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ABSTRACT
While a number of recent works address large-scale standard-cell
placement, they typically assume that all macros are fixed. Floor-
planning techniques are very good at handling macros, but do not
scale to hundreds of thousands of placeable objects. Therefore we
combine floorplanning techniques with placement techniques in a
design flow that solves the more general placement problem. Our
work shows how to place macros consistently with large numbers
of small standard cells. Our techniques can also be used to guide
circuit designers who prefer to place macros by hand.

The proposed flow relies on an arbitrary black-box standard-
cell placer to obtain an initial placement and then removes pos-
sible overlaps using a fixed-outline floorplanner. This results in
valid placements for macros, which are considered fixed. Remain-
ing standard cells are then placed by another call to the standard-
cell placer. Empirical evaluation on ibm benchmarks shows, in
most cases, wirelength improvements of 10%-50% compared to
Cadence QPlace, as well as runtime improvements.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids – Layout, Placement and
Routing

General Terms
Algorithms, Design

1. INTRODUCTION
During the last few decades, academia and industry have in-

vested considerable effort in research on Physical Design for VLSI
[15]. Through the integration of multiple optimization techniques,
design methods and high-performance CAD software for integrated
circuits (ICs) were developed. However, the ever-increasing size of
ICs lead to frequent changes to common design flows. Recently,
design reuse was introduced as a way to (i) tame the complex-
ity of circuit design for deep submicron technologies, and (ii) im-
prove time-to-market. This trend is further accelerated with the
use of hardware description languages and high-level synthesis. In-
deed, several current industrial initiatives provide infrastructure and
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training for the reuse of Intellectual Property (IP), and also facili-
tate business models based on IP reuse.

Reuse of design IP is important for multi-million-gate ASICs
and considered an integral part of the System-On-Chip (SOC) de-
sign style, is critical for graphics cards, communication chips, etc.
Design IP blocks may implement algorithms or signal transforms,
and may contain “canned” table look-ups or embedded RAM.

During Physical Design, IP design blocks appear as black-box
macros, i.e., blocks of logics with known function, geometric and
electrical properties, but no structural description of their inner
workings. Such macros may or may not be flexible, but in any case
are considered parts of design. Unfortunately, reusing black-box
macros in Physical Design still remains a challenge and existing
commercial tools often require help from human designers. For ex-
ample, the Cadence QPlace manual [4] mentions that the addition
of macros may slow down otherwise fairly efficient placement of
standard cells and the results may be inferior to what human design-
ers can achieve. In classical Physical Design flows a circuit is first
partitioned, then floorplanned, and finally, standard-cell placement
is applied to the partitions. This was necessary primarily because
older placers, e.g., those based on Simulated Annealing, did not
scale very well. However the scalability of min-cut placers dramat-
ically improved [5] after the multi-level partitioning breakthrough
in 1997 [2, 11]. In addition to having near-linear runtime, plac-
ers based on recursive bisection perform circuit partitioning and, if
the cutlines are allowed to move, also perform floorplaning. Yet,
macro-placement is not supported in these placers, mainly because
large macros, that contain more than several percent of layout area,
introduce considerable discreteness in the solution space and may
be difficult to handle within standard recursive min-cut bisection.

The main contribution of this paper is a methodology to place
designs with numerous macros by combining floorplanning and
standard-cell techniques. The proposed design flow is as follows:

� An arbitrary black-box (no access to source code required)
standard-cell placer generates an initial placement.

� To remove overlaps between macros, a physical clustering
algorithm constructs a fixed-outline floorplanning instance.

� A fixed-outline floorplanner [1], improved to minimize wire-
length, generates valid locations of macros.

� With macros considered fixed, the black-box standard-cell
placer is called again to place small cells.

This design flow provides a somewhat new “killer-application”
for the many floorplanning techniques developed in the last five
years, e.g., [12]. Indeed, we do not insist on using a particular
floorplan representation, but rather emphasize floorplanning as a
step in large-scale placement with macros.



We notice that existing academic placers Capo [5], Dragon 2000
[18], Feng Shui[19] and Spade [9] cannot process movable macros.
In fact, all macros are removed in the placement benchmarks de-
scribed in [18] (produced from the ISPD 98 circuit benchmarks),
and all cells are artificially made 1-by-1. Therefore, we derived new
placement benchmarks from the same circuits, preserving macros
and the areas of all cells. Using those benchmarks, we compared
the performance of our methods to a major commercial placer.

The remaining part of the paper is organized as follows. Section
2 covers previous work relevant to fixed-outline floorplanning. It
also introduces our contributions in wirelength minimization and
the handling of soft blocks. A new design flow for macro placement
is proposed in Section 3. Section 4 presents empirical validation of
our work, and future directions are discussed in Section 5.
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Figure 1: In figure (a) X-slack of blocks B and C is shown by the solid
arrow. In figure (b) blocks with zero Y-slack are shown. They lie on a
“critical path” marked with arrows.

2. FIXED-OUTLINE FLOORPLANNING

2.1 Previous Work
A typical floorplanning formulation includes a set of blocks, that

may represent circuit partitions in applications. Each block is cha-
racterized by area (typically fixed) and shape-type, e.g., fixed rect-
angle, rectangle with varying aspect ratio, etc. Multiple aspect ra-
tios can be implied by an IP block available in several shapes as
well as by a hierarchical partitioning-driven design flow for ASICs
[15, 10] where only the number of standard cells in a block (and
thus the total area) is known in advance. A solution to such a
problem, i.e., a floorplan, specifies a selection of block shapes and
overlap-free placements of blocks. Classical floorplanning mini-
mizes a linear combination of area and wirelength. Among mea-
sures of circuit wirelength, the popularity of Half-Perimeter Wire-
length (HPWL) function is due to its simplicity and relative accu-
racy before routing is performed. The HPWL objective gained rel-
evance with the advent of multi-layer over-the-cell routing, where
more nets are routed with shortest paths [10]. In floorplanners
based on Simulated Annealing (e.g., with the Sequence Pair repre-
sentation [14]) the typical choice of moves is fairly straightforward.

As pointed out in [10, 5], modern hierarchical ASIC design flows
based on multi-layer over-the-cell routing naturally imply fixed-
die placement and floorplanning, rather than the older variable-die
style [15], associated with channel routing, two layers of metal and
feedthroughs. In such a flow, each top-down step may start with
a floorplan of prescribed aspect ratio and with blocks of bounded
(but not fixed) aspect ratios. The modern floorplanning formulation
proposed in [10] is an inside-out version of the classical outline-
free floorplanning formulation — the aspect ratio of the floorplan
is fixed, but the aspect ratios of the blocks may vary.

Fixed-outline floorplanning can be performed using Simulated
Annealing, taking advantage of new types of moves that are based
on the notion of floorplan slack [1]. As illustrated in Figure 1 (a),

slack of a block in a floorplanning instance represents the distance
(in a particular dimension) at which this block can be moved with-
out changing the outline of the floorplan. Blocks with zero slack in
the Y dimension are shown in Figure 1 (b). Such blocks must lie
on critical paths in the relevant constraint graph.

Slacks can be computed with any floorplan representation that
can be evaluated left-to-right and right-to-left. Once the X-size of
the floorplan is computed by packing left-to-right, one can re-pack
it right-to-left. The slack of a given block in a given dimension
is the difference between the block’s locations produced by those
two packings. The floorplanner Parquet [1] uses the Sequence Pair
representation [14] because of its simplicity.

Once slacks are known, they can be used in move selection. The
rationale here is to reduce the floorplan size in a given dimension
(X or Y) without impairing the hill-climbing abilities of Simulated
Annealing. The new mechanism is combined with pair-wise swaps
and block rotations that are typically used in Sequence-Pair based
annealers. Observe that if a move (such as pairwise swap) does
not involve at least one block with zero slack in a given dimension,
then the floorplan size in that dimension cannot decrease after the
move. This is because such a move cannot improve critical paths
or, equivalently, longest common subsequences [16, 17]. Therefore
move selection is biased towards blocks having zero slack in at least
one dimension. Of those blocks, the ones with large slack in the
other dimension are often good candidates for single-block moves,
such as rotations and gradual (discrete or continuous) changes of
aspect ratio. Blocks with two zero slacks, especially small blocks,
are good candidates for a new type of move, in which a block is
moved simultaneously in both sequence pairs to become a neighbor
of another block (in both sequences, and, thus in placement). One
possible heuristic is to move a critical block C next to a block L
with as large a slack as possible, since large slacks imply that white
space can be created around L.
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Figure 2: Snap-shots from fixed-outline floorplanning. The number
of annealing moves is fixed, but if the evolving floorplan fits within the
required fixed-outline, annealing is stopped earlier. If at the end of
annealing the fixed-outline constraints are not satisfied, it is considered
a failure and a fresh attempt is made.

Figure 2 shows the evolution of the fixed-outline floorplan during
Simulated Annealing with slack-based moves. The scheme works
as follows. At regular time intervals (during area-minimizing Sim-
ulated Annealing) the current aspect ratio is compared to the aspect
ratio of the desired outline. If the two are sufficiently different, then
the slack-based moves described earlier are applied to bias the cur-
rent aspect ratio in the needed direction. For example, if the width
needs to be reduced, then choose the blocks in the floorplan with
smallest slack in the X dimension and insert them above or below



the blocks with largest slack in the Y dimension. These moves have
better chances of reducing the area and improving the aspect ratio
of the current floorplan at the same time. Using such repeated cor-
rections, the structure of the floorplan is biased towards the aspect
ratio of the fixed outline.

While a number of works on floorplanning discuss floorplan con-
straints, the results in [1] empirically demonstrate high ratios of
successes to failures in the flow from Figure 2.

2.2 Wirelength Minimization
In fixed-outline floorplanning, the global objective is to min-

imize the wirelength of the design subject to fixed-outline con-
straints. In our floorplanner we use a linear combination of area and
HPWL to evaluate annealer moves. The area term is normalized by
the total area of all blocks, and the wirelength term is normalized
by the current wirelength of the floorplan at every move.

Additional moves are designed to improve the wirelength. For a
given block a, we calculate, using analytical techniques, its “ideal”
location that would minimize quadratic wirelength of its incident
wires.1 We then identify the block b closest to that location and
attempt to move a in the sequence pair so that in both sequences it
is located next to b. We evaluate the four possible ways to do that,
and choose the best. The following example illustrates moving a
block close to another by manipulating the sequence pair.

Example: Consider the five-block sequence pair ��� a � b � c � d � e �
� c � a � d � e � b ��� . We wish to move block e close to block a in the
floorplan. This can be done in four ways:� � a � e � b � c � d ����� c � a � e � d � b � (e is to the right of a)� � e � a � b � c � d ����� c � e � a � d � b � (e is to the left of a)� � a � e � b � c � d ����� c � e � a � d � b � (e is below a)� � e � a � b � c � d ����� c � a � e � d � b � (e is above a)

Another type of move attempts to minimize both the floorplan
size and wirelength objectives at the same time. Find a block b clos-
est to the ideal location of the chosen block a such that the block
b has large slack in at least one dimension. Depending on whether
b has a large slack in the X-dimension or in the Y-dimension, we
place a with a horizontal relation or a vertical constraint relative to
b, respectively. Empirical measurements confirm that adding the
proposed move types improves final floorplans.

2.3 Handling Soft Blocks
We also added slack-based move types to change aspect ratios of

soft blocks. During annealing, at regular intervals, a block with low
(preferably zero) slack in one dimension and high slack in the other
dimension are chosen. The height and the width of such a block is
changed within allowable limits so that its size in the dimension of
smaller slack is reduced (to increase the slack). Such moves are
greedily applied to all soft blocks in the design.

3. MACRO PLACEMENT FLOW
Our proposed flow requires a black-box standard-cell placer that

can place cells of equal height in rows that consist of cell sites,
along the lines of the datamodel implied by Cadence LEF/DEF. We
also require that the placer can handle fixed cells/pins and can han-
dle rows consisting of contiguous subrows. By removing cell sites
from a subrow and splitting the subrow into two subrows, one can
model the effect of fixed macros (because pins of fixed macros are
fixed as well). For example, the site map in Figure 3 corresponds
to the placement in Figure 6 (c). Our flow also uses a fixed-outline
floorplanner, of the type described above. A variety of floorplan
representations can be used.
1Analytical techniques are used because they are fast and easy to
implement.
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Figure 3: Map of cell sites for the ibm02 design with all the macros
marked as fixed. Sites under the macros are removed.

3.1 Shredding Macro Cells
The DOMINO detailed placer [8] introduced the idea of shred-

ding big cells to simplify placement. To apply this technique in
global placement, one must additionally handle cell orientations
and remove cell overlaps (other than by left-to-right packing).

Our flow starts with a pre-processing step at which all macros
are shredded into a number of smaller cells of minimal height. The
number of these cells is determined by the area of the macro and
the width of sub-cells. A macro shredded into sub-cells is shown
in Figure 4. A sub-cell with row index i and column index j may
be identified as ai � j , and its immediate neighbors are ai � 1 � j , ai � 1 � j ,
ai � j � 1 and ai � j � 1 . Fake two-pin nets are added between neighbor-
ing sub-cells to ensure that sub-cells are placed close to each other
when wirelength is minimized. The number of fake nets added be-
tween each pair of sub-cells determine how strongly the sub-cells
are tied to each other. The total number of faked wires depends on
the width of sub-cells. A cleverly implemented placer could handle
the faked wires implicitly, e.g., using net weights. In any case, a
large-scale global placer with near-linear runtime (e.g., a fast min-
cut placer) should be able to handle the increased number of wires.
The Capo placer [5] we use is scalable enough.
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case:
Va 	 Vr 
 : orient = N
Va � Vr 
 : orient = S
Va � Vr 	 : orient = W
Va 
 Vr � : orient = E
Va 	 Vr � : orient = FN
Va � Vr � : orient = FS
Va 
 Vr 	 : orient = FW
Va � Vr � : orient = FE
end case;
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Figure 4: A macro is shredded into cells of minimal height, connected
by fake wires. To find the orientation of the macro from locations of
sub-cells, the relative locations of sub-cells ai  j , ai � 1  j and ai  j � 1 are an-
alyzed for every eligible � i � j � . Figure (b) shows the case analysis in
terms of vectors Va and Vr in final placement. “F” stands for “flipped”.

The resulting placement does not immediately imply the loca-
tions of the original macros, because the macros are shredded. The
center-location of a given macro is determined by averaging the lo-
cations all sub-cells of that macro. Additionally, we developed a
heuristic to determine the orientation of the macro. The heuristic is



based on the relative placement of each cell with respect to its im-
mediate neighbors. Namely, the placement of sub-cell ai � j is com-
pared with the placements of ai � 1 � j and ai � j � 1. This is illustrated in
Figure 4, where two vectors are computed for a given cell and then
analyzed to produce one of eight possible orientation types. For
each macro, a score table is maintained which records the number
of sub-cells placed in a particular orientation. The orientation of
the macro is chosen according to the highest score (if several ori-
entations have comparably high scores, then we cannot conclude
the orientation with certainty). The rationale is that the extra nets
added while shredding will, in many cases, help the macro to ap-
proximately maintain its shape. Thus, a crude placement (with
orientations) is obtained by placing the shredded design. Since
the standard cells were placed by using wirelength-minimization,
highly connected cells will be close to each other, but macros may
overlap with each other and may not be placed entirely inside the
layout region. Figure 6 (a) shows the placement of the ibm02 cir-
cuit produced as explained above.

While our technique allows one to deduce the prevailing orien-
tation of a macro or observe that there is no prevailing orientation,
some macros may only be placeable in one orientation. Such a
constraint can be ensured by tying the corners of the macro (i.e.,
the respective sub-cells after shredding) to the corners of the lay-
out by strong (heavy) faked wires, as shown in Figures 5 (a) and
(b). During the minimization of HPWL, e.g., by recursive min-cut
bisection, the orientation of the macro will be preserved, and the
quality of placement will not be affected. A formalization follows.
Lemma: Placements that minimize HPWL in the original design
subject to orientation constraints are in a one-to-one correspon-
dence with unconstrained placements that minimize HPWL, in-
cluding the fake wires that tie the corners of macros to the corners
of the layout region (assuming sufficiently strong wires).

The proof of the lemma is summarized in Figure 5. Note that
this result does not apply to quadratic placement, and in that case
all tied macros will be attracted to the center of the layout.
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Orientation : N
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(c)

(e)(d)
HPWL = 2(W+H)−2h+2w

(f)

Orientation : W
HPWL = 2(W+H)+(w+h)

HPWL = 2(W+H)−2(w+h)
Orientation : N

HPWL = 2(W+H)−2(w+h) HPWL = 2(W+H)−2w+2h

HPWL = 2(W+H+w+h)

Figure 5: Five out of eight orientations of a macro whose corners are
tied to the corners of the layout region; the orientation is N in (a) and
(b). The [linear] length of faked wires depends only on the orientation
and not on the location of the macro, as long as the macro is placed
entirely within the layout region. The desired orientation (N in this
example) is found by wirelength minimization.

3.2 Physical Clustering
The crude placement obtained from the above step may have

overlapping macros as well as macros placed outside the layout
region (Figure 6 (a)). Such violations must be corrected without
increasing wirelength. This can, in principle, be done by fixed-
outline floorplanning, but the number of movable objects is unreal-
istically high (every standard cell is movable). We therefore con-
struct a fixed-outline floorplanning instance through physical clus-

tering based on locations of standard cells. Cells that are placed
together are merged into soft clusters (i.e., the aspect ratio may
vary). This is done by gridding the layout region and putting all the
standard cells that physically fall within a grid region into a cluster.
We recommend computing the dimensions of the grid based on the
number of standard cells and macros in the design. However, in
our experiments we used a grid of size 6 x 6 in order to speed up
floorplanning. This grid worked well for smaller benchmarks, but
appeared too coarse for larger benchmarks. The original macros are
not clustered to anything, and their aspect ratio is allowed to change
just as in the original placement formulation. For each cluster, the
nets connecting only blocks within the cluster are discarded.

Since the design has been initially placed with small wirelength,
the generated clusters contain strongly connected cells. Alterna-
tively, one could use connectivity-based clustering algorithms [2,
11]. We believe that our physical clustering based on the initial
placement accounts for both netlist connectivity and the shapes of
macros. The initial placement is additionally used to construct an
initial floorplan for Simulated Annealing. The blocks in this floor-
plan do not overlap, but may not fit into the desired outline.

3.3 Fixed-outline Floorplanning With Macros
As explained in Section 2.2, we extend the fixed-outline floor-

planner Parquet [1] to minimize wirelength and handle soft blocks.
This new version of Parquet is used to floorplan hard macros to-
gether with soft clusters of standard cells. The outline of the re-
quired floorplan is derived from the layout region and is used as a
constraint, with wirelength as the objective function. We configure
the floorplanner to make multiple tries until it satisfies the fixed-
outline constraint. In our experiments, the floorplanner typically
succeeded on the first try, but the ratio of successes to failures may
depend on the amount of whitespace in the design.

In our experiments the annealer found good floorplans where
some macros were moved from their locations in the initial floor-
plan (see Figure 6 (b)). We therefore believe that closely following
the initial floorplan is not necessary for wirelength minimization
and that the necessary information from the initial placement is
captured by the physical clustering. However, if other design con-
cerns encourage the preservation of macro placements, one could
use more incremental force-directed macro placers [13]. Alterna-
tively, one could tie those macros with faked wires to faked pins
placed in strategic locations.

3.4 Final Standard-cell Placement
With Fixed Macros

The final locations of the macros are taken from successful fixed-
outline floorplans, and the macros are fixed in the original layout.
All cell sites below the macros are removed, and cell rows may
need to be split into sub-rows. This enables the standard-cell placer
to place the remaining movable standard cells without overlaps
with the macros. In our experiments, we used the Capo min-cut
placer [5], followed by two passes of window-based branch-and-
bound placement.2 Figure 6 (c) shows the final placement gener-
ated by our proposed flow for the ibm02 design.4. RESULTS

Our proposed flow is implemented in C++ and compiled by g++
2.95.4 -O3. Runtimes are measured on a 1GHz PC/Intel sys-
tem runnning Linux. We compare our results against QPlace v.5.1.67
from Cadence, whose runtimes are measured on a 440 MHz Sun
Ultra-5 system running Solaris. The Sun workstation has a larger
cache, and the two hardware platforms are within a factor of two

2As the detailed placement step, we apply branch-and-bound end-
case placers [6] using sliding windows.
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Figure 6: Figure (a) is the placement (illegal) obtained after running Capo on ibm02 design with macros shredded into small cells. The locations
of macros are determined by averaging the locations of sub-cells. Note that macro B is not placed entirely within the layout region and overlaps
with macro A. Macro Z overlaps with smaller macros and standard cells. Figure (b) shows a possible final fixed-outline floorplan of the same design.
Macros are marked with M and clusters of standard cells with C. Aspect ratios of macros are fixed and those of cell clusters vary between 1/2 and 2.
Observe that the vertical coordinates of four (A, X, Y and Z) out of five large macros are similar to those in Figure (a). Figure(c) is the final placement
of ibm02. The locations of all macros are taken from the floorplan in Figure (b).

by overall performance.
The benchmarks used in our experiments are derived from the

ISPD-98 (IBM) circuit benchmarks [3]. We converted the netlists
into the Bookshelf placement format [7], added placement-related
information and made the new benchmarks available on the Web at
http://vlsicad.eecs.umich.edu/BK/ISPD02bench/
The original descriptions specify cell areas, but not their dimen-
sions. Since in the ibm benchmarks, all areas are divisible by 16,
we define rows of height 16. Cell sites in all rows have width 1.
Cell widths were computed by dividing cell areas by row height
(16). When the width of a cell exceeded a threshold number of
sites (100 in our case), we upgraded such a cell to the status of a
multi-row macro with aspect ratio 1. The height of such a macro
is computed by rounding the square-root of the area to the closest
integer multiple of row height (16). The width is computed by di-
viding cell area by cell height and rounding the result to the closest
integer number of cell sites. All designs have a whitespace of 15%
and their pads (marked in the original IBM netlists) were randomly
placed near the perimeter of the core area. We converted the newly
created benchmarks to the Cadence LEF/DEF format and applied
Cadence’s standard-cell placer QPlace to them.

Statistics for the new benchmarks are given in Table 1, together
with performance results of our flow with the Capo placer [5] and
a version of the Parquet fixed-outline floorplanner [1] improved to
minimize wirelength and handle soft blocks.3 We detail runtimes
of each step in our proposed design flow. The performance of the
industry placer QPlace is given in the same table for comparison.
Our flow improves wirelength by 10-50% on most benchmarks and
achieves better runtime.

The complexity of the problem increases with the number of
macros and their relative size. Indeed, QPlace timed out after twenty
four hours on benchmarks with many large macros, e.g., ibm04
and ibm09. We consider this a failure. According to Table 1, the
benchmarks with relatively large macros (ibm02, ibm03, ibm08
and ibm15) are difficult for QPlace.4

3The C++ source code of Parquet is available on the Web at
http://vlsicad.eecs.umich.edu/BK/parquet/
4QPlace can be easily improved by implementing our techniques.

In our flow the bottleneck is the fixed-outline floorplanning stage,
namely in the wirelength computation that is performed indepen-
dently for every move within the Simulated Annealing framework.
While the number of nets in large netlists is typically proportional
to the number of cells, many of those nets are not internal to phys-
ical clusters which serve as blocks during fixed-outline floorplan-
ning. In other words, physical clustering reduces the number of
movable objects much more than the number of nets.

For benchmarks ibm01, ibm17 and ibm18 Qplace, results are
superior to our flow in terms of runtime. We believe that this is
because the macros in these benchmarks are relatively small, and
a standard-cell may handle them well enough. On the other hand,
ibm17 and ibm18 are big enough to expose the coarseness of the
6x6 grid used in our experiments. Aside from increasing the grid
size, it is possible to extend Capo to handle small macros, and thus
entirely avoid running a floorplanner on those benchmarks.

5. CONCLUSIONS AND FUTURE WORK
Modern SoC designs entail placement instances with numerous

design IP blocks. Handling such layout problems has become im-
portant, and our work addresses this problem. Floorplanning tech-
niques handle designs with macros, but do not scale to a hundred
thousand standard cells. On the other hand, standard-cell placers
handle large numbers of small, fixed-height cells, but do not handle
macros very well. Therefore, we take the best of both techniques.

Our work points out that the handling of movable macros in exis-
ting commercial placement tools can be considerably improved, es-
pecially in terms of scalability. We propose a design flow to place
macro cells consistently with large numbers of standard cells. This
flow uses a combination of techniques from standard-cell place-
ment and fixed-outline floorplanning. In particular, a number of
existing placers can be used without source code modifications.
However, we had to improve the state of the art in fixed-outline
floorplanning [1] by adding new moves to handle soft blocks and
drive wirelength minimization more efficiently. Our proposed flow
can be summarized as follows:� Use a standard-cell placer to generate an initial placement.

� Construct a floorplanning instance using a physical cluster-
ing algorithm.



Circuit # # # Area of QPlace Our Flow = Capo + Parquet + Capo
Nodes Nets Macros biggest HPWL Time Final Total ShredPlace Floorplan Place

macro (24h limit) HPWL time time time #tries time

ibm01 12752 14111 246 6.37% 4.01e6 6m 3.96e6 18m 6m 11m 1 1m
ibm02 19601 19584 280 11.36% 16.64e6 1hr19m 8.37e6 31m 10m 18m 1 3m
ibm03 23136 27401 290 10.75% time-out time-out 12.16e6 42m 12m 26m 1 4m
ibm04 27507 31970 608 9.15% time-out time-out 13.48e6 47m 12m 30m 1 5m
ibm05 29347 28446 0 - 11.70e6 7m 11.51e6 8m - - - 8m
ibm06 32498 34826 178 3.95% 18.00e6 2hr4m 10.25e6 56m 11m 39m 3 6m
ibm07 45926 48117 507 4.75% 28.10e6 1hr45m 15.75e6 58m 18m 31m 1 9m
ibm08 51309 50513 309 12.10% 26.62e6 3hr47m 21.18e6 1hr34m 18m 1hr6m 1 10m
ibm09 53395 60902 253 5.42% time-out time-out 19.59e6 1hr6m 23m 30m 1 14m
ibm10 69429 75196 786 4.79% time-out time-out 60.72e6 3hr49m 55m 2hr40m 1 14m
ibm11 70558 81454 373 4.47% time-out time-out 28.49e6 1hr46m 32m 58m 1 16m
ibm12 71076 77240 651 6.42% time-out time-out 51.74e6 11hr15m 39m 10hr20m 4 16m
ibm13 84199 99666 424 4.22% time-out time-out 39.39e6 2hr31m 40m 1hr31m 1 20m
ibm14 147605 152772 614 1.98% time-out time-out 56.19e6 4hr46m 58m 3hr11m 1 37m
ibm15 161570 186608 393 10.99% time-out time-out 70.48e6 3hr57m 58m 2hr14m 1 45m
ibm16 183484 190048 458 1.89% time-out time-out 79.59e6 3hr13m 25m 1hr51m 1 57m
ibm17 185495 189581 760 0.94% 89.34e6 2hr24m 92.38e6 7hr23m 1hr30m 6hr0m 1 53m
ibm18 210613 201920 285 0.96% 56.43e6 1hr29m 54.90e6 5hr78m 1hr9m 3hr12m 2 57m

Table 1: Our flow (Capo+Parquet+Capo) versus the industry placer QPlace v. 5.1.67. Run-times for QPlace are measured on a 440
MHz Sun Ultra-5 system; for Capo and Parquet — on a 1 GHz Intel Pentium-III. Parquet runtime includes all attempts to satisfy the
given outline constraints, the number of attempts is shown as well. We do not run Parquet on ibm05 because ibm05 has no macros.

� Generate valid locations of macros with an improved fixed-
outline floorplanner.

� Fix the macros and place the remaining standard cells.

This flow can be modified to add a human designer who uses the
initial placement as a hint when manually placing macros. Alterna-
tively, variants of this flow can better preserve the initial placement.

Our experiments show that the proposed flow scales up to at least
a thousand macros in addition to hundreds of thousands standard
cells. However, floorplanning instances with a thousand blocks is
a bottleneck and may be improved further. Our on-going work
focuses on techniques for incremental wirelength computation as
well as multi-level techniques for floorplanning that can handle
greater numbers of macros. We have not explicitly considered tim-
ing and congestion, but the significant improvements in wirelength
obtained suggest that those metrics can also improve.

Finally, we point out that Cadence recommended flow that in-
cludes a separate macro placer may perform better on our bench-
marks. However, the fact that QPlace attempts to place macros and
often does a poor job suggests a possible improvement.
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