-
ing [25] or routability, is an active area of research.

3. SCALABLE PARADIGMS
We assert that scalability without some hierarchical form

of computation is impossible. The use of hierarchy may be
subtle or indirect, but never completely absent. In this pa-
per, we use scalability in its traditional sense and therefore

consider not just O(N) algorithms but rather any frame-
work likely to have applicability lasting for several technol-
ogy generations.
Wirelength, performance, power consumption, and routabil-

ity are the typical objectives of VLSI placement. Of these,
weighted total wirelength is a useful single representative, as
(i) it can be optimized efficiently, and (ii) strategic, iterative
net reweighting can be used to optimize other objectives,
such as performance and routability.
Our discussion is centered on methods for wirelength-

driven global placement. The goal here is only an approxi-
mately uniform distribution of cells with as little total wire-
length as possible. The problem of transforming a global
placement to an overlap-free configuration is left to the de-
tailed placement phase.
The most promising large-scale approaches to wirelength-

driven global placement can be broadly categorized by (i)
the manner in which their hierarchies are constructed and
traversed, (ii) the kinds of intralevel optimizations used and
the manner in which they are incorporated into the hierar-
chy and coordinated with each other. At the highest level,
we classify algorithms as top-down, bottom-up, or flat. Top-
down algorithms (Section 3.1) use variants of recursive par-
titioning. Bottom-up approaches (Section 3.2) use variants
of recursive clustering and are known as multilevel methods.
Flat approaches (Section 3.3), if scalable, use hierarchy for
internal iterative computation while maintaining a consis-
tent non-hierarchical view of the placement problem.

3.1 Recursive Top-Down Partitioning
Among academic placement tools, all the leading top-

down methods rely on variants of circuit partitioning in some
way. Seminal work on partitioning-based placement was
done by Breuer [7] and Dunlop and Kernighan [27]. Most
contemporary methods have exploited further advances in
fast algorithms to push these frameworks beyond their orig-
inal capabilities. Fast, high-quality O(N) partitioning al-
gorithms give top-down partitioning attractive O(N logN)
scalability overall.

3.1.1 Cutsize Minimization
Simple and traditional recursive bisection with a cutsize

objective can be used quite effectively with simple Fiduccia-
Matheysses-style iterations. At a given level, each region
is considered separately from the others in some arbitrary
order. A spatial cutline for the region, either horizontal or
vertical, can be carefully chosen. Given some initial parti-
tion, subsets of cells are moved across the cutline in a way
that reduces the total weight of hyperedges cut without vi-
olating a given area-balance constraint. This constraint can
be set loosely initially and then gradually tightened.
Connections between subregions can be modeled by ter-

minal propagation [27], in which the usual cutsize objective
is augmented by terms incorporating the effect of connec-
tions to external subregions. Other techniques for organiz-
ing local partitioning subproblems use Rent’s rule to relate
cutsize to wirelength estimation [62, 67]. Careful consid-
eration of the order and manner in which subregions are
selected for partitioning can be significant. For example,
a dynamic-programming approach to cutline selection can
improve overall results by 5% or more [67]. In the multi-
way partitioning framework, intermediate results from the
partitioning of each subregion are used to influence the final

partitioning of others. Explicit use of multiway partitioning
at each stage can in some cases bring the configuration closer
to a global optimum than is possible by recursive bisection
alone [66].

3.1.2 Partitions Guided by Analytical Placements
An oft-cited disadvantage of recursive bisection is its al-

leged tendency to ignore the global objective as it pursues lo-
cally optimal partitions. Approximating wirelength by cut-
size in the objective may also degrade the quality of the
final placement. A radically different approach, first intro-
duced in Proud [20, 59] and subsequently refined by Gordian
[41], is to use continuous, iteratively-constrained quadratic
star-model wirelength minimization over the entire circuit
to guide partitioning decisions. The choice of a quadratic-
wirelength objective helps avoid long wires and facilitates
the construction of efficient numerical linear-system solvers
for the optimality conditions, e.g., preconditioned conjugate
gradients. I/O pads prevent the cells from simply collapsing
to a single point. Linear wirelength can still be asymp-
totically approximated by iterative adjustments to the net
weights [55]. Following this “analytical” placement, each
region is then quadrisected, and cells are partitioned to sub-
regions in order to further reduce overlap and area conges-
tion. In Gordian, carefully chosen cutlines and FM-based
cutsize-driven partitioning and repartitioning are used. Cell-
to-subregion assignments are loosely enforced by imposing
and maintaining a single center-of-mass equality constraint
for each subregion. As constraints accumulate geometrically,
degrees of freedom in cell movement are eliminated, and the
quadratic minimization at each step moves cells less and less.
BonnPlace [61, 6] is the leading contemporary variation

of this framework. It employs a sophisticated, novel, and
linear-time displacement-minimizing partitioning instead of
cutsize minimization during subregion assignment. Instead
of introducing explicit equality constraints into the analyt-
ical minimization, the quadratic-wirelength objective is al-
tered to minimize cells’ displacements from their assigned
subregions.

3.1.3 Iterative Refinement
Following the initial partitioning at a given level, various

means of further improving the result at that level can be
used. In BonnPlace [61, 6], unconstrained quadratic wire-
length minimization over 2 × 2 windows of subregions is
followed by a repartitioning of the cells in these windows.
Windows can be selected based on routing-congestion esti-
mates. Capo [12] greedily selects cell orientations in order
to reduce wirelength and improve routability. Feng Shui [66]
follows k-way partitioning by localized repartitioning of each
subregion. Some leading partitioning-based placers also em-
ploy time-limited branch-and-bound-based enumeration at
the finest levels [11].
In Dragon [62, 53], an initial cutsize-minimizing quadri-

section is followed by a bin-swapping-based refinement, in
which entire partition blocks at that level are interchanged
in an effort to reduce total wirelength. At all levels except
the last, low-temperature simulated annealing is used; at
the finest level, a more detailed and greedy strategy is em-
ployed. Because the refinement is performed on aggregates
of cells rather than on cells from the original netlist, Dragon
closely resembles the multilevel methods discussed next.

3.2 Multilevel Methods
Placement algorithms in the multilevel paradigm have

only recently drawn attention [50, 13, 15, 14, 26]. These
methods are based on coarsening, relaxation, and interpola-
tion, defined as follows.

(i) Coarsening. Hierarchies are built from the bottom
up by recursive aggregation, i.e., clustering or exten-
sions.

(ii) Relaxation. Localized optimizations are performed
at every aggregation level.

(iii) Interpolation. Intermediate solutions are trans-
ferred from each aggregation level to its adjacent finer
level.

The scalability of this approach is straightforward to obtain
and understand. Provided relaxation at each level has order
linear in the number Na of aggregates at that level, and the
number of aggregates per level decreases by factor r < 1 at
each level of coarsening, say Na(i) = riN at level i, the total
order of a multilevel method is at most cN(1+r+r2+· · ·) =
cN/(1−r). Higher-order (nonlinear) relaxations can still be
used, if their use is limited to subsets of bounded size, e.g.,
by sweeps over overlapping windows of contiguous clusters
at the current aggregation level.

3.2.1 Coarsening
Typically, clustering algorithms merge tightly connected

cells in a way that eliminates as many nets at the adjacent
coarser level as possible while respecting some area-balance
constraints. Experiments to date suggest that relatively sim-
ple, graph-based greedy strategies like First-Choice vertex
matching [40, 26] may be more effective than more sophisti-
cated ideas like edge-separability clustering (ESC) [23] that
attempt to incorporate estimates of global connectivity in-
formation. How best to define coarse-level hyperedges with-
out explosive growth in the number and degree of coarsened
hyperedges relative to coarsened vertices remains an impor-
tant open question [37].
To reduce the likelihood of poorly chosen clusters, the

notion of a cluster can be relaxed, as in the algebraic multi-
grid framework [8]. Rather than assign each cell to just one
cluster, we can break it into a small number of weighted
fragments and assign the fragments to different coarse-level
vertices; these are no longer simple clusters and are instead
called aggregates.

3.2.2 Initial Placement at Coarsest Level
Following recursive aggregation, a placement at the coars-

est level may be derived in various ways. Because the initial
placement may have a large influence at subsequent iter-
ations, and because the coarsest-level problem is relatively
small, the placement at this level is typically performed with
great care, to the highest quality possible. mPL [13, 26, 14]
uses nonlinear programming; mPG uses simulated annealing
[15]. How to judge the coarse-level placement quality is not
necesssarily obvious, however, as the coarse-level objective
may not correlate strictly with the ultimate fine-level ob-
jectives. For this reason, multiple iterations over the entire
hierarchical flow are important [4, 14].

3.2.3 Relaxations
Relaxations at a given level are fast and relatively local-

ized. The global view comes from the multilevel hierarchy,

not from the intralevel relaxations. Almost any algorithm
can be used, provided that it can support (i) incorporation
of complex constraints (ii) restriction to subsets of movable
objects. Relaxation in mPG and Ultrafast VPR is by fast
annealing. The mPG framework employs a fixed set of hi-
erarchical bin-density constraints to monitor area and rout-
ing congestion. In mPL, relaxation at intermediate levels
proceeds both by (i) quadratic wirelength minimization on
small subsets followed by path-based area-congestion relief
[38] and (ii) randomized, greedy, and discrete Goto-based
cell swapping [31].

3.2.4 Interpolation
Simple declustering and linear assignment can be effective

[13]. With this approach, each component cluster is initially
placed at the center of it (single) parent’s location. If an
overlap-free configuration is needed, a uniform bin grid can
be laid down, and clusters can be assigned to nearby bins
or sets of bins. The complexity of this assignment can be
reduced by first partitioning clusters into smaller windows,
e.g., of 500 clusters each. If clusters can be assumed to
have uniform size, then fast linear assignment can be used.
Otherwise, approximation heuristics are needed.
Under AMG-style weighted disaggregation, interpolation

proceeds by weighted averaging: each finer-level cluster is
initially placed at the weighted average of the positions of all
coarser-level clusters with which its connection is sufficiently
strong [14]. Finer-level connections can also be used: once
a finer-level cluster is placed, it can be treated as a fixed,
coarser-level cluster for the purpose of placing subsequent
finer-level clusters.
A constructive approach, as in Ultrafast VPR [50], can

also lead to extremely fast and scalable algorithms. At each
level, clusters are initially placed in the following sequence:
(i) clusters directly connected to output pads, (ii) clusters
directly connected to input pads, (iii) other clusters.

3.3 Embedded Multilevel Optimization
Most leading methods owe their performance not just to

external design but also to sophisticated and hierarchical it-
erative internal calculation. In fact, a placement problem of
order 106 cells and nets can still be solved “flat,” i.e., with-
out any explicit aggregation or partitioning, provided that
sufficiently fast and scalable numerical solvers are available
for the given formulation. A clear demonstration of this ap-
proach is the recent application of AMG-based linear-system
solvers to iterated force-directed quadratic-wirelength min-
imization [19, 29]. A quadratic objective function

q(x, y) =
1

2
(xTQx+ yTQy) + bTx x+ bTy y + fTx x+ fTy y

captures both netlist connectivity and area congestion by a
graph approximation and force-field calculation. The circuit
connectivity is represented by the (constant) symmetric-
positive-definite matrix Q and the vector b. The perturba-
tion vector f = (fx, fy) represents global area-distribution
forces analogous to electrostatic repulsion, with cell area
playing the role of electric charge. At each iteration, vector
f is recalculated from the current cell positions by means
of a fast Poisson-equation solver. Since Q does not change
from one iteration to the next unless nets are reweighted, a
hierarchical set of approximations to Q can be reused over
several iterations.

4. TIMING OPTIMIZATION
Extensive research on timing-driven placement has been

done in the past two decades and continues today. The per-
formance of a circuit is determined by its longest path delay,
but timing constraints are extremely complex. The num-
ber of paths present grows exponentially with circuit size.
Even a circuit of modest size can have a huge number of
paths. For example, Chang et al. [17] estimated the number
of path constraints in a 5K-cell design to be around 245K,
requiring roughly 243Mb memory space if stored explicitly.
Moreover, users may have different requirements for differ-
ent paths. For example, a circuit may have different tsu
(input to register), tco (register to clock output), r2r (reg-
ister to register) or i2o (input to output) requirements for
individual nodes, or paths. The existence of multiple clock
domains and multiple cycle paths makes the problem even
more complicated.
Existing timing-driven placement algorithms can be broadly

classified into two categories: path-based and net-based.

4.1 Path-based Algorithms
Path-based algorithms try to directly minimize the longest

path delay. Popular approaches in this category include the
following. (i) Formulate the problem as a linear or nonlin-
ear programming problem by introducing auxiliary variables
(i.e., arrival time) at circuit nodes [39, 56, 34]. Different
mathematical programming techniques can then be used to
solve the problem. (ii) Explicitly minimize the length of
a set of critical paths. This set of critical paths can be
pre-computed in a static manner or dynamically adjusted
from iteration to iteration. TimberWolf [57] used simulated
annealing to minimize a set of pre-specified timing-critical
paths, while mathematical programming techniques [9, 45]
have also been employed.
The advantage of path-based algorithms is their accurate

timing view during the optimization procedure. However,
the drawback is that they usually require substantial com-
putation resources due to the exponential number of paths
which need to be simultaneously minimized. Moreover, in
certain placement frameworks, e.g., top-down partitioning,
it is very difficult or infeasible to maintain an accurate global
timing view.

4.2 Net-based Algorithms
Net-based algorithms [28, 48, 60, 29], on the contrary, do

not directly enforce path-based constraints. Instead, timing
constraints or requirements on paths are transformed into
either length constraints or weights on individual nets. This
information is then fed to a weighted wirelength minimiza-
tion based placement engine to obtain a new placement with
better timing. This new placement is then analyzed by a
static analyzer, thus generating a new set of timing infor-
mation to guide the next placement iteration. Usually this
process must be repeated for a few iterations until no im-
provement can be made or until a certain iteration limit has
been reached.
The process of generating net-length constraints or net-

delay constraints is called delay budgeting [35, 30, 44, 68, 58,
52, 51, 18]. The main idea is to distribute slacks at the end-
points of each path (POs or inputs of memory elements) to
constituent nets in the path such that a zero-slack solution
is obtained [48, 69, 18]. A serious drawback of this class of
algorithms is that delay budgeting is usually done in the cir-

cuit’s structural domain, without consideration of physical
placement feasibility. As a result, it may severely overcon-
strain the placement problem. Recently, some attempts have
been made to unify delay budgeting and placement [51, 63,
33], where a complete or coarse [63, 33] placement solution
is used to guide the delay budgeting step. However, it is
generally difficult to find an efficient or scalable algorithm
for such unification.
To overcome these problems, approaches based on net

weighting use different means. Instead of assigning a delay
budget to each individual net or edge, net-weighting-based
approaches assign weights to nets based on their timing crit-
icality. Compared with delay-budgeting approaches, these
methods will not suffer from the overconstraining problem.
Net weighting based algorithms are generally very flexible.
They can be naturally integrated into an existing wirelength-
minimization-based placement framework. They also have
a relatively low complexity. As circuit sizes continue to in-
crease and practical timing constraints become increasingly
complex, these advantages make the net-weighting-based
approaches more and more attractive.
Unfortunately, despite these advantages, net weighting is

usually done in an ad-hoc, intuitive manner. The main prin-
ciple used in most algorithms is that a timing critical net
should receive a heavy weight. For example, VPR [46] used
the following formula to assign weight to an edge e:

w(e) = (1− slack(e)/T)α

where T is the current longest path delay, α is a constant.
These methods ignored another important principle – path

sharing. In generally, an edge with many paths passing
through it should receive a heavy weight as well. Path count-
ing is a method developed to take path-sharing effects into
consideration by computing the number of paths passing
through each edge in the circuit. These numbers can then
be used as edge weights. Unfortunately, this naive method
suffers from a severe drawback: it cannot distinguish timing-
critical paths from non-critical paths. The variant ε-network
path counting [54] suffers from the same problem [42].
A recent work [42] proposed a nice solution. The al-

gorithm, named PATH, can properly scale the impact of
all paths by their relative timing criticalities (measured by
their slacks) respectively, instead of counting critical paths
and non-critical paths with equal weight. It was shown [42]
that for certain discount functions, this method is equivalent
to enumerating all the paths in the circuit, counting their
weights, and then distributing the weights to all edges in
the circuit. Yet such computation can be carried out very
efficiently in linear time, and experimental results have con-
firmed its effectiveness. Compared with VPR [46] under the
same placement framework, it reduced the longest path de-
lay by 15.6% on average with no runtime overhead and only
a 4.1% increase in total wirelength.
A potential problem in the net-based approaches is the so-

called oscillation problem. Usually net weights or budgets
are assigned by performing timing analysis for some given
placement solution Pn at the n-th iteration; more critical
nets will receive higher weights. Thus, in the next place-
ment solution Pn+1, the lengths of critical nets in P n will
be reduced, while the lengths of other non-critical nets are
potentially increased, resulting in changes in net criticali-
ties, and, thus, in net weights. Therefore, it is important
to ensure convergence of weighted-wirelength optimization.

Note that certain path-based approaches suffer from similar
problems, e.g., a need to dynamically adjust the set of paths
being optimized [57].
Two ways to solve this problem have appeared in the lit-

erature. The first approach is to perform timing analysis
and recompute net weighting periodically. VPR [46] and
PATH [42] follow this approach. Based on simulated an-
nealing, both methods perform timing analysis and net re-
weighting once per temperature. The second approach is to
make use of historic information [29], i.e., to combine weights
in previous iterations with criticality information in the cur-
rent placement to derive the current weights. Intuitively, if
a net is always critical during all placement iterations, we
want to gradually increase its weight; while if it is never
critical, we will decrease its weight.

5. ROUTABILITY OPTIMIZATION
Routing congestion is one of the fundamental issues in

VLSI physical design. Because an aggressive wirelength-
driven placement may not be routable, routability is best
considered directly during the placement phase in order to
achieve the best overall performance.
Routability-driven placement involves mainly (i) routabil-

ity modeling and (ii) solution techniques for routability con-
trol. Usually optimization for routability control is per-
formed based on the estimated routing congestion of a place-
ment configuration. We discuss these two issues in the fol-
lowing subsections.

5.1 Routability Modeling
Routability is usually modeled on an X×Y global-routing

grid in the chip’s core region. Routing supply and demand
are modeled for each bin and each boundary of the routing
grid structure.
There have been many studies on routability modeling.

There are two major categories: topology-free modeling (TP-
free), where no explicit routing is done, and topology-based
modeling (TP-based), where routing trees are explicitly con-
structed on some routing grid.
TP-free modeling is faster in general. Examples of this

class include bounding-box (BBOX)-based modeling [21],
probabilistic analysis-based modeling [43], Rent’s rule-based
modeling [65], and pin density-based modeling [5]. In RISA
modeling [21], the wiring supply is modeled based on the
pre-wiring, cells and mega cells, and the wiring demand of
a net is modeled by a weighted BBOX length. A net-based
stochastic model for 2-pin nets is presented to compute ex-
pected horizontal and vertical track usage with considera-
tion of routing blockage [43]. Peak routing demand and re-
gional routing demand are estimated using Rent’s rule [65].
Pin density per bin can be used as a metric for intrabin
routing congestion, but it can not model the interbin bound-
ary congestion. Therefore, it is combined with probabilistic
analysis-based modeling for completeness [5].
In a TP-based modeling method, for each net, a Steiner

tree topology is generated on the given routing grid. Such a
modeling method can generate at least a global routing so-
lution, i.e., it can provide a upper bound for the routability
estimation. If a TP-based modeling method uses a topol-
ogy similar to what the after-placement-router does, the
fidelity of the model can be guaranteed. However, topol-
ogy generation is often of high complexity; therefore, most
research focuses mainly on efficiency. In one approach, a

precomputed Steiner tree topology on a few grid structures
is used for wiring-demand estimation [47]. Two algorithms
of logarithmic complexity have recently been proposed: a
fast congestion-avoidance two-bend routing algorithm, LZ-
router, for topology generation for two-pin nets, and IncA-
tree algorithm, which can support incremental updates for
building a rectilinear Steiner arborescence tree (A-tree) for
a multipin net [15].

5.2 Optimization Techniques
After routability is modeled, a routing-congestion pic-

ture is obtained on the global-routing grid structure. Ba-
sically, there are two ways to apply the modeling results to
the placement optimization process: net weighting and cell
weighting (cell inflation).
Net weighting directly transfers a congestion picture into

bin weights and optimizes weighted wirelength. It can easily
be incorporated into iterative placement algorithms such as
simulated-annealing-based methods [36, 15].
Cell weighting (a.k.a cell inflation) inflates cell sizes based

on congestion estimation, so that cells in congested bins can
be moved out of the bins after being inflated. It is more
suitable for incorporation into constructive placement tech-
niques, such as analytical placers [49], quadrisection-based
placers [5], as well as iterative placement techniques, such
as simulated annealing-based placers [64].

6. CONCLUSION
Algorithms for large-scale circuit placement play a vi-

tal role in today’s interconnect-limited nanometer designs.
Recent studies suggest that the potential exists for a full
technology generation’s worth of performance gains in the
placement step alone. In this paper, we have reviewed the
current state of the art, from the basic paradigms for scal-
able wirelength-driven placement to techniques for perfor-
mance and routability optimization. We believe that hier-
archical/multilevel methods are needed for scalability, and
weighted wirelength minimization provides a general frame-
work for performance and routability optimization in place-
ment.
Ideally, systematic empirical comparisons would be used

to understand the trade-offs of the different algorithms sum-
marized in this paper. However, direct numerical compar-
isons of these algorithms are difficult, partly due to limited
accessiblity to these algorithms, and partly due to differ-
ences in their assumptions. Recently, comparisons based
on wirelength minimization have been attempted [2]. We
are not aware of any comprehensive quantitative compar-
ison in terms of performance or routability optimization.
More work is needed to build a common framework for di-
rect comparisons of different placement methods.

7. REFERENCES
[1] http://cadlab.cs.ucla.edu/∼pubbench.

[2] S. N. Adya, M. Yildiz, I. L. Markov, P. G. Villarrubia,
P. N. Parakh, and P. H. Madden. Benchmarking for
large-scale placement and beyond. In Proc. Intl. Symp.
on Physical Design (ISPD), pages 95–103, 2003.

[3] C. J. Alpert. The ispd98 circuit benchmark suite. In
Proc. International Symposium on Physical Design,
pages 85–90, 1998.

[4] A. Brandt and D. Ron. Multigrid Solvers and
Multilevel Optimization Strategies, chapter 1 of
Multilevel Optimization and VLSICAD. Kluwer
Academic Publishers, Boston, 2002.

[5] U. Brenner and A. Rohe. An effective
congestion-driven placement framework. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
Systems, 22(4):387–394, April 2003.

[6] U. Brenner and A. Rohe. An effective
congestion-driven placement framework. In Proc.
International Symposium on Physical Design, Apr
2002.

[7] M. Breuer. Min-cut placement. J. Design Automat.
Fault Tolerant Comp., 1(4):343–362, Oct 1977.

[8] W. L. Briggs, V. E. Henson, and S. F. McCormick. A
Multigrid Tutorial. SIAM, Philadelphia, second
edition, 2000.

[9] M. Burstein and M. N. Youssef. Timing influenced
layout design. In Proc. ACM/IEEE Design
Automation Conference, pages 124–130, 1985.

[10] Cadence Design Systems, Inc. Envisia ultra placer
reference. QPlace version 5.1.55, compiled on
10/25/1999.

[11] A. Caldwell, A.B.Kahng, and I. Markov. Optimal
partitioners and end-case placers for standard-cell
layout. IEEE Trans. on CAD, 19(11):1304–1314, 2000.

[12] A. Caldwell, A. Kahng, and I. Markov. Can recursive
bisection alone produce routable placements? In Proc.
37th IEEE/ACM Design Automation Conf., 2000.

[13] T. Chan, J. Cong, T. Kong, and J. Shinnerl. Multilevel
optimization for large-scale circuit placement. In Proc.
IEEE International Conference on Computer Aided
Design, pages 171–176, San Jose, CA, Nov 2000.

[14] T. Chan, J. Cong, T. Kong, J. Shinnerl, and K. Sze.
An enhanced multilevel algorithm for circuit
placement. In Proc. IEEE International Conference on
Computer Aided Design, San Jose, CA, Nov 2003.

[15] C.-C. Chang, J. Cong, D. Pan, and X. Yuan.
Multilevel global placement with congestion control.
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 22(4):395–409, April 2003.

[16] C. C. Chang, J. Cong, and M. Xie. Optimality and
scalability study of existing placement algorithms. In
Proc. Asia South Pacific Design Automation
Conference, pages 621–627, 2003.

[17] C.-C. Chang, J. Lee, M. Stabenfeldt, and R. S. Tsay.
A practical all-path timing-driven place and route
design system. In Proc. Asia-Pacific Conference on
Circuits and Systems, pages 560–563, 1994.

[18] C. Chen, X. Yang, and M. Sarrafzadeh. Potential
slack: An effective metric of combinational circuit
performance. In IEEE/ACM International Conference
on Computer-Aided Design, pages 198–201, 2000.

[19] H. Chen, C.-K. Cheng, N.-C. Chou, A. Kahng,
J. MacDonald, P. Suaris, B. Yao, and Z. Zhu. An
algebraic multigrid solver for analytical placement
with layout-based clustering. In Proc. IEEE/ACM
Design Automation Conf., pages 794–799, 2003.

[20] C. Cheng and E. Kuh. Module placement based on
resistive network optimization. IEEE Transactions on
Computer-Aided Design, CAD-3(3), Jul 1984.

[21] C.-L. E. Cheng. RISA: accurate and efficient
placement routability modeling. In Proc. Int. Conf. on
Computer Aided Design, pages 690–695, Nov. 1994.

[22] J. Cong. An interconnect-centric design flow for
nanometer technologies. Proceedings of the IEEE,
89(4):505–527, April 2001.

[23] J. Cong and S. K. Lim. Edge separability based circuit
clustering with application to circuit partitioning. In
Asia South Pacific Design Automation Conference,
Yokohama Japan, pages 429–434, 2000.

[24] J. Cong, M. Romesis, and M. Xie. Optimality,
scalability and stability study of partitioning and
placement algorithms. In Proc. International
Symposium on Physical Design, pages 88–94, 2003.

[25] J. Cong, M. Romesis, and M. Xie. Optimality and
stability of timing-driven placement algorithms. In
Proc. IEEE International Conference on Computer
Aided Design, San Jose, CA, Nov 2003.

[26] J. Cong and J. R. Shinnerl, editors. Multilevel
Optimization in VLSICAD. Kluwer Academic
Publishers, Boston, 2003.

[27] A. Dunlop and B. Kernighan. A procedure for
placement of standard-cell vlsi circuits. IEEE
Transactions on Computer-Aided Design, CAD-4(1),
Jan 1985.

[28] A. E. Dunlop, V. D. Agrawal, D. N. Deutsch, M. F.
Jukl, P. Kozak, and M. Wiesel. Chip layout
optimization using critical path weighting. In Proc.
ACM/IEEE Design Automation Conference, pages
133–136, 1984.

[29] H. Eisenmann and F. M. Johannes. Generic global
placement and floorplanning. In Proc. 35th
ACM/IEEE Design Automation Conference, pages
269–274, 1998.

[30] T. Gao, P. M. Vaidya, and C. L. Liu. A new
performance driven placement algorithm. In
IEEE/ACM International Conference on
Computer-Aided Design, pages 44–47, 1991.

[31] S. Goto. An efficient algorithm for the
two-dimensional placement problem in electrical
circuit layout. IEEE Trans. on Circuits and Systems,
28(1):12–18, January 1981.

[32] L. W. Hagen, D. J.-H. Huang, and A. B. Kahng.
Quantified suboptimality of vlsi layout heuristics. In
Proc. Design Automation Conference, pages 216–221,
1995.

[33] B. Halpin, C. Chen, and N. Sehgal. Timing driven
placement using physical net constraints. In Proc.
ACM/IEEE Design Automation Conference, pages
780–783, 2001.

[34] T. Hamada, C. K. Cheng, and P. M. Chau. Prime: a
timing-driven placement tool using a piecewise linear
resistive network approach. In Proc. ACM/IEEE
Design Automation Conference, pages 531–536, 1993.

[35] P. S. Hauge, R. Nair, and E. J. Yoffa. Circuit
placement for predictable performance. In IEEE/ACM
International Conference on Computer-Aided Design,
pages 88–91, 1987.

[36] B. Hu and M. Marek-Sadowska. Congestion
minimization during placement without estimation. In
Proc. Int. Conf. on Computer Aided Design, pages
739–745, Nov. 2002.

[37] B. Hu and M. Marek-Sadowska. Fine granularity
clustering for large-scale placement problems. In Proc.
Design Automation Conference, pages 67–74, Jun.
2003.

[38] S.-W. Hur and J. Lillis. Mongrel: Hybrid techniques
for standard-cell placement. In Proc. IEEE
International Conference on Computer Aided Design,
pages 165–170, San Jose, CA, Nov 2000.

[39] M. Jackson and E. S. Kuh. Performance-driven
placement of cell based IC’s. In Proc. ACM/IEEE
Design Automation Conference, pages 370–375, 1989.

[40] G. Karypis. Multilevel Hypergraph Partitioning,
chapter 3 of Multilevel Optimization and VLSICAD.
Kluwer Academic Publishers, Boston, 2002.

[41] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J.
Antreich. Gordian: Vlsi placement by quadratic
programming and slicing optimization. IEEE Trans.
on Computer-Aided Design, CAD-10:356–365, 1991.

[42] T. Kong. A novel net weighting algorithm for
timing-driven placement. In IEEE/ACM International
Conference on Computer-Aided Design, pages
172–176, 2002.

[43] J. Lou, S. Thakur, S. Krishnamoorthy, and H. Sheng.
Estimating routing congestion using probabilistic
analysis. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 21(1):32–41, January
2002.

[44] W. K. Luk. A fast physical constraint generator for
timing driven layout. In Proc. ACM/IEEE Design
Automation Conference, pages 626–631, 1991.

[45] M. Marek-Sadowska and S. P. Lin. Timing driven
placement. In IEEE/ACM International Conference
on Computer-Aided Design, pages 94–97, 1989.

[46] A. Marquardt, V. Betz, and J. Rose. Timing-driven
placement for FPGAs. In ACM Symposium on
FPGAs, pages 203–213, 2000.

[47] S. Mayrhofer and U. Lauther. Congestion-driven
placement using a new multi-partitioning heuristic. In
Proc. Int. Conf. on Computer Aided Design, pages
332–335, 1990.

[48] R. Nair, C. L. Berman, P. Hauge, and E. J. Yoffa.
Generation of performance constraints for layout.
IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 8(8):860–874, 1989.

[49] P. N. Parakh, R. B. Brown, and K. A. Sakallah.
Congestion driven quadratic placement. In Proc.
Design Automation Conference, pages 275–278, 1998.

[50] Y. Sankar and J. Rose. Trading quality for compile
time: Ultra-fast placement for FPGAs. In FPGA ‘99,
ACM Symp. on FPGAs, pages 157–166, 1999.

[51] M. Sarrafzadeh, D. A. Knol, and G. E. Tellez. A delay
budgeting algorithm ensuring maximum flexibility in
placement. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,
16(11):1332–1341, 1997.

[52] M. Sarrafzadeh, D. A. Knol, and G. E. Tellez.
Unification of budgeting and placement. In Proc.
ACM/IEEE Design Automation Conference, pages
758–761, 1997.

[53] M. Sarrafzadeh, M. Wang, and X. Yang. Modern
Placement Techiques. Kluwer Academic Publishers,

Boston, 2002.

[54] M. Senn, U. Seidl, and F. Johannes. High quality
deterministic timing driven FPGA placement. In
ACM Symposium on FPGAs, 2002.

[55] G. Sigl, K. Doll, and F. M. Johannes. Analytical
placement: A linear or a quadratic objective function?
In Proc. 28th ACM/IEEE Design Automation
Conference, pages 427–432, 1991.

[56] A. Srinivasan, K. Chaudhary, and E. S. Kuh.
RITUAL: A performance driven placement for
small-cell ICs. In IEEE/ACM International
Conference on Computer-Aided Design, pages 48–51,
1991.

[57] W. Swartz and C. Sechen. Timing-driven placement
for large standard cell circuits. In Proc. ACM/IEEE
Design Automation Conference, pages 211–215, 1995.

[58] G. E. Tellez, D. A. Knol, and M. Sarrafzadeh. A
performance-driven placement technique based on a
new net budgeting criterion. In International
Symposium on Circuits and Systems, pages 504–507,
1996.

[59] R. Tsay, E. Kuh, , and C. Hsu. Proud: A fast
sea-of-gates placement algorithm. IEEE Design and
Test of Computers, pages 44–56, 1988.

[60] R. S. Tsay and J. Koehl. An analytic net weighting
approach for performance optimization in circuit
placement. In Proc. ACM/IEEE Design Automation
Conference, pages 620–625, 1991.

[61] J. Vygen. Algorithms for large-scale flat placement. In
Proc. 34th ACM/IEEE Design Automation
Conference, pages 746–751, 1997.

[62] M. Wang, X. Yang, and M. Sarrafzadeh. Dragon2000:
Standard-cell placement tool for large circuits. Proc.
IEEE/ACM International Conference on
Computer-Aided Design, pages 260–263, Apr 2000.

[63] X. Yang, B. Choi, and M. Sarrafzadeh. Timing-driven
placement using design hierarchy guided constraint
generation. In IEEE/ACM International Conference
on Computer-Aided Design, pages 177–180, 2002.

[64] X. Yang, B.-K. Choi, and M. Sarrafzadeh.
Routability-driven white space allocation for fixed-die
standard-cell placement. IEEE Trans. on
Computer-Aided Design of Integrated Circuits and
Systems, 22(4):410–419, April 2003.

[65] X. Yang, R. Kastner, and M. Sarrafzadeh. Congestion
estimation during top-down placement. IEEE Trans.
on Computer-Aided Design of Integrated Circuits and
Systems, 21(1):72–80, January 2002.

[66] M. C. Yildiz and P. H. Madden. Global objectives for
standard cell placement. In Eleventh Great-Lakes
Symposium on VLSI, pages 68–72, 2001.

[67] M. C. Yildiz and P. H. Madden. Improved cut
sequences for partitioning-based placement. In Proc.
Design Automation Conference, pages 776–779, 2001.

[68] H. Youssef, R. B. Lin, and S. Shragowitz. Bounds on
net delays. IEEE Transactions on Circuits and
Systems, 39(11):815–824, 1992.

[69] H. Youssef and E. Shragowitz. Timing constraints for
correct performance. In IEEE/ACM International
Conference on Computer-Aided Design, pages 24–27,
1990.

