On Wirelength Prediction Using the Net-cut Objective !

Maogang Wang and Majid Sarrafzadeh
Department of Electrical and Computer Engineering
Northwestern University
Evanston, IL 60208
Tel: (847) 491-7378
Fax: (847) 467-4144
Email: mgwang,majid@ece.nwu.edu

Abstract

The multi-level hierarchical technique is regarded indispensable for solving today’s
complex VLSI placement problem without sacrificing quality. How to solve a hierarchical
placement problem becomes very important. Net-cut and wirelength are widely used
in hierarchical placement problems. In this paper we study the behavior of these two
objectives in the hierarchical placement problem.

We defined o’s to express the difference between wirelength and net-cut at different
hierarchical levels. We proved that the net-cut objective is a good approximation of
length at coarser hierarchical levels. At finer levels the net-cut objective gets further from
the wirelength objective. Experimental results are shown to support this claim. Thus a
good way to minimize wirelength for a top-down approach is to consider net-cut at early
hierarchical levels and switch to wirelength later. We proposed a “+1 level clustering’
technique. Experiments show that this technique can effectively combine the advantage
of minimizing net-cut (fast) and wirelength (accurate) together in later hierarchical levels.
Finally we showed that the percentage of external nets is important to determine where we
should switch from the net-cut objective to the wirelength objective. Experimental data
showed that if more than 20% — 30% nets are external, wirelength should be considered
in the optimization objective; Otherwise, net-cut is a reasonable estimate of wirelength.

! This work was support in part by NSF grant MIP-9527389.

1 Introduction

Placement is a classical problem in VLSI physical design. A lot of effective placement algo-
rithms have been proposed in the last twenty years [10, 15, 14, 7, 12]. As the VLSI circuit
size becomes larger and the technology goes into the range of deep sub-micron, it becomes
hard to solve the placement problem flat. The multi-level hierarchical technique is regarded
indispensable for solving today’s complex VLSI placement problem without sacrificing quality.
In [12], Sarrafzadeh and Wang showed that solving a hierarchical placement problem helps to
reduce the size of the solution space of the original placement problem. At a given hierar-
chical level, we partition the whole chip area into several global bins. Then the hierarchical
placement problem is to place cells at the center of each global bin to optimize a certain cost
function. Most state-of-the-art placement tools [10, 12, 14, 7| employ a hierarchical approach,
this include top-down annealing approaches [14, 13, 12] and recursive quadratic methods [10, 7.
They solve the placement problem successively at different hierarchical levels. Two objectives,
the net-cut objective and the wirelength objective are commonly used when solving the hier-
archical placement problem. Optimizing the net-cut objective aims to reduce the number of
connections between global bins while optimizing the wirelength objective aims to reduce the
global interconnection length which results in improved routability. The wirelength objective is
closer to the original placement problem. Indeed, wirelength metric is globally consistent with
routability (congestion) improvement [16]. However, since the net-cut objective is correlated
with the wirelength objective and is better studied, the net-cut objective is also widely used in
the hierarchical placement problem.

There are different ways to solve the hierarchical placement problem at each level of hi-
erarchy. In [12], the authors use a simple simulated annealing technique with the wirelength
objective. TimberWolf [14, 13] uses a clustering technique with the net-cut objective to first
form cell clusters. Then it uses simulated annealing to place these clusters in global bins us-
ing wirelength objective. Gordian and other top-down quadratic placement algorithms first
use analytical methods to get approximate locations of cells with minimized wirelength. Then
cells are placed in global bins based on their approximate locations and possibly the net-cut
information. Although both the wirelength and the net-cut objective are used in different hier-
archical placement algorithms, the relationship between these two objectives are still not well
understood. Questions such as how good is the net-cut objective and how well it estimates
wirelength remain unanswered. In this paper, we analyze the relationship between the net-cut
and the wirelength objective in hierarchical placement and show scenarios where net-cut is a
good prediction of wirelength and where it is not.

In this paper we first proved that the net-cut objective is a good approximation of length at
coarser hierarchical levels. At finer levels the net-cut objective gets further from the wirelength
objective. Thus we should focus on wirelength at finer levels. Extensive experimental results
are shown to support our analysis. We also show how to use existing partitioning tools (e.g.,
hMetis [8, 9]) to minimize wirelength. An algorithm to combine wirelength and net-cut is
proposed. Finally we show how to determine the hierarchical level where we should switch
from the net-cut objective to the wirelength objective.

The rest of the paper is organized as follows: In Section 2, we formulate the problem and
formally state the questions. In Section 3, we theoretically analyze the relationship between the

net-cut and the wirelength objective and show results from experiments to support our analysis.
In Section 4, we will explore methods of combining the net-cut and the wirelength objective
together to effectively solve the hierarchical placement problem, followed by the conclusion in
Section 5.

2 Problem Formulation

As circuits get larger, the placement problem for VLSI physical design can only be solved
effectively using hierarchical approaches. The size of the solution space grows exponentially
with the size of the circuit. Thus solving the hierarchical placement problem is much faster
than solving the original problem. VLSI designers also tend to design circuits hierarchically.
This also gives hierarchical placement algorithms big advantages over flat placement algorithms.
In this section, we will formulate the hierarchical placement problem.

A typical top-down placement approach is based on recursive circuit partitioning. It repeat-
edly divides a given circuit into subcircuits to optimize a given partitioning objective. At each
level, the given layout area is partitioned in either the horizontal or the vertical direction or
both. Each subcircuit is assigned to a partition. Recursive partitioning is repeated until each
subcircuit contains a small number of cells.

An arbitrary hierarchical placement algorithm may not be based on a partitioning technique.
Thus we use the concept of global bins instead of the concept of partitions to allow more
general analysis and discussion. At a given hierarchical level, we divide the layout area into IV,
rectilinear regions, each of these regions is called a global bin. Assume we have r rows and ¢
columns of global bins (N, =7 x ¢). We label the global bin at 4, row and jy, column as B;;.
From the top left global bin, the labels are Bii, Bis, Bis, ..., Bij, ..., Bye. The center of global
bin By; is denoted by Cp,; = (B, ,,¥ys,,). Figure 1 shows an example where we have 4 x 4 = 16
global bins.

In this paper we assume that we are given a circuit denoted Ckt(C,N'), which consists of
a set of cells C = {Ci]i = 1,...,|C|}, and a set of nets N = {N;|i = 1,...,|N|}. Each net Nj
consists of a set of terminals. Terminals are given a location on the surface of a layout area
by the placement process. The location of a terminal is represented by s;, = (i, ¥ix), thus
S, C K2, where R is the set of real numbers. The rectilinear distance between two terminals
Siks Sjm 18 |[Siks Simll = |Tik — Tjm| + [Yik — Yjm|- Similarly, each cell C; contains a set of
terminals S(C;) = {s;x |1 =0...|S(C;)|}. Let the location, on the plane, of the cell C; be
denoted by (z¢;,yc;). Then the location of a terminal s;; € S(Cj) is the same as the location
of the parent cell (z¢;,¥yc,) in the hierarchical placement problem. The wirelength of a net N;
is defined as the half perimeter of the bounding-box for net N;. The total wirelength of the
placed circuit is the summation of the wirelength for all the nets in the circuit.

In the hierarchical placement problem, each global bin B;; contains a set of cells P, ; C C.
For any cell in a global bin, the location of the cell is set to the center of that bin. VC, €
Pij, (v¢;,yc;) = (TB,,,Yp,,). Cells are placed into global bins to minimize the total wirelength.
In order to prevent all the cells from being placed in the same global bin (zero total wirelength),
the balancing constraint has to be imposed. The balancing constraint for a certain hierarchical

level which has N, global bins can be described as: (1 — u)'N%‘ < Pyl < (1+ u)'N%‘ where

Global Bins

B14

Cells

Figure 1: Hierarchical placement and global bins.

0 < u < 1 is the unbalancing factor.

Net V; is not cut if and only if all the terminals of N; are located in the same global bin. The
net-cut at a given hierarchical level is defined as the total number of cut nets. This definition
is consistent with net-cut definition for a Ny,-way partitioning problem. We call all the uncut
nets the internal nets since they are located inside one global bin. We call all the cut nets the
external nets since they span more than one global bin.

Generally, a top-down hierarchical placement approach will start from the first hierarchical
level h; and go down to lower hierarchical levels. The detailed procedure is described as the
following: It solves the hierarchical placement problem at the current hierarchical level h; which
has Ny; global bins. Then it will go to the next hierarchical level h;,; by splitting each global
bin in level h; into g smaller global bins. Thus the level h;; will have Ny;1) = gNVy; global bins
in total. It keeps doing this until the number of cells in each global bin is less than a certain
value. Figure 2 illustrate the basic flow of such an approach.

3 Relationship Between the Net-cut and the Wirelength
Objective

The total wirelength is the objective to minimize in the hierarchical placement problem, for
it closely relates to routability [16]. However, the net-cut objective is better researched and
easier to optimize. There are a number of partitioning tools which can minimize the net-cut
objective very effectively and efficiently [8, 5, 2, 3, 6, 9]. Intuitively, minimizing net-cut in the
hierarchical placement reduces the connections between global bins. Thus it tends to reduce
the wirelength as well. Since the pure net-cut objective does not consider the geometrical
information, minimizing the wirelength objective produces much better wirelength results than

Q Set level h=1

Solve the hierarchica
placement problem at
level h.

number of cells
in each global bin
< stopping threshold ?

Split each global bin at
level hinto g smaller
bins. Setlevel h=h+ 1.

Figure 2: Working flow of a top-down hierarchical placement approach.

minimizing the net-cut objective.

As an approach, we can first use the net-cut objective to partition the circuit into N,
subcircuits. Then we place each subcircuit in one global bin to minimize the wirelength. This
is the minimal wirelength hierarchical placement with the optimized net-cut objective. We
call this hierarchical placement a net-cut optimized placement and the hierarchical placement
obtained by minimizing wirelength a wirelength optimized placement.

In this section, we will first theoretically analyze the relationship between the wirelength and
the net-cut objective at different hierarchical levels and compare the net-cut optimized place-
ment with the wirelength optimized placement. Related experimental results will be presented
after the theoretical analysis.

The net-cut is the number of nets cut by the global bins. In order to make it comparable
to the wirelength objective, we normalize the wirelength cost using the dimension of the global
bins. Since all the terminals are located at the centers of global bins, the horizontal distance
between two terminals is multiples of the global bin width and the vertical distance between two
terminals is multiples of the global bin height. We define the normalized horizontal distance
between two terminals to be the number of global bins between these two terminals in the
horizontal direction. The normalized vertical distance can be similarly defined.

When the given hierarchical level has only two global bins, the net-cut and the normalized
wirelength objective are exactly the same. This is because any net with wirelength of zero is
not cut and any net which has wirelength of one is cut.

The top-down placement approach based on quadrisection has been shown effective [10, 7, 4].
This makes the hierarchical level containing 2 x 2 global bins very interesting to study (as shown
in Figure 3a). At the 2 x 2 hierarchical level, the net-cut “seems” close to the wirelength objec-
tive. Let us denote four global bins by Bi;, Byo, By and By, as shown in Figure 3. If all nets are
two-terminal, all cut nets connect two global bins. We denote the number of cut nets between

Global bins

B B B B,

12 11

F c
le Bzz le Bzz

a, b, c, d, e f: number of nets
connecting different pairs of
global bins.

@ (b)

Figure 3: A hierarchical level containing 2 x 2 global bins.

all six possible pairs of global bins by a, b, ¢, d, e and f as shown in Figure 3b. Thus the total
net-cut is Cy = a+b+c+d+e+ f and the normalized wirelength WL, = a+b+c+d+2e+2f.
Let us compare the net-cut optimized placement and the wirelength optimized placement at
this hierarchical level. In a given net-cut optimal placement (i.e., a placement that minimizes
the net-cut), let the number of cut nets between global bins be a., b, ¢, d., e. and f. (note
that there might be many such placement, so value of a, b, ¢.,d., e. and f, is not unique),. For
the wirelength optimal placement, the number of cut nets between global bins are denoted by
G, b,y Cuy dy, €4 and f,,. Because the net-cut optimized placement has the smallest number
of net-cut among all possible placements, we have the relation of

e +b.+co+de+e.+ fo < ay+by+cy+dy+ew+ fu (1)

Similarly, the normalized wirelength of the net-cut optimized placement should be worse
than the normalized wirelength of the wirelength optimized placement:

(e + b, + o +de +2e. 4+ 2f. > ay + by + Cop + d + 264 + 2f0 (2)

According the definition of the net-cut optimized placement, four subcircuits are placed to
minimize the wirelength. Thus if we exchange the cells in By with the cells in Byy, we should
get a worse wirelength, that is,

ae + b + o +d. +2¢. +2f. < 2a,+ b, +2¢c.+d. +e.+ feo (3)

Similarly, when we exchange cells in By, and cells in By, we establish the relation:

ae +b. +c.+d.+2e. +2f. < a.+ 2b. + c. +2d. +e.+ f. (4)
From (3) and (4) we have

e+ fo < ae+ce (5)
ec+fc§bc+dc (6)
Combining (5) and (6), we have
1
€c+fc§g(ac+bc+cc+dc+ec+fc) (7)
This can be written as:
4
ac+bc+cc+dc+2ec+2f0§ g(ac+bc+cc+dc+ec+fc) (8)

When we substitue (2) into (8), we have:

4
aw+bw+cw+dw+2ew+2fw§g(ac+bc+cc+dc+ec+fc) (9)

We also have:

Combining (9) and (10), we have:

4
ac+bc+cc+dc+ec+fc§ aw+bw+cw+dw+2ew+2fw S g(ac+bc+cc+dc+€c+fc) (11)

(11) shows the relationship between the net-cut cost of a net-cut optimized placement with
the wirelength cost of a wirelength optimized placement. The optimal wirelength at this hier-
archical level is bounded by the optimal net-cut cost. Thus the net-cut cost is a “reasonable”
estimation of the real wirelength cost at 2 x 2 hierarchical level. The above discussion is based
on the assumption that all the nets are two terminal nets. When multi-terminal nets exist, the
definition of a, b, ¢, d, e and f changes and (3), (4) become no longer valid. However, since the
number of multi-terminal nets is less than 30% (in benchmarks that we will consider later), the
net-cut is still a good approximation of the wirelength cost.

Similar analysis can be performed on hierarchical levels which contain more than four global
bins. Notice that the difference between the net-cut and the wirelength cost lies in the nets

6

which have a normalized wirelength of more than one. Based on this observation, we will define
the « relations as follows: Given a particular hierarchical placement, «; is defined as the per-
centage of nets which has a normalized wirelength of 7. Based on this definition, the percentage
of un-cut nets will be oy and the percentage of nets which has a normalized wirelength of one
is ; and so on. Assume the total number of nets in the circuit is |A] as defined in Section 2.
The net-cut for a given hierarchical placement is:

Cut: |N|-(a1+a2+a3—|—...)
The normalized wirelength is:
WLn = |N| . (011 + 2&2 + 3&3 +)

Following the same notation used in the above analysis, the a’s for the net-cut optimized
placement are denoted by a.; and the a’s for the wirelength optimized placement are denoted
by ;. Similar to (1) and (2), the optimal normalized wirelength W L,, for this hierarchical
level obeys:

V- e <WL, < |N|-) i (12)
i>1 i>1

Equation (12) shows that the optimal wirelength can be bounded by the a’s from the
optimal net-cut placement. However, the quality of this bound depends on the value of a’s.
a’s vary at different hierarchical levels. In the worst case, ;’s (i > 2) can be large and the
bound can be loose. However, experiments show that a;’s (i > 2) are very small. We have to
use experimental methods to determine the bound for the optimal wirelength using the net-cut
optimized placement.

We experimentally get the value of a,’s of circuits in different hierarchical levels. We use four
circuits from MCNC and ten from ISPD-98 benchmark suite [1] to carry out our experiments.
MCNC is the standard benchmark suite for placement, but most circuits are small (less than
10,000 cells). ISPD-98 benchmark suite contains 18 large circuits constructed based on real IBM
internal circuits. Table 1 shows the properties of these circuits. Since hMetis is widely claimed
to be one of the best partitioners and simulated annealing is still very effective in minimizing
wirelength, we use hMetis [8, 9] and simulated annealing to get the net-cut optimized placement.
Figure 4 illustrate this procedure. Figure 4a shows the original circuit to be placed. We first
use hMetis to partition the circuit into /N, subcircuits to minimize the net-cut where N is the
number of global bins (Figure 4b). Then we use simulated annealing to place each subcircuit
to a global bin to minimize the wirelength (Figure 4c). We get a.’s by counting the number of
nets with different wirelength and divided by the total number of nets in the circuit.

Table 2 shows the a.’s for circuit Primaryl. Table 3 shows the a.’s for circuit avgs. Table
4,5, 6, 7 show the a.’s for circuits ibm01, ibm02, ibm03, and ibm04, repectively. The numbers
for other circuits are very similar to the numbers shown here. Table 4 etc. also shows the upper
and lower bound for the optimal normalized wirelength at each hierarchical level obtained from
a.’s. We get the upper and the lower bound by Equation (12). In the coarser hierarchical

7

levels (e.g., 2 x 2, 4 x 4), the lower and the upper bound are quite close. However, at the finer
hierarchical levels, the upper bound is getting further away from the lower bound. This fact
suggests that the net-cut objective is not good to use any more at finer hierarchical levels.

(@) Origind circuit.

ST
EIITIII2
FSSTSTSTD
ISTSTSISTN
BISISITSISTI
pAm ety
SR T RSeSeSeSesey
e e BN ettt et et
et e et ! SEetetete
SEeE o RRES
SERT s Y
SIS LISISISISR)
ISISISTST BISISIIISN
LI L L) N i i
RETSTS NPatatatad
e RESTSITSISS
RSTSTY
Praatate
CoTSISy
.“":‘:’I
x>

(b) Use hMetis to partition the
circuit and form clusters.

QOO0
)

"
oo
o

)
i
o
o
e

e
G
S
e
e
()

(X
)
(0

5

(>
X
&
e
W

SISTSISToN
SISTSISIS
TSI SISI S
RESTSISIS
Petetetel

o
{6
N
4
Q"’

7

oL

§
¢

(c) Use annedling to place net-cut
optimize clusters to reduce wirelength

Figure 4: The procedure to get a net-cut optimized placement.

CktName | # Cells | # 10 Pads | # Nets | # Pins
Primaryl 833 183 1266 3303
Primary2 3014 107 3817 12014
biomed 6417 97 7052 22253
avqs 21854 64 30038 84081
ibm01 12506 246 14111 50566
ibm02 19542 259 19584 81199
ibm03 22853 283 27401 93573
ibm04 27220 287 31970 | 105859
ibm05 28146 1201 28446 | 126308
ibm06 32332 165 34826 | 128182
ibm(9 53110 285 60902 | 222088
ibm12 70439 637 77240 | 317760

4 How To Use a Cut-based Algorithm to Optimize Wire-

length

In the hierarchical placement problem, wirelength is the objective we want to optimize. How-
ever, a net-cut optimized placement is of interest. This is because:

Table 1: Properties of testing circuits.

Qi 2x2| 4x4| 8x8|16x16
Qo 87.5% | 75.0% | 60.7% | 43.7%
Q1 10.5% | 13.2% | 17.8% | 19.1%
Qe 20% | 62% | 9.4% | 11.0%
3 0| 44% | 3.6% 4.8%
les 0] 1.0% | 2.5% 4.3%
Qs 01]0.08% | 2.4% 4.1%
Qe 00.08% | 1.7% 2.7%
Y ise Qi 0 00% | 1.9% | 10.3%
lower bound of WL, 133 263 435 657
upper bound of WL, 183 554 | 1205 2848

Table 2: Value of a,; and the lower /upper bound for the optimal wirelength for circuit Primary1.

Qg 2x2| 4x4] 8x8|16x16 | 32 x 32
Qe 99.1% | 98.0% | 96.1% | 93.2% | 86.3%
Q1 0.60% | 1.1% | 1.5% 2.3% 5.4%
Q2 0.29% | 0.42% | 1.0% 1.5% 2.4%
Q3 01]0.24% | 0.48% | 0.89% 1.2%
ey 010.13% | 0.33% | 0.59% | 0.81%
Qs 00.08% | 0.20% | 0.33% | 0.59%
e 0]0.10% | 0.11% | 0.18% | 0.40%
Y6 Qei 0| 0.0% |0.28% 1.0% 2.9%
lower bound of WL, 248 566 | 1133 1993 4081
upper bound of WL, 353 | 1232 | 3219 7932 20990

Table 3: Value of «; and the lower/upper bound for the optimal wirelength for circuit avqgs.

QUi 2 X2 4x4| 8x8|16x16 | 32 x 32
Qe 96.4% | 91.0% | 84.5% | 69.6% | 59.2%
Q1 3.1% 4.6% | 4.8% | 11.0% 7.1%
Qo 0.3% 2.4% | 3.2% 4.3% 9.5%
Q3 0 1.2% | 2% 3.0% 3.6%
Qleq 0| 0.43% | 1.8% 2.4% 2.3%
Qs 01]0.063% | 1.1% 1.8% 1.6%
Qe 0] 0.070% | 0.58% 1.1% 1.1%
Y is i 0] 0.24% | 1.32% 6.8% | 15.6%
lower bound of WL, 500 1224 | 2146 3529 5046
upper bound of WL, 553 2224 | 6201 17588 43213

Table 4: Value of «; and the lower/upper bound for the optimal wirelength for circuit ibm01.

i 2 X2 4x4| 8x8|16x16 | 32 x 32
Qe 95.4% | 82.1% | 73.0% | 65.3% | 58.9%
Q1 3.7% | 101% | 5.2% 3.6% 3.9%
QUeo 0.82% 4.3% | 4.3% 3.2% 2.3%
Qles 0 1.6% | 5.6% 3.5% 2.4%
ey 0 1.2% | 4.2% 2.6% 2.1%
Qs 0] 046% | 2.6% 2.4% 1.9%
Qg 01]0.097% | 2.0% 2.4% 1.8%
Y is6 Qei 0 0.15% | 3.1% 17% | 26.7%
lower bound of WL, 669 3272 | 5059 6597 7713
upper bound of WL, | 1050 6167 | 19042 46476 | 108303

Table 5: Value of «; and the lower/upper bound for the optimal wirelength for circuit ibm02.

10

s 2x2] 4x4] 8x8]16x 16 | 32 x 32
(e 92.1% | 86.9% | 81.4% | 72.2% | 62.8%
Qe 5.9% | 3.7% | 3.6%| 68%| 6.0%
Qe 1.9% | 3.6% | 35%| 29%| 6.0%
Qe 0] 3.6%| 2.8% | 27%| 26%
et 0 1.1% | 21% | 17%| 1.8%
Qe 0]057% | 1.9% | 1.6%| 1.6%
Qe 0]030% | 1.2% | 1.6%| 1.4%
g Qe 01]0.23% | 35% | 105% | 17.8%
lower bound of WL, | 1694 | 3149 | 4667 | 6685 | 9368
upper bound of WL, | 2677 | 8523 | 20105 | 49244 | 113653

Table 6: Value of «; and the lower/upper bound for the optimal wirelength for circuit ibm03.

i 2%x2] 4x4] 8x8[16x16 | 32 x 32
o 92.3% | 86.0% | 79.8% | 70.9% | 60.4%
o 7.0% | 53%| 51% | 53%| 7.0%
e 0.70% | 4.3% | 4.0% | 3.6% | 5.2%
s 0| 3.7% | 3.6% | 29%| 3.2%
s 0]049% | 2.6% | 24%| 2.9%
s 0]016% | 1.8% | 23%| 1.7%
s 0]0.05% | 0.88% | 1.6% | 1.3%
Y Qe 0 0]222% | 11.0% | 18.3%
lower bound of WL, | 1778 | 3818 | 5951 | 8711 | 11650
upper bound of WL, | 2687 | 8966 | 21143 | 57650 | 124392

Table 7: Value of «; and the lower/upper bound for the optimal wirelength for circuit ibm04.

11

1. The net-cut objective is easier to optimize than the wirelength objective.
2. The net-cut objective is correlated to the wirelength objective.

3. There are a number of very good net-cut optimization packages we can use.

Therefore, it is very important to understand how to use a cut-based algorithm to optimize
wirelength. First we are going to see the difference between the net-cut and the wirelength
objective. Since both the net-cut and the wirelength objective cost the internal nets as zero,
the difference between these two objectives lies on the cost of the external nets. We calculated
the average cost of all the external nets. For the net-cut objective, this value is always 1
because every cut net has a cost of 1. Thus by looking at the value for the average normalized
wirelength cost, we can see how far it is from the net-cut cost. Table 8 shows the average
normalized wirelength value for the external nets in different hierarchical levels.

Circuits | 2x2|4x4|8x8|16x 16 | 32 x 32
Primaryl | 1.331 | 2.261 | 3.663 5.387 -
Primary2 | 1.315 | 2.445 | 4.230 6.422 9.606
biomed 1.401 | 2.511 | 4.405 6.083 9.210
avqs 1.327 | 2.026 | 2.730 3.901 5.088
ibm01 1.098 | 1.681 | 2.910 4.303 7.747
ibm02 1.177 | 1.673 | 3.245 7.048 | 13.052
ibm03 1.239 | 2.295 | 4.111 6.577 | 10.982
ibm04 1.162 | 2.063 | 3.428 5971 | 10.214
ibm05 1.347 | 2.850 | 5.644 9.973 | 18.181
ibm06 1.424 | 2.308 | 3.880 6.189 | 10.914
ibm09 1.568 | 3.563 | 7.358 | 14.925 | 29.863
ibm12 1.591 | 3.697 | 7.690 | 15.546 | 31.138

Table 8: Average normalized wirelength for all the external nets.

From Table 8, we can see that the average normalized wirelength for finer bins (above 8 x 8)
is much larger than 1. This shows that the net-cut objective is a reasonable approximation for
the wirelength in the coarser hierarchical levels but gets further away from the wirelength in
the finer hierarchical levels.

4.1 An Algorithm For Combining Net-cut and Wirelength Objec-
tive

Based on the observations above, we believe a combination between the net-cut and the wire-

length objective will be very effective in the hierarchical placement (as is currently done in

several commercial packages). At a certain hierarchical level, we can first optimize net-cut.
Then we further reduce wirelength based on the net-cut optimized placement. We can achieve

12

this by moving cells around the global bins to optimized the wirelength. However, it would
be very slow and uneffective if we only move a single cell at a time. We propose a “+1 level
clustering” technique to perform this task effectively: Given a hierarchical level h which has
N, global bins, first we solve the net-cut optimization problem at hierarchical level A+ 1 which
has g, global bins where g is defined in Section 2 (usually ¢ = 2 or 4). Based on the net-cut
optimization result at level A + 1, we have gN, cell clusters with each cluster being the set of
all the cells in one global bin at level h 4+ 1. Then we go back to the given hierarchical level h
and do the wirelength optimization by placing these gV, clusters into NV, global bins. Figure 5
shows an example of this +1 level clustering technique which ¢ = 4 and N, = 4. This technique
will be much faster than the single cell moving algorithm because we only need to place gV,
objects into NV, places.

p | i | db| b

(a) Thetarget level h. (b) do net-cut optimization (c) do wirelength optimization
at level h+1. Cluster cells optimization by moving clusters
based on the net-cut result. back at level h.

Figure 5: The +1 level clustering technique to improve wirelength.

The +1 level clustering technique can also be expand to be a +2 ,4+3 or +¢ level clustering
technique. As § increases, the run time will increase accordingly. If there is only one cell at
each global bin at level h+§ (§ = W)) the +¢ level clustering technique reduces to the
single cell moving strategy.

Assuming we want to get a hierarchical placement with an optimized wirelength at level A
which has N, global bins, a step by step procedure for the +1 level clustering technique can be
written as:

1. Obtain a net-cut optimized placement at level A + 1.

2. Cluster cells in the same global bin at level h + 1 together. There are gN, clusters in
total.

3. Do cluster placement at level h to minimize wirelength using the clusters obtained in Step
2.

13

We can also have a 40 level clustering technique which is to do the clustering and the
wirelength optimization at the same hierarchical level h. The hierarchical placement obtained
from the +0 level clustering technique is just a net-cut optimized placement since it has the
optimal net-cut cost. We call this 40 level clustering technique the flat clustering technique at
level h since it does not go to level h + 1.

In the +1 level clustering technique, we use hMetis [8] as the tool to get the net-cut optimized
placement. Benchmark results showed that hMetis performs really well on large sized circuits.
HMetis can also handle multi-way partitioning easily. By using hMetis as our net-cut objective
optimizer, we have three variations on the +1 level clustering technique. Assume that we are
working on the hierarchical level h with NV, global bins:

1. +1 level A: We use hMetis to get the net-cut optimized cell clusters at level h 4+ 1. Then
we perform the wirelength optimization at level h using simulated annealing (since the
number of moving ‘items’ is small, an near optimal wirelength can be obtained by the
annealing).

2. 41 level B: We use hMetis to get the net-cut optimized placement at level h. Then we
use hMetis to partition the subcircuit in each global bin into ¢ clusters. Then we perform
the wirelength optimization at level A with these gV, clusters using simulated annealing.

3. 41 level C: We use hMetis to get the net-cut optimized placement at the first hierarchical
level hy. Then we use hMetis to keep going down by splitting global bins until we reach
level h+ 1. Then we do clustering at level A+ 1 and perform the wirelength optimization
back at level h using simulated annealing.

When we split global bins to get from the level h; to the level h;; 1, we use hMetis to do a
g-way partition on the subcircuit in each global bin at level h;. The subcircuit contains all the
cells and terminals in that global bin. Nets in the subcircuit are modified so that they only
contain terminals located in that global bin.

It is interesting to notice that given long enough time, the results from +1 level B should
be no worse than the results from the flat clustering approach at level h.

We conduct experiments to compare the wirelength results from the wirelength optimized
approach, the net-cut optimized approach (i.e. the flat clustering approach) and the three +1
level clustering approaches (+1 level A, B and C) at different hierarchical levels. For consistency
and simplicity, we use simulated annealing to implement the wirelength optimization in the
hierarchical placement. This wirelength optimization algorithm is implemented without using
any clustering technique. We know that the quality of the results highly depend on the runtime
of the simulated annealing. In order to make a fair comparison, we perform the simulated
annealing twice for each circuit in the wirelength optimized approach. The fast simulated
annealing (WL.fast) spends approximately the same amount of time as the net-cut optimized
approach. The slow simulated annealing (WL.slow) is at least 3 times longer than the net-cut
optimized approach.

We tested all the circuits on 2 x 2,4 x4, 8 x 8, 16 X 16 and 32 x 32 hierarchical levels except
for Primaryl, Primary2 and biomed since they are quite small. For Primaryl, we tested it on
2x 24 x4 and 8 x 8 levels. We test Primary2 and biomed on 2 x 24 x 4, 8 x 8 and 16 x 16

14

levels. Wirelength and runtime comparison for all circuits are shown in the Table 9 — 20. The
unit for the runtime is second cpu time.

2% 2 4 x4 8 x 8 16 x 16 32 x 32
technique | WL | runtime | WL | runtime | WL | runtime | WL | runtime | WL | runtime
WL.fast 90 19 87 23 89 51 - - - -
WL.slow I 50 82 144 88 234 - - - -
cut opt. 76 13 92 18 99 37 - - - -
+1level A 91 2.7 | 107 4.3 | 100 12 - - - -
+1level B 83 271 99 3.5 96 6.9 - - - -
+1level C 83 2.7 | 101 3.6 97 12 - - - -

Table 9: Wirelength and runtime comparison between different approaches for circuit Primaryl

2% 2 4 x4 8 x 8 16 x 16 32 x 32
technique | WL | runtime | WL | runtime | WL | runtime | WL | runtime | WL | runtime
WL.fast 360 124 | 398 118 | 437 121 | 459 119 - -
WL.slow | 338 249 | 317 505 | 344 498 | 359 733 - -
cut opt. 230 45 | 325 78 | 367 116 | 423 178 - -
+1level A | 281 11| 370 15| 434 27 | 398 75 - -
+1level B | 230 10 | 367 14 | 384 23 | 389 43 - -
+1level C | 256 11| 349 12 | 499 29 | 396 7 - -

Table 10: Wirelength and runtime comparison between different approaches for circuit Primary?2

In a particular hierarchical level, if the wirelength optimized approach performs better than
the net-cut optimized approach, it means that the net-cut objective is not a good approximation

of the wirelength at this level.

1. Comparing the results of WL.fast and the results of cut.opt.

in Table 9-20, we find

that the net-cut optimized approach performs almost always better than the wirelength
optimized approach using similar amount of time. (The only two exceptions happen at
circuit ibm02 and ibm05 for level 8 x 8 and up.) This fact shows that the net-cut objective
is a fast alternative of the wirelength.

. Comparing the results of WL.slow and the results of cut.opt. in Table 9-20, we find a
similar trend: at coarser levels, using only about one fourth of the running time, the net-
cut optimized approach is still better than the wirelength optimized approach. However,
the wirelength optimized approach will gradually catch up and finally becomes better
than the net-cut optimized approach at a certain hierarchical level. This hierarchical
level where wirelength starts to outperform net-cut is different for different circuits. For

15

2x2 4 x4 8 x 8 16 x 16 32 x 32
technique | WL | runtime | WL | runtime | WL | runtime | WL | runtime | WL | runtime
WL.fast 272 107 | 332 105 | 345 115 | 358 112 - -
WL.slow | 176 4964 | 185 3171 | 146 12377 | 136 16400 - -
cut opt. 73 116 | 102 168 | 142 225 | 168 386 - -
+1level A | 113 49 | 151 70 | 196 127 | 270 108 - -
+1level B 91 49 | 138 51 | 194 75 | 208 98 - -
+1level C 83 46 | 134 56 | 190 193 | 215 110 - -

Table 11: Wirelength and runtime comparison between different approaches for circuit biomed

2x2 4 x4 8 x 8 16 x 16 32 x 32
technique | WL | runtime | WL | runtime | WL | runtime | WL | runtime | WL | runtime
WL.fast 1325 814 | 1472 716 | 1452 742 | 1472 724 | 1581 654
WlL.slow | 1077 1672 | 1173 1739 | 1064 1578 | 1350 1712 | 905 3241
cut opt. 225 355 | 319 363 | 409 411 | 496 424 | 656 533
+1level A | 272 219 | 486 186 | 763 207 | 1017 260 | 1456 280
+1level B | 310 217 | 406 179 | 516 196 | 656 215 | 765 262
+1level C | 253 212 | 405 188 | 495 179 | 699 227 | 778 265

Table 12: Wirelength and runtime comparison between different approaches for circuit avqgs

2% 2 4 x4 8 x 8 16 x 16 32 x 32
technique | WL | runtime | WL | runtime | WL | runtime | WL | runtime | WL | runtime
WL.fast 1472 501 | 1517 542 | 2125 511 | 3588 490 | 3505 542
WL.slow 629 15709 | 703 16535 | 972 3834 | 879 14962 | 924 14846
cut opt. 384 499 | 596 542 | 847 668 | 1082 961 | 1339 1453
+1level A | 409 262 | 737 244 | 1047 300 | 1313 384 | 1739 561
+1level B | 385 281 | 649 244 | 876 282 | 1051 326 | 1204 524
+1level C | 384 254 | 790 251 | 858 267 | 1028 323 | 1436 463

Table 13: Wirelength and runtime comparison between different approaches for circuit ibm01

16

2x2 4 x4 8 x 8 16 x 16 32 x 32
technique | WL | runtime | WL | runtime | WL | runtime | WL | runtime | WL | runtime
WL.fast 3478 537 | 5080 1558 | 6031 1045 | 3659 4600 | 4849 4243
WL.slow | 1835 30112 | 2475 18427 | 3428 6994 | 3287 17919 | 3685 16764
cut opt. 1801 836 | 2716 1150 | 3795 1895 | 5461 2317 | 6385 2607
+1level A | 1914 541 | 3153 521 | 4850 688 | 5670 823 | 6989 1064
+1level B | 1801 519 | 2704 487 | 3710 539 | 4864 711 | 5939 969
+1level C | 1856 538 | 2580 532 | 3451 573 | 3958 638 | 4998 841

Table 14: Wirelength and runtime comparison between different approaches for circuit ibm02

2x2 4 x4 8 x 8 16 x 16 32 x 32
technique | WL | runtime | WL | runtime WL | runtime WL | runtime | WL | runtime
WL.fast 6801 511 | 8919 1303 | 10070 696 | 12122 602 | 8011 2741
WL.slow | 4775 2609 | 5472 9881 | 5188 9039 | 5397 20080 | 5438 32741
cut opt. 4090 591 | 5046 720 | 5420 1307 | 5745 1361 | 6269 1936
+1level A | 4270 351 | 5110 365 | 5720 409 | 5987 517 | 6652 740
+1level B | 4090 352 | 5089 327 | 5394 381 | 5556 466 | 5905 637
+1level C | 4273 374 | 5053 366 | 5335 392 | 6036 448 | 7148 572

Table 15: Wirelength and runtime comparison between different approaches for circuit ibm03

2% 2 4 x4 8 x 8 16 x 16 32 x 32
technique | WL | runtime WL | runtime WL | runtime WL | runtime WL | runtime
WL.fast 8635 570 | 11537 2433 | 12917 1460 | 15138 1065 | 15103 1080
WlL.slow | 6418 3921 | 8139 9088 | 6946 9344 | 7008 23068 | 7292 17156
cut opt. 5749 1377 | 6730 1409 | 7190 1658 | 7670 2552 | 8297 2276
+1level A | 5816 884 | 6806 751 | 7731 824 | 7976 986 | 8820 1365
+1level B | 5762 886 | 6714 700 | 7241 766 | 7436 846 | 7939 1123
+1level C | 5789 882 | 6979 801 | 7437 754 | 7752 790 | 9543 1036

Table 16: Wirelength and runtime comparison between different approaches for circuit ibm04

17

2x2 4 x4 8 x 8 16 x 16 32 x 32
technique | WL | runtime | WL | runtime | WL | runtime | WL | runtime | WL | runtime
WL.fast 6357 881 | 8140 993 | 4079 3240 | 4220 6090 | 6463 5818
WL.slow | 3354 23859 | 3787 11275 | 3790 5687 | 3939 22935 | 4218 21574
cut opt. 2116 1527 | 3507 1998 | 4424 2912 | 4670 4589 | 4803 6985
+1level A | 2281 1115 | 3986 1055 | 4326 1381 | 4657 1806 | 5006 2250
+1level B | 2116 1044 | 3513 953 | 4384 1235 | 4556 1542 | 4533 2010
+1level C | 2136 1075 | 3836 914 | 4547 997 | 4612 1149 | 6324 1645

Table 17: Wirelength and runtime comparison between different approaches for circuit ibm05

2x2 4 x4 8 x 8 16 x 16 32 x 32
technique | WL | runtime WL | runtime | WL | runtime | WL | runtime | WL | runtime
WL.fast 7622 789 | 11686 1517 | 5818 2880 | 6246 4364 | 7849 4062
WlL.slow | 3751 16087 | 4550 18404 | 5705 6091 | 4773 16969 | 6394 15926
cut opt. 3176 1513 | 3854 1771 | 4483 2382 | 5482 3448 | 6277 4966
+1level A | 3175 1232 | 4146 980 | 4958 1118 | 5965 1298 | 6846 1821
+1level B | 3176 1215 | 4061 991 | 4536 1078 | 5413 1152 | 6133 1492
+1level C | 3203 1178 | 4552 1089 | 5127 990 | 5606 1123 | 7784 1443

Table 18: Wirelength and runtime comparison between different approaches for circuit ibm06

2% 2 4 x4 8 x 8 16 x 16 32 x 32
technique WL | runtime WL | runtime WL | runtime WL | runtime WL | runtime
WL.fast 11481 3057 | 22078 3330 | 12045 9816 | 19553 3517 | 16449 7504
WlL.slow | 10123 17389 | 11994 24894 | 11204 17591 | 12025 20662 | 11591 39910
cut opt. 8335 3535 | 9359 2492 | 11005 3208 | 12256 4491 | 14620 5323
+1level A | 8871 2349 | 11272 1812 | 14476 1740 | 16760 2034 | 20612 2766
+1level B | 8414 2368 | 10335 1592 | 11612 1614 | 12422 1771 | 13713 2187
+1level C | 8407 2335 | 10070 1645 | 11594 1626 | 12287 1814 | 13616 2168

Table 19: Wirelength and runtime comparison between different approaches for circuit ibm09

18

2x2 4 x4 8 x 8 16 x 16 32 x 32
technique WL | runtime WL | runtime WL | runtime WL | runtime WL | runtime
WL.fast 72622 2273 | 88904 12799 | 90574 8500 | 78555 10066 | 81028 12050
WL.slow | 55031 68560 | 59501 40593 | 64548 15471 | 61236 33458 | 63602 45627
cut opt. 54878 4055 | 59154 4429 | 62037 5651 | 65506 8988 | 68071 10700
+1level A | 57348 4049 | 62674 2916 | 66580 2987 | 70528 3662 | 73478 4806
+1level B | 56703 4024 | 60197 2923 | 61299 2667 | 62962 3088 | 64918 3924
+1level C | 56269 3965 | 60075 2818 | 61842 2708 | 62891 3033 | 64520 3585

Table 20: Wirelength and runtime comparison between different approaches for circuit ibm12

biomed and avgs (Table 11 and Table 12), wirelength does not outperform net-cut for
all the levels we tested. For ibm02 and ibm05 (Table 14 and Table 17), wirelength
quickly outperforms net-cut at around level 4 x 4. For other circuits, wirelength start
outperforming net-cut at level around 8 x 8 or 16 x 16. This experiment shows that the
net-cut objective is only good at coarser levels and we have to start consider wirelength
at some point.

. From Table 9-20, we see that the +1 level approaches are no better than the net-cut ap-
proach at coarser levels. The +1 level approach start to outperform the net-cut approach
at finer levels. By using less amount of time, the +1 level approach produces better wire-
length results than the net-cut optimized approach. We know considering wirelength is
necessary at finer levels. However, traditional wirelength optimized approach needs very
long time to get good results. The +1 level approach effectively combines net-cut and
wirelength together. Thus the +1 level approach is much faster than the pure wirelength
approach since it uses net-cut to cluster cells. The hierarchical placement produced by
the net-cut approach is always a solution favoring the net-cut cost. In finer hierarchical
levels, this solution will no longer be close to the wirelength optimal solution. Since the
+1 level approach takes the wirelength into account, it has better performance than the
net-cut approach in finer levels. Of the three approaches (A, B and C) for the +1 level
clustering technique, experiments show that approach A is always bad and approach B is
the best one.

Based on the discussion above, we conclude that it is wise to use the net-cut objective at
early hierarchical levels and start considering wirelength at later levels. This is consistent with

the analysis we made in the previous section.

4.2 Where to Switch from Net-cut to Wirelength

The previous experiments show that wirelength needs to be considered at later hierarchical
levels. However, yet there is no clue when is a good point to start considering wirelength (using
the +1 level clustering heuristics). The difference between the net-cut and wirelength objective
is in the cost of external nets. The more the external nets, the bigger the difference is. We

19

believe that we can tell when to start considering wirelength by looking at the percentage of
the external nets. We plot the curve of the percentage of the external nets vs. the number of
global bins in the hierarchical level. Figure 6 and Figure 7 show curves for all testing circuits.
The solid curve with ‘4’ on it is the curve of external nets percentage vs. the number of global
bins. Other five curves on each sub-figure represent a theoretical curve derived from Rent’s
Rule with different Rent parameters.

Rent’s rule was first described by Landman and Russo in 1971 [11]. When we partition a
circuit into several blocks, Rent’s rule is about the relationship between the number of external
pins on each block and the number of cells inside each block. Let us denote the average number
of cells in a block by B,,, then the average number of external pins P,, can be expressed as
P, = T,B), where 0 < r < 1 is called the rent parameter and 7} is the average number of
terminals per block. Rent’s rule is experimentally validated for a lot of real circuits and for
different partitioning methodologies. For real circuits, the Rent parameter r usually has a value
of between 0.3 and 0.8. If a circuit obeys Rent’s rule, we can derive a theoretical relationship
between the external nets percentage and the number of global bins. Assume we have N, global
bins with all the cells distributed in them evenly, thus we have ‘ | cells in each global bin. Ac-

cording to Rent’s rule, the number of external p1ns on each global bin P, = T, (‘C|) . The

total number of external nets will be N Ny (|C‘) where pg,q is the average number of
terminals per net. Thus the percentage of the external nets is Pyt = %p—(‘]\%) . To get the
avg

value of T}, we know that the percentage is 1 when we have C global bins with one cell in each
bin. Thus we have relation:

C| T [C] Cl T,
= o) = (13)
|N|pavg C| |N|pavg
Which gives us the value of T, = %"N‘. Plug this value back into the relation, we have

DPext = (ﬂ)’" 1. Since the actual value of the Rent parameter r varies from circuit to circuit,

for each circuit, we plot five theoretical curves each one with a different Rent parameter value
ranging from 0.3-0.7. Figure 6 shows the curves for four MCNC benchmark circuits (Primaryl,
Primary2, biomed and avgs). Figure 7 shows the curves for circuit ibm01 — ibm06. Figure 6
and 7 show that Rent’s curve is not exactly obeyed by the real circuits. It is usual that the
circuit has different values of Rent parameter in different hierarchical levels. This is actually
consistent with the way to design VLSI circuits. The hierarchical design methodology in VLSI
tends to combine a number of small subcircuit into one big circuit. However, the degree of
complexities is different according to the size of the circuit. When the size of a circuit is small,
it is possible to put very complicated logic in it. Thus it will have a larger Rent parameter.
When the size of a circuit is large, the logic between subcircuits will be comparably simple.
Thus it will have a smaller Rent parameter. As shown in Figure 6 and 7, most circuit has a
smaller Rent parameter in early hierarchical levels (large subcircuits) than in later levels (small
subcircuit).

The difference between the net-cut and the wirelength objective are the cost on external nets.
Thus the more the external nets, the bigger difference there is between these two objectives.

20

Primaryl Primary2
1 - T T T 1 T T T T
09 B 09F
08 4 08t
07 B 07

°
>

°
S

percentage of external nets
°
&

°
>

°
S

.
percentage of external nets
°
&

L
o
©

10 10
Y
biomed avgs
1 T T T T 1 T T T T

09k e 09l

08 4 08t

07 e 07t
a2 2
£ £
E 0.6 1 E 06
g g
H H
3 3
505 4 sosf
° °
))
g g
§04 4 S04l
8 8
3 3
g 2

03 1 03k

02 B 02 -

01 q 01F -7 _

10 10* 10! 10° ? 10*
number of global bins , number of global bins

Figure 6: Percentage

of external nets

21

vs. number of global bins.

percentage of external nets

percentage of external nets

o

°

)

°

o

°

)

°

ibmo1

ibm02 ibmo3

°

°

percentage of external nets
°

L
o

°

°

.
percentage of external nets
o

L
°

10
number of global bins

10 10°
number of global bins number of global bins.

Y Y
ibmo4 ibmos ibmo6
T T T 1 T T T T 1 T T T T
B 09k 4 oof
4 08 081
1 0.7 0.7F
g 2
] 8
g g .
1 E 0. E 061
g g
H -
3 8
1 20 505
° °
) g
g g
1 go So4f
8 8
s g
2 g
1 03 03f
1 0.2 02r
q 0.1 01 - _- -
1 3 0’ 10"
number of global bins , number of global bins , number of global bins
ibm09 ibm12
1 T T T T 1 T T T T
09 1 09 1
08 B 08 B
07F 1 07F 1

o
>
T

o
=

percentage of exiernal nets
o
&

o
>

o
=

.
percentage of exiernal nets
o
&

10
number of global bins

7: Percentage

10
number of global bins

of external nets vs. number of global bins

22

Based on the percentage curves of external nets and the experimental data in Table 9 — 20,
we empirically found that 20% — 30% is the percentage where we should start considering
wirelength. When less than 20% — 30% nets are external in a hierarchical level, net-cut is a
very reasonable estimation of wirelength. Thus we can use net-cut objective at this hierarchical
level. If more than 20% — 30% nets are external, net-cut is no longer a good objective to
use to minimize wirelength. We should start using wirelength as the optimization objective.
For instance, based on the curve for circuit Primary2 in Figure 6, 25% external net ratio is
corresponding to about 100 global bins. From Table 10, we find that the wirelength objective
starts to outperform the net-cut objective between 4 x 4 and 8 x 8 bins. In Figure 7, for circuit
ibm01, 25% external net ratio is corresponding to about 200 global bins. From Table 13, we find
that the wirelength objective outperforms the net-cut objective at 16 x 16 bins. In fact, most
circuits have the 25% external net ratio at about 100 — 500 global bins. Experimental results
show that the wirelength of these circuits outforms the net-cut after 8 x 8 or 16 x 16 bins. Two
MCNC benchmark circuits, biomed and avqs, have the 25% external net ratio at more than
1000 global bins (Figure 6). Correspondingly, Table 11 and 12 show that the net-cut approach
is always the best up to level 32 x 32. When few external nets are exposed, net-cut is always a
good alternative of wirelength. This “20% — 30% external nets” rule is based on the intuition
and the actual experimental results. It is an approximate rule. Constructing a external net
ratio curve for a circuit is very time consuming. However, we do not really need the whole curve
to determine the place where we need to switch to wirelength. At a given hierarchical level, we
can decide whether we should consider wirelength by looking at the external net ratio at this
level. Thus it is very easy and convenient to make the decision based on the net-cut result.

5 Conclusion

In this paper we defined a’s to express the difference between wirelength and net-cut at dif-
ferent hierarchical levels. We showed that the net-cut objective is a good approximation of
length at coarser hierarchical levels. At finer levels the net-cut objective gets further from the
wirelength objective. Experimental results are shown to support this claim. Based on this
conclusion, a good way to minimize wirelength for a top-down approach is to consider net-cut
at early hierarchical levels and switch to wirelength later. We proposed a “+1 level cluster-
ing” technique. Experiments show that this technique can effectively combine the advantage of
minimizing net-cut (fast) and wirelength (accurate) together in later hierarchical levels when
we start considering wirelength. Finally we showed that the percentage of external nets is
important to determine where we should switch from the net-cut objective to the wirelength
objective. Experimental data showed that if more than 20% — 30% nets are external, wire-
length should be considered in the optimization objective. Otherwise, net-cut is a reasonable
estimation of wirelength.

References

[1] C. Alpert. “The ISPD98 Circuit Benchmark Suite”. In International Symposium on
Physical Design, pages 18-25. ACM, April 1998.

23

2]

3]

[4]

9]

[10]

[11]
[12]
[13]
[14]
[15]

[16]

C. J. Alpert, J. H. Huang, and A. B. Kahng. “Multilevel Circuit Partitioning”. In Design
Automation Conference, pages 530-533. IEEE/ACM, 1997.

J. Cong, H. P. Li, S. K. Lim, T. Shibuya, and D. Xu. “Large Scale Circuit Partitioning
with Loose/Stable Net Removal and Signal Flow Based Clustering”. In International
Conference on Computer-Aided Design, pages 441-446. IEEE, 1997.

A. E. Dunlop and B. W. Kernighan. “A Procedure for Placement of Standard Cell VLSI
Circuits”. IEEE Transactions on Computer Aided Design, 4(1):92-98, January 1985.

D. Dutt and W. Deng. “VLSI Circuit Partitioning by Cluster-Removal Using Iterative

Improvement Techniques”. In International Conference on Computer-Aided Design, pages
194-200. IEEE, 1996.

S. Hauck and G. Boriello. “An Evaluation of Bipartitioning Techniques”. In Chapel Hill
Conference on Advanced Research in VLSI, 1995.

D. Huang and A. B. Kahng. “Partitioning-based Standard-cell Global Placement with an

Exact Objective”. In International Symposium on Physical Design, pages 18-25. ACM,
April 1997.

G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. “Multilevel Hypergraph Partition-
ing: Application in VLSI Domain”. In Design Automation Conference, pages 526-529.
IEEE/ACM, 1997.

G. Karypis and V. Kumar. “Multilevel k-way Hypergraph Partitioning”. In Design Au-
tomation Conference, pages 343-348, 1999.

J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich. “GORDIAN: VLSI Place-
ment by Quadratic Programming and Slicing Optimization”. IEEE Transactions on Com-
puter Aided Design, 10(3):365-365, 1991.

B. Landman and R. Russo. “ On a pin versus block relationship for partitions of logic
graphs”. IEEE Transactions on Computers, c-20:1469-1479, 1971.

M. Sarrafzadeh and M. Wang. “NRG: Global and Detailed Placement”. In International
Conference on Computer-Aided Design. IEEE, November 1997.

C. Sechen. VLSI Placement and Global Routing Using Simulated Annealing. Kluwer, B.
V., Deventer, The Netherlands, 1988.

C. Sechen and K. W. Lee. “An Improved Simulated Annealing Algorithm for Row—Based
Placement”. In Design Automation Conference, pages 180-183. IEEE/ACM, 1988.

G. Sigl, K. Doll, and F. M. Johannes. “Analytical Placement: A Linear or a Quadratic
Objective Function”. In Design Automation Conference, pages 427-431. IEEE/ACM, 1991.

M. Wang and M. Sarrafzadeh. “Behavior of Congestion Minimization During Placement”.
In International Symposium on Physical Design, pages 145-150. ACM, April 1999.

24

