
Scripting for EDA Tools: A Case Study

Pinhong Chen Desmond A. Kirkpatrick Kurt Keutzer

Dept. of EECS Intel Corp. Dept. of EECS
U. C. Berkeley Microprocessor Products Group U. C. Berkeley

Berkeley, CA 94720, USA Hillsboro, OR 97124, USA Berkeley, CA 94720, USA
pinhong@eecs.berkeley.edu desmond.a.kirkpatrick@intel.com keutzer@eecs.berkeley.edu

Abstract
How to integrate EDA tools to enable interoperability and

ease of use has been a very time-consuming and difficult job.
Conventionally, each tool comes with some unique and sim-
ple set of commands for interactive use such as Sis[1], Vis[2],
and Magic[3], but it lacks a full programming capability of a
scripting language. It discourages deeper exploration to the
system underlying functionality. Not only the code is hard to
reuse, but also rapid prototyping of a new algorithm is im-
possible. A new algorithm may still take years to develop,
which has to start from scratch and struggles between vari-
ous formats. In this paper, we study and address how to eas-
ily integrate those application program interface(API)’s into
most popular scripting languages such as Tcl[4] and Perl[5].
This enables a full scripting or programming language capa-
bility into a tool, and most important of all, any tool can be
inter-operated over a uniform platform on an API level. Rapid
prototyping of a new algorithm thus becomes much easier
and faster. It also promotes software reuse. Many existing
extension packages for the scripting languages can be there-
fore integrated such as Tk[4] for graphic user interface(GUI),
and CPAN collection[6] for various Perl applications. From
a standpoint of high software quality, this approach also pro-
vides a very good vehicle for comprehensive testing of each
API in an EDA tool.

1 Introduction
Scripting languages such as Perl and Tcl[7] are well-suited

for a high level programming job and system integration. The
code required for a same task is usually less by a factor of
5 to 10X [7] compared with a system programming language
such as C/C++ or Java. However, it is not efficient or opti-
mal for performance oriented task, for which the traditional
system programming languages can work very well. One ap-
proach naturally combines a scripting language at the top and
uses the dedicated and optimized algorithm engine from sys-
tem programming languages for the underlying structure. This
approach is very powerful, flexible, and easy for scripting or
rapid prototyping of an application system. For EDA tools, as
they are often characterized as an efficient core engine opti-
mized for performance based on a system programming lan-

guage, it lacks the ability to integrate with the other existing
systems, or has a poor programming, scripting or customiza-
tion capability. We propose an approach to fast linking EDA
tools with scripting languages using an interface wrapper gen-
erator. A possible system configuration may be as shown in
Fig.1, where a scripting language is used to integrate or ”glue”

Interface
Wrapper

Interface
Wrapper

Interface
Wrapper

Scripting Language(e.g. Perl or Tcl)

Interface
Wrapper

Database
Modeling
Numerical

Interactive Use or Scripts

GUI

EDA Engine

Figure 1: Tools Integration by a Scripting Language

tools together, providing a full programming capability to end
users. All the pieces of tools are dynamic loadable, which
means that one can choose components based on the task need,
and tool vendors can develop their own application system in-
dependently and hook it up later, or even create revision with-
out affecting the system integrity.

Scripting capability is usually important for major EDA
tools. Commercial tools usually adopt a dialect of some pop-
ular language such as Skill for Silicon Ensemble[8], Scheme
for Apollo II[9], or Tcl for Design Compiler[10]. It provides
API’s access to automate a design job. However, many tools
just adopt a simple and original interactive shell, which is nei-
ther extensible nor flexible and not easy to program. Besides,
a specific scripting language may be another stopping factor
for a user to further explore the tool, just because there is a
long learning curve for a new programming language.

Rapid prototyping and reuse of software components are a
key to software productivity. Many high level algorithms are
not even possible without the underlying database and sup-
porting routines available. It is thus desirable that an EDA tool
developer can implement a new algorithm efficiently by lever-
aging existing software components. Scripting languages can
bridge the gap by providing a full programming environment
and linking with existing tools from a higher level of language
description without any compilation.

EDA tools have been lack of interoperability for a long
time. There are several methods to communicate between two
programs or working processes. Consider a delay calculator
and a Verilog simulator as an example, which is shown in Fig.
2. The delay calculator will send delay data back to the Ver-

Delay Calculator Verilog Simulator

Internal
data structure

Server−Client
mode

API API
SDF

PLI

Script Language

Figure 2: Two Communicating Processes

ilog simulator. There are several approaches to exchange data:

Text/Binary File The first approach uses some specific for-
mat to exchange data through normal OS files, for exam-
ple, using standard delay format(SDF) to exchange delay
data. This approach has serious drawbacks:

1. Extra dumping of data into the specific format and
parsing of that format are required,

2. The input and output formats between two tools can
be very possibly mismatched or misrepresented,
i.e., format compatibility problem,

3. The input or output formats are thus fixed without
any flexibility to change unless any further post pro-
cessing is performed,

From a high productivity point of view, it is not desir-
able to learn too many formal programming languages
for a designer. It is not uncommon that a designer may
have to know at least a dozen of programming/scripting
languages and formats to do a good job just for using var-
ious EDA tools, and a dozen of supporting scripts may be
required to transform formats between different tools.

Programming Language Interface The second approach
uses a set of programming language interface(PLI)’s to
communicate with each other. The delay calculator will

provide service routines, linked to a host, the Verilog sim-
ulator, through these PLIs. One has to be very careful
about data types and usage details of PLIs to make it work
smoothly. It requires a separate linking pass to make it an
executable simulator, resulting in a very time-consuming,
non-extensible, and inflexible solution.

Client-Server Mode The third approach uses a client-server
mode. For example, the delay calculator runs as a server
waiting for the Verilog simulator to input information and
feedbacks with delay data. It requires a detailed set of
communication protocol to make this feasible. It is very
time-consuming to implement and verify the complicated
communication protocol. It seems that EDA tools seldom
take this approach.

Direct Access of Internal Data Structure The fourth ap-
proach uses internal data access. This is the most efficient
one. However, due to data abstraction and code consis-
tency, and different tool providers, it is almost against all
the software engineering principles. It is not only diffi-
cult to maintain, but also easy to crash a whole system.

API Access through a General Scripting LanguageWe
therefore propose that all the design tasks can be inte-
grated onto a uniform platform to reduce the text/binary
file exchange, and the end users can access some of the
APIs to do customization to fit their need using most pop-
ular scripting languages such as Perl or Tcl. The develop-
ment time can be much reduced. Each component can be
hooked up to that platform dynamically under the control
of a script to complete a design task.

Comprehensive testing of a software routine is generally
very difficult and time-consuming. The common testing ap-
proach is based on an outer input and output pair. It can not
handle finer grain testing for any specific API. However, with
the integrated APIs in the scripting language, a tool developer
can design a set of very dedicated scripts to test each API and
does not have to compile another testing programs to inter-
vene with the production code. A series of regression tests for
the API can thus be easily created to guarantee high software
quality.

In general, integrating APIs into a popular scripting lan-
guage is not very straight-forward. Frequently, there are lots
of extra work required to make the interface self-consistent.
We emphasize the minimal extra coding to link a set of APIs
into a scripting language, and provide some approaches to eas-
ing the integration work. SWIG[11] was designed to automat-
ically generate the wrapper functions. It can reduce most of
routine jobs into some simple configuration and generate the
required codes to bridge the gap.

In this paper, we study and address techniques using SWIG
and some simple scripts to interface and link the features or
functions that an EDA tool may have to most popular script
languages such as Tcl and Perl. These two tools have been ex-
tensively used in the design community for a long time due to

its powerful scripting capability, popularity, and extensibility.
Both can process a simple text file very efficiently without the
tedium to program a full parser and a lexical analyzer. We will
show how to integrate Tcl and Perl interfaces to a logic syn-
thesis system Sis[1]. We will first introduce briefly the SWIG
functionality. It is followed by various techniques used in our
case study. We conclude by interface design consideration and
propose for future work.

2 Review of an Interface Generator
SWIG[11], standing for simplified wrapper and interface

generator, is a tool to generate the necessary wrapper func-
tions for C/C++ codes to interface with scripting languages.
It can generate wrapper codes used to translate data types to
fit the interface needs, including input and output arguments
for a C/C++ function. Moreover, it can generate data struc-
ture access routines to read or write C/C++ structures, vari-
ables or objects. The following is an simple example to show
sis script.i for the SWIG input configuration file.

%module sis_script
%{
#include "sis.h"
static network_t *current_network=NULL;
%}
network_t *current_network;
char *network_name(network_t *network);
void network_set_name(network_t *network,

char *name);
%init %{
init_sis(0);
%}

One can run SWIG for linking with Tcl by

swig -tcl sis_script.i

A wrapper C file, sis script wrap.c will be generated,
which includes a write function,current network set and
a read function,current network get to access variable
current network . network name will be wrapped up as a
command in Tcl with one input variable, and it will return
one string. Also,network set name will be wrapped up as a
command in Tcl with two input variables. Tcl will initialize
the code according to%init section. After invokingtclsh ,

load ./sis_script.so
network_set_name "a_new_name"
puts [network_name [current_network_get]]

can be used to load the dynamic module ofsis script and
start to work.

Note the same file can be used to generate Perl interface by

swig -perl5 sis_script.i

After linking with related library, one can access it by

use sis_script;
package sis_script;
network_set_name("a_new_name");
print network_name($current_network);

SWIG provides rich features to support interface and data
type mapping functions plus many examples to show how to
handle each case. It also supports linking with Python and
Guile[11].

3 Interface Building for Tcl and Perl
In the rest of this paper, we will discuss the techniques re-

quired to link Sis APIs into Tcl or Perl. Most of the interface
code can be generated by SWIG, but there are still some fea-
tures in EDA tools requiring special care as in the following
discussion.
3.1 Using Existing Command Dispatcher

For Sis, there is a default command dispatcher
com dispatch with an interface

void com_dispatch(network_t* network,
int argc, char* argv[]);

. In this case, we can leverage this interface by wrapping it
with another routine for Tcl such as:

%{
static int _tcl_dispatch(ClientData clientData,

Tcl_Interp *interp, int argc, char *argv[]){
com_dispatch(¤t_network, argc, argv);
return TCL_OK;

}
%}

, and for Perl as:

%{
XS(_perl_dispatch) {

char ** _arg0;
dXSARGS ;
int i;
_arg0 = (char **)malloc((items+1)*

sizeof(char *));
_arg0[0]=GvNAME(CvGV(cv));
for (i = 1; i < items+1; i++) {

_arg0[i] = (char *) SvPV(ST(i-1),na);
}
com_dispatch(¤t_network,items+1,

_arg0);
free(_arg0);
XSRETURN(0);

}
%}

whereGvNAME(CvGV(cv)) can fetch the command Perl is just
issuing.

We still have to register those commands in the command
table when Tcl initializes:

%init %{
avl_foreach_item(command_table, gen,

AVL_FORWARD, &key, NIL(char *)){
Tcl_CreateCommand(interp, key,

_tcl_dispatch,(ClientData)NULL,
(Tcl_CmdDeleteProc *) NULL);

}
%}

or when Perl initializes:

%init %{
char buf[4096];
avl_foreach_item(command_table, gen,

AVL_FORWARD, &key, NIL(char *)){
sprintf(buf,"sis_script::%s",key);
newXS(buf, _perl_dispatch, file);

}
%}

With this translation, we can port the Sis command set into
a Tcl dynamic extension library or a Perl package within 5
minuates of work. It is amazing that the original Sis script can
run in Tcl without any modification. For example, an original
script script.rugged as shown below can run without any
syntax modification:

sweep; eliminate -1
simplify -m nocomp
eliminate -1
sweep; eliminate 5
simplify -m nocomp
resub -a
fx
resub -a; sweep
eliminate -1; sweep
full_simplify -m nocomp

or in Perl with minor syntax differences:

use sis_script;
package sis_script;
sweep; eliminate -1;
simplify ’-m’,nocomp;
eliminate -1;
sweep; eliminate 5;
simplify ’-m’,nocomp;
resub ’-a’;
fx;
resub ’-a’; sweep;
eliminate -1; sweep;
full_simplify ’-m’,nocomp;

3.2 Information Extraction
The rich regular expression operations from Tcl or Perl can

be used to extract run-time information for adaptively control
based on the progress of optimization, for example, in Tcl:

proc get_map_result {} {
set result [get_output\

{map -s -n 1 -c 0}]
regexp \

{total neg slack:\s*\(([\d.-]+),([\d.-]+)}\
$result dummy rise_slack fall_slack

return [expr $rise_slack+$fall_slack]
}
set slack -10000000
while 1 {

source script.algebraic
set old_slack $slack
set slack [get_map_result]
puts "Slack=$slack"
if {$old_slack > $slack + 40} break

}

or in Perl:

sub get_map_result{
my $result=get_output

’&sis_script::map("-s","-n",1,"-c",0)’;
my ($rise_slack,$fall_slack)=

($result =˜
/total neg slack:\s*\(([\d.-]+),([\d.-]+)/o);

return ($rise_slack+$fall_slack)/2;
}
$slack=-10000000;
while(1){

require "script.algebraic.pl";
$old_slack=$slack;
$slack=get_map_result();
print "Slack=$slack\n";
if($old_slack > $slack + 40){ last;}

}

The functionget map result is used to extract the total
slack information. We implement a very useful output redirec-
tion routineget output to catch the information from stan-
dard output and standard error. With the powerful regular ex-
pression operations from Perl or Tcl, one can extract any infor-
mation from an API’s output. This reduces the complexity to
understand each detail inside the C/C++ data structure. Also,
it is a crucial technique for black-box testing. For example,
one can test a functionAPI in test in Tcl as

set output [get_output ’API_in_test $args’ errlog]
if {regexp -nocase error $errlog} {

puts "Testing of API_in_test fails!"
} else {

puts "OK!"
}

3.3 Object Oriented Interface
Basically, SWIG provides some mechanism to assist this

process. Note that even a pure C code can be translated into
object-oriented style interface in scripting languages. Some

macro definitions may be required to tune the data type and
API’s name. %nameand$rename are supported in SWIG to
change names.

Creation of an object interface requires some extra work in
SWIG. First, we have to configure some declarations for an
object in the SWIG configuration file. For example,network
object is specified as:

typedef struct{ }network;
typedef network network_t;
%addmethods network{

network(network_t *default=NULL);
˜network();
node_t* find_node(char *name);
int num_pi();

}

Using this, SWIG will setnew network for the object con-
structor,delete network for the object destructor, and adds
a prefixnetwork for the other member functions in C/C++.
Note thattypedef network network t can create an equiv-
alent data type class in SWIG. For Tcl, one can thus create a
network object as:

set network [network -this [current_network_get]]

, delete an network object by

rename $network {}

, or call a member functionfind node by

$network find_node "input_node1"

For Perl, one can create a network object as:

$network=new network($current_network);

, delete an network object by

$network->DESTORY();

, or call a member functionfind node by

$network->find_node "input_node1";

Note that one has to turn on-shadow in SWIG to generate the
object oriented interface for Perl.
3.4 Translation of Foreach Style Construct

There are often some macros that will traverse some data
structures to examine each object. This saves extra memory to
build a pointer array. For example, in Tcl, one can use

foreach_node n $network {
puts -nonewline \

"Node [node_name $n] has fanin: "
foreach_fanin p $n {

puts -nonewline "[node_name $p] "
}
puts ""

}

to dump all the fanin of a node in$network .
The implementation offoreach node command is very

similar to the commandwhile implementation in Tcl[4]. Al-
though this implementation is quite complex, SWIG support
a full C preprocessor capability. It can be used as a simple
template generator to handle this type of macros.

For Perl, unfortunately, there is no corresponding syntax
construct that can emulate this macro. One has to implement
a function to return a list consisting of all the nodes in the
network.

3.5 Callback Function
It is a common practice that one has to implement some

customized callback functions once an event has been trig-
gered. The user has to register the callback functions before
starting the process. However, since the callback function
should be registered as a C/C++ function, we have to use a
technique to pre-register it with some general callback func-
tion. It can be achieved by pre-registering a specific callback
function in C and useeval command of Tcl to implement a
callback function for Tcl, for example, we register a node al-
location daemon in SWIG configuration file as

%init %{
node_register_daemon(DAEMON_ALLOC,

node_ALLOC_daemon);
%}

wherenode ALLOC daemon is implemented as:

static char *callback_function;
%{
static Tcl_Interp *stored_interp;
static char *callback_function=NULL;
void node_ALLOC_daemon(node_t *node){

char cmd[1024];
if(callback_function){

SWIG_MakePtr(stored_interp->result,
(void *)node,"_node_t_p");

sprintf(cmd,"%s %s",callback_function,
stored_interp->result);

Tcl_Eval(stored_interp,cmd);
}

}
%}

where SWIG MakePtr is a wrapper function to convert a
pointer in C to Tcl representation, andTcl Eval is the C API
for eval command in Tcl. The callback function can now be
used in Tcl directly by:

set callback_function "processing_node_alloc"
proc processing_node_alloc {node} {

do something here for $node
}

There is a corresponding implementation in Perl as well[12].

3.6 Data Type Override in Scripting Language
For SWIG implementation, it encodes a pointer into a

string with its hex address attached with datatype. However,
in some situation, it may require a type transformation. It can
be done in Tcl as

regsub {ˆ(_[0-9a-f]+)_.*$} $old_ptr\
"\\1_$new_datatype" $new_ptr

or in Perl, due to SWIG’s implementation, as

bless $old_ptr,$new_datatype;

3.7 Namespace Confliction
Since each module is developed independently, it is easy

to have name conflictions when linking all modules together.
Tcl has a command supportingnamespace along with a SWIG
switch -namespace . Perl supportspackage directive and
Exporter class to avoid this problems[5].

Some C dynamic library may have name collisions as well.
It can be solved by linking each package with-Bsymbolic
switch or conservatively with-Bstatic .
3.8 Memory Management

In general, the user must be responsible for releasing un-
used memory. However, it is possible to set up a variable trace
command in Tcl to automatically delete a local object:

trace variable $obj u delete_obj
proc delete_obj {name1 name2 op} {

rename $name1 {}
}

For Perl, with-shadow switch, SWIG can emulate an object
behavior naturally, the local variable is thus destroyed auto-
matically by Perl’s scoping mechanism.
3.9 Variable Trace

For common data types such as int, double, and string,
SWIG can implement trace capacibility. That is to say, a Tcl
variable will be created to follow the value changes in C/C++
code. However, for pointer types, SWIG will create read and
write routines for each variable for Tcl. There are some tricky
implementation techniques to usetrace command to tie a Tcl
variable and C/C++ variable together.

For Perl, SWIG uses a technique to tie the variable with
associated access routines, so it is transparent to the user.
3.10 API Document Generation

SWIG supports document generation by extracting infor-
mation from the interface configuration file. If some document
is embedded in the C/C++ code as some comments around an
API, it can be extracted and organized as a html or latex doc-
ument.

4 Interface Design Consideration
The interface design is in general an art instead of allowing

an exact analysis. It may require the interface to look like the
original interface in C/C++ ; meanwhile, it must have some
handy features in the scripting language such as list or hash
data structures. Some helper functions in the scripting lan-
guage may be needed to have an object interface.

4.1 Selective API Export
Although SWIG eases the job of interface creation, it may

not be necessary to export every routine and data structure to
the scripting language. However, it should provide complete
functionality to access the core data structure. SWIG may also
generate a large chunk of interface code to link with. It is
possible to reduce the object code size by stripping out the
debug information.
4.2 Efficieny Issues

The efficiency issue is the major drawbacks for a script-
ing language. The wrapper and data types mapping function
can create a lot of overhead for data transformation plus the
memory management overhead to hold the data temporarily.
However, as the technology for scripting language improves,
and speed and memory space increase for modern computers,
it still allows interactive use, and more and more users are
turning to use them, because of their ease of use and a rich set
of application extensions.

This interface can speed up a new alogrithm development a
lot. The efficiency of the algorithm can be improved by rewrit-
ing scripting language subroutines into a C/C++ code without
changing the calling convention on the higher level.

5 Conclusion and Future Work
We study how to integrate APIs of an EDA tool to the most

popular and powerful scripting languages, providing an exam-
ple to show the techniques to smooth and efficient integration.

Since all the features that an EDA tool might have for link-
ing with a scripting language have been identified and solved
above, we plan to create Tcl or Perl interfaces with this ap-
proach for more public modain EDA packages. They will be
available at our web site[] in the near future.

References
[1] E. M. Sentovich and etc. “SIS: A System for Sequen-

tial Circuit Synthesis”.Electronics Research Laboratory
Memo. No. ERL/UCB M92/41, May 1992.

[2] A. Aziz and etc. “VIS User’s Manual”. http://www-
cad.eecs.berkeley.edu/Respep/Research/vis/index.html.

[3] “Magic - A VLSI Layout System”.
http://www.research.digital.com/wrl/projects/magic/
magic.html.

[4] J. K. Ousterhout.“Tcl and the Tk Toolkit”. Addison-
Wesley, 1994.

[5] L. Wall, T. Christiansen, and R. Schwartz.“Program-
ming Perl”. O’Reilly and Assoicates, 1996.

[6] http://www.cpan.org.

[7] J. K. Ousterhout. “Scripting::Higher Level Programming
for the 21st Century”.IEEE Computer magazine, Mar.
1998.

[8] http://www.cadence.com.

[9] http://www.avanticorp.com.

[10] http://www.synopsys.com.

[11] “Simplified Wrapper and Interface Generator”.
http://www.swig.org.

[12] D. M. Beazley, D. Fletcher, and D. Dumont. “Perl Ex-
tension Building with SWIG”.O’Reilly Perl Conference
2.0, pages 17–20, Aug. 1998.

