
Back in the 1950s and ’60s, researchers in the in-

fant field of artificial intelligence first proclaimed that

computers would soon be able to think, learn, and

create as well as or better than humans—a concept

frighteningly embodied by HAL in Arthur Clarke’s

2001: A Space Odyssey.

As the millennium approaches, we have created

computers that can recognize handwriting, mimic speech,

identify people (to some extent) by their voices and

faces, even occasionally beat a chess grandmaster or

find a “creative” proof to a long-unsolved mathematical

theorem. But we are far from having a computer that

appears as intelligent, or as “human,” as those in sci-

fi movies.

Despite the early optimism, creating artificial

intelligence has turned out be a profoundly chal-

lenging problem. But a core group of professors and

researchers in Cornell’s Department of Computer

Science is building on what we have learned so far

and applying AI to matters far more practical than

beating Gary Kasparov at chess—such as planning

military missions, making wireless phone networks

run more smoothly, and creating intelligent “data-

mining” agents that retrieve exactly the informa-

tion you want.

FOR COMMON-
SENSE APPLICATIONS,
CHIPS MAY NOT BE
AS “SMART” AS
NEURONS YET
—BUT THEY’RE
GAINING ON US.
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These scientists are finding ways for
computers to “understand” typewrit-
ten text, “learn” from examples instead
of being told explicitly how to do ev-
ery task, “reason” about uncertain situ-
ations, and then use their knowledge
to make sensible decisions on compli-
cated real-world problems. In addition,
they are figuring out why some types
of problems are so hard for computers
to solve.

      hat does it mean to be
smart? One way to approach AI is to
build models of human thinking by,
for example, interviewing chess experts
on how they play chess. But the com-
puter science department concentrates
on developing entirely new ways to exceed
human performance on certain tasks,
believing machines will never operate
in quite the same way as the brain. “Fun-
damentally different ‘hardware’ may
require fundamentally different algo-
rithms,” explains Associate Professor
Bart Selman, a key member of the Col-
lege of Engineering’s burgeoning AI
program.

What exactly is artificial intelligence?
Researchers in the field can debate the
nuances of this for hours, but basically
it means designing machines that can
perform tasks that people do particu-
larly well, including problem-solving,
decision-making, and learning. “You’re
trying to bottle the brain in a computer,”
quips Selman, who came to Cornell from
AT&T Bell Laboratories’ AI research
department.

One common definition of AI,
known as the Turing test, gives a person
30 minutes to type into a computer
terminal, ask all kinds of questions,
and receive answers. At the end of that
time, if the person can’t determine
whether the respondent at the other
end of the line is a computer or a hu-
man, then that machine has demon-
strated intelligence.

To pass the Turing test, a computer
would need at least the following four

things, which make up the major fields
of study in AI: communication skills
(natural language processing), ways of
storing information in a format that
the machine can use (knowledge rep-
resentation), the ability to use that in-
formation to answer questions and draw
new conclusions (automated reasoning),
and the ability to adapt to new circum-
stances and detect patterns (machine
learning).

No computer has passed the Tur-
ing test yet. So far, programs can only
function in specific domains and un-
der the conditions for which they are
written. A backgammon-playing com-
puter may be able to repeatedly beat
world-class players, but it can’t steer a
spacecraft or tell you what to adjust in
your office software to get tomorrow’s
presentation to look the way your boss
wants.

Where do today’s computers stand?
If you compare speed and capacity, says
Selman, a 1999 home computer has the
brainpower of a spider. IBM’s Deep Blue
is roughly the equivalent of a mouse
(if a rodent could play chess and do
nothing else). And a modern super-com-
puter still rates slightly below a mon-
key. While computers are faster than
human brains, they still have fewer tran-
sistors than the brain has neurons and
are structured quite differently.

It’s too much! The problem with prob-
lems Among the challenges AI researchers
still face is how to give a machine an
understanding of subject matter and
content. “It still needs knowledge of
the real world,” says Selman. “How do
you get common sense into a computer?”

In the real world, many problems
have multiple choices that lead to more
and more choices. These “combinato-
rial” problems can often be represented
to the computer in Boolean logic, in
which true or false variables are linked
by ANDs, ORs, and NOTs.

Combinatorial problems are hard
to solve by trial-and-error examination
of all the possibilities, because the search
base grows exponentially with the size
of the problem. For example, in a simple

4X4 crossword puzzle, there are 2616

letters to consider (26 possible letters
for each of 16 squares). That’s more than
43 trillion billion possibilities! And The
New York Times puzzle might require
something like 26196 possible letter
combinations.

Despite their ability to handle gi-
ant numbers, computers still get stuck
on certain problems, and Selman has
taken on the task of figuring out why.
“I study what makes a problem hard
and what makes it easy,” he says.

On a very basic level, Selman has
figured out that certain types of Bool-
ean problems cross a size threshold at
which they suddenly go from very easy
to impossibly hard. Problems in which
the ratio of constraints to variables is
small can be solved quickly, and prob-
lems with large clause-to-variable ra-
tios can’t be solved, but you learn that
quickly. “In the middle, it’s difficult,”
says Selman. It’s at the transition point
from easy to hard that the computer
racks up long “run times” trying to solve
the problems.

To speed up the task, the computer
needs ways of narrowing down the pos-
sibilities. So Selman develops algorithms
that can handle thousands of variables
and, with his colleagues, studies which
run fastest.

War Games . . . and other planning
problems  Upstairs from Selman in Upson
Hall, research associate Carla Gomes
pulls up what looks like a game—a big
square filled with smaller squares, some
of which have been assigned colors—
on her computer screen. The goal is to
fill all the rest of the little squares with
a set of colors so that there is only one
of each color in each row and column.
Gomes spends a lot of time with these
puzzles, only she’s not playing them
the way computer Solitaire addicts se-
cretly play when they’re supposed to
be working. In fact, the U.S. Air Force
has given her funding to do just this
sort of thing.

Gomes studies how fast the com-
puter can solve the puzzles using dif-
ferent algorithms, if it can solve them
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at all. “Mathematically there are so
many possibilities, and it’s hard for
the computer to distinguish the bad
from the good options,” Gomes ex-
plains. “Humans can automatically
discard tons of possibilities.”

While it’s not of much use to any-
one if a computer can fill a square with
different colors, these problems mimic
the complexity in real-world combina-
torial problems. The successful algorithms
can move from square
patterns to compli-
cated, large-scale sched-
uling and planning de-
cisions—say, figuring
out the most efficient
movement of military
troops and cargo for
a mission. Gomes’s
work extends beyond
the military; it could
just as easily be used
for designing cellular
phone networks or
setting up machines in
factories to meet a
company’s production
requirements.

To speed up work
on these planning
problems, Gomes could
narrow down the pos-
sibilities by telling the computer to solve
the squares with the fewest options left.
But interestingly, for many types of prob-
lems, adding randomness to the algo-
rithm actually helps provide better,
quicker solutions.

“When we add randomness, the
computer can solve it in a short time
or it can get lost,” says Gomes. “It’s like
a person in a garden maze. You can get
lucky and get out in only a few steps or
you can make lots of wrong turns.”

She runs another puzzle to illus-
trate randomized backtracking—in which
the computer picks a random starting
point, assigns a value to that variable,
and follows the possible paths from there.
If it reaches a point where none of the
possible values for a certain variable
work, it must backtrack to the previ-
ous variable and give it a new value,

repeating this process until it reaches
an answer. In this case, the computer
solves the pattern in two backtracks, a
matter of seconds. Gomes runs it again
and this time the computer takes a minute,
but does not find an answer before it
exceeds the maximum number of back-
tracks that she has set to minimize time
delays.

Gomes and Selman closely study
these types of problems, known as “heavy-

tails” because if you graph the possible
combinations versus the time they take
to compute, they don’t resemble a typical
bell curve with a high middle and long
thin tails. Instead, the extremes are more
common (thus the tails on the graph
are fatter)—there are a lot of starting
points that lead nowhere and there are
a lot of cases where, if certain values
are set, they determine all the other
variables and the problem can be solved
quickly.

“If the search is taking a long time,
you can just abort and do it again and
hopefully it will find a solution in a
shorter run the next time,” says Gomes.
“The computer could get stuck for days
otherwise.”

By setting up automatic restarting
after a certain number of backtracks, the
total time to solve problems ultimately

ends up being less than for other algo-
rithms. The trick, which Gomes and Selman
continue to work on, is to find out in
advance which problems will have “heavy
tails” and also to fine-tune the best number
of backtracks to use as a cutoff.

“The benefit to introducing random-
ness to a program, which is counterin-
tuitive, is that it makes the program
more robust,” concludes Gomes. “If we
don’t use randomness, we run the risk

of the result always
being the same and
the decision being one
of the bad ones.”

She demonstrates
a World War II prob-
lem. The computer
must assign planes
from three bases to
patrol the ocean in
squadrons of varying
sizes. After analyzing
the cost (in this case,
the distance the planes
must fly), it turns out
the computer’s first so-
lution is not a good
one: Planes from one
base are serving a far-
away area that is much
closer to another base.
Running the program

again provides a much better solution
in which all the sectors are efficiently
covered by squadrons relatively close
to their own bases. All this was done
in a matter of minutes, not the hours
it would have taken a human to figure
it out. Pretty “smart.”

The “What if?” worries Dealing with
problems that have a clearly defined
set of variables and a concrete mathe-
matical solution is hard enough. But
what happens when you bring all the
unpredictability of real life into a
situation?

“If you knew the way the world was
going to be, you could make decisions
easily,” says Professor Joseph Halpern.
“If you knew the winner in a horse race,
you wouldn’t have a problem. But prob-
ability is involved.”

AI team members from left to right: Assistant Professor Lillian Lee,
Associate Professor Bart Selman,  Assistant Professor Claire Cardie,
Research Associate Carla Gomes, and Professor Joseph Halpern.
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Among the things Halpern works
on is how to model uncertainty in AI
problems, or in other words, how to
represent what the computer does and
does not know at any given time and
the likelihood of something unknown
being or becoming true. Using differ-
ent models, Halpern then looks at how
to get a system to best reason about
that uncertainty in making a decision.

Uncertainty can be represented quan-
titatively using probability
theory, but that’s only part of
the equation. Most real-life prob-
lems don’t fit neatly into the
mathematical approaches that
easily solve puzzles involving
coin tosses and card games.

“Let’s say you’re supposed
to meet someone at 5:00, and
they haven’t shown up at 5:15,”
Halpern postulates.  “Do you
stick around or leave? It depends.
How much did you want to meet
that person in first place? That’s
the utility part—how much do
you care? If it’s someone you’ve
been getting together with pretty
often, how likely is it that they are go-
ing to get there soon?” He adds, “These
things arise all the time in systems
applications.”

Some approaches to uncertainty
and decision theory look at things—
the likelihood of something happen-
ing, the utility, and the cost of wait-
ing versus quitting and restarting the
transaction—in a more qualitative
manner.

“We don’t have nice numbers in
practice,” says Halpern.  In the case above,
determining probability is not as simple
as figuring out the likelihood of draw-
ing an ace out of deck if you’re only
dealt six cards. You’re making guesses
based on the person’s past behavior,
where they’re coming from, and how
important it is that they be there on
time. And you’re determining how much
it matters by whether you’re meeting
a blind date versus an old friend or a
business colleague.

“If you don’t know the probabili-
ties and people aren’t prepared to say

exactly what the utility is, how do you
do qualitative decision theory efficiently
and effectively?” asks Halpern.

This is among the questions that
he spends much of his time trying to
answer, but he isn’t entirely wrapped
up in theory. Using his models, Halpern
works with other members of the en-
gineering school to build more effec-
tive systems, including a project on
wireless telephone networks.

If you have used a cellular phone
in your car, you have probably had your
call dropped as you drove along or haven’t
able to place a call from a certain area.
The problem is that your phone com-
pany has a limited amount of band-
width and can only accept a set num-
ber of calls at a time.

“If you are a cell phone company,
you have to decide whether to accept
a call or block it,” explains Halpern.
“Even if you have the lines to accept a
call, it’s not obvious that you should.
If there’s only one line left, should you
accept? The world is divided up into
different cells that handle a call as some-
one is driving along. If I use up all the
lines in a cell, and someone already on
a call drives over into that cell, I have
to drop the call.”

Before allocating the phone lines,
a system has to consider how likely it
is that another call will come over and
what the cost is of dropping a call ver-
sus blocking it. “People get madder if
you drop their call than if you block

it,” comments Halpern. “Plus, not all
calls are equal. If your call is an FTP
file transfer, you don’t mind; the phone
will redial and pick up where it left off.
If you are having a serious conversa-
tion, you mind a lot.”

Halpern has applied his decision
theory work to fields as diverse as air
traffic control and database query plan-
ning. “People have always thought in-
tuitively about it, but it pays to for-

malize it more carefully,” Halpern
concludes. “By doing that, you
get systems that adjust them-
selves automatically and are more
user-friendly.”

    lease don’t let me be mis-
understood More efficient and
user-friendly information-find-
ing systems are also the ulti-
mate goal of Assistant Profes-
sor Claire Cardie’s research. As
anyone who has ever looked for
information on the Internet

knows, using a search engine to scan
hundreds of thousands of documents
and web sites for key words can be in-
credibly frustrating. Frequently, you won-
der why the search engine retrieved most
of the items since half the information
isn’t even remotely relevant. Wouldn’t
it be nice if the computer could actu-
ally understand what it is searching and
provide only relevant details neatly sum-
marized for us?

Cardie, whose work combines natural
language processing and machine learn-
ing, is trying to develop a system that
understands typewritten text. “What
‘understand’ means depends on your
goals,” she comments.

In her case, Cardie focuses on in-
formation extraction. A natural language
processing system is given large amounts
of text—such as news articles from a
wire service—and searches through it
to find relevant information on a spe-
cific subject, like natural disasters. The
system then creates simple summaries
of the information, listing user-defined
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criteria such as date, time, location,
damage, injuries, and total cost. The
summaries could be automatically in-
corporated into databases and used to
answer questions from scientists, jour-
nalists, and other researchers.

Among the tasks the computer must
first accomplish are assigning “part of
speech tags” to the words in the text
and analyzing the sentence structure.
Then the system must identify relevant
words and their relations to each other
(“hurricane” and “hit Florida” and “dam-
aged 14 homes”). While the basic ability
to diagram a sentence can be programmed
into a computer, the machine doesn’t
understand the meaning of the words.
This is where the work of Cardie’s col-
league, Assistant Professor Lillian Lee,
ties in.

Lee points out that there’s lots of
ambiguity in what seem like simple
sentences, giving the example: “I saw
her duck with the telescope.” Is “duck”
a noun or a verb? Who has the tele-
scope—the speaker, the woman, or the
duck? And to whom does “her” refer?
These sorts of questions can easily trip
up a computer.

By taking statistical information about
language usage from large amounts of
text, Lee hopes to be able to automati-
cally find patterns in the data. The in-
formation-extraction programs could
then rely on these patterns to solve am-
biguities or correct errors in the text
(for example, recognizing a typo by check-
ing which is more likely to occur: “eat
a peach” or “eat a beach”). But there’s
a problem—it’s hard to get reliable es-
timates of the probability of certain events
or strings of words occurring. “In daily
life, you are saying new things every
day and new events occur all the time,”
she says. “It’s called the sparse data prob-
lem—there’s a lot of data, but it doesn’t
tell you about new events.

“How do people deal with new
events? By analogy,” Lee continues. “We
use similar events to predict the behavior
of novel events.” So she is evaluating
various ways of determining the simi-
larities of words by grouping them into
classes. This helps address another chal-

lenge information-extraction programs
must face: figuring out whether a word
is a new entity or a synonym for some-
thing it has already identified in the
text (“tornado” and “twister” or “Ford”
and “Big Three auto manufacturer”).

Natural-language processing systems
that can read and summarize text already
exist in very specific fields and can do
tasks such as helping to analyze life in-
surance applications, summarizing medical
patient records, and classifying legal docu-
ments. These systems rely heavily on large
amounts of domain-specific knowledge
that must be hand-coded and requires
the expertise of specialists in the field
and computational linguists. “It can take
a year to design one for a new domain,”
says Cardie.

She wants to build these systems
automatically by using machine learning
techniques. Instead of writing a pro-
gram that tells the system exactly how
to do each task, you provide examples
of how to do that task. “If you give the
computer the diagrams for 1,000 sen-
tences, then when you give it a new
sentence it has never seen, the machine
can diagram the sentence automatically
based on the correlations it’s seen in
the 1,000 ‘training’ sentences,” explains
Cardie.

Among their benefits, learned ap-
proaches perform as well or better on
certain tasks than the time-intensive hand-
coded approaches, which aren’t flexible
enough to handle the unique language
and range of events that occur in real-
world text. By learning from training
examples that cover the specific area of
knowledge for which it is used, the sys-
tem increases its accuracy. Yet, since the
general language-understanding skills
learned are automatic, it would be rela-
tively easy to switch the skill from one
domain of knowledge to another with
some retraining. Ultimately, these learned-
approach systems could be trainable en-
tirely by their end users, without the help
of experts.

“We don’t know how to do all this
yet,” acknowledges Cardie, pointing out
that researchers are still working to im-
prove the amount of relevant information

recalled and the accuracy of the sys-
tems. There is still much to be done in
figuring out which learning algorithms
are best for each language task and which
sentences make the best training
examples.

“Right now we can get 60 to 65
percent accuracy for information ex-
traction systems that are written by hand,”
she says. “Automatic learning is under
60 percent, which is still usable.”  (To
put this into context, if two people sum-
marize the same block of text, they agree
only 80 percent of the time.) But cer-
tain areas of language understanding
are highly effective, she adds; part-of-
speech tags are 95 percent accurate and
sentence parsing is about 85 percent.
“But when you put it all together, the
errors multiply,” Cardie explains. “Sen-
tences are complicated. In news articles,
there are lots of foreign names and com-
plicated syntax. It’s hardest with real
text like that.”

Despite these difficulties, the suc-
cesses make Lee enthusiastic about the
future of natural language processing
and AI. “Many people have said that
solving natural language could solve
AI,” she points out. “Any problem you
want to attack is there in language.”
It’s such an important area, she says,
that at one point in 1997, Microsoft
chairman Bill Gates declared he was
betting the company on natural lan-
guage processing.

She points out that NLP programs
can tackle automated translation and
solve questions about authorship of
historical documents; there are already
products on the market that allow you
to talk to your computer. But she says
with a laugh, “I don’t know how far
we are from having a computer that
understands you like your mother.”

Maybe the computer won’t under-
stand you as well as your mom does,
but with all the work the Cornell re-
searchers have done in the areas of plan-
ning and reasoning, it may give better
advice.  i


