
NRG: Global and Detailed Placement

Majid Sarrafzadeh Maogang Wang

Department of Electrical and Computer Engineering, Northwestern University

majid@ece.nwu.edu

Abstract

We present a new approach to the placement prob-

lem. The proposed approach consists of analyzing the

input circuit and deciding on a two-dimensional global

grid for that particular input.

After determination of the grid size, the placement

is carried out in three steps: global placement, detailed

placement, and �nal optimization. We will show that

the output of the global placement can also serve as a

fast and accurate predictor. Current implementation

is based on simulated annealing.

We have put all algorithms together in a placement

package called NRG (pronounced N-er-G). In addition

to area minimization, NRG can perform timing-driven

placement. Experimental results are strong. We im-

prove TimberWolf 's results (version 1.2, the commer-

cial version which is suppose to be better than all uni-

versity versions including version 7) by about 5 %.

Our predictor can estimate the wirelength within 10-

20 % accuracy o�ering 2-20x speedup compared with

the actual placement algorithm.

1 Introduction

Performance-driven, issues related to deep submi-

cron, reliability and many more factors make the

placement problem a real challenge. In this paper we

show that even the classical (area minimization) place-

ment problem is yet unsolved. We demonstrate some

general issues that need to be considered in designing

a placement algorithm. We will make use of them in

designing a new placement package called NRG.

In addition to good placement algorithms, we need

good predictors that can quickly estimate the place-

ment cost function.

Numerous approaches to the placement problem

has been proposed. For example, force directed [2,

7, 16] simulated annealing [11, 13], and partitioning-

based placement [4, 3, 6]. A constructive placement

method that employs resistive networks as a working

domain was proposed in [5]. In [15], there is a com-

parison between linear and quadratic cost functions.

The linear cost function used in GordianL placement

tool achieves results with up to 20% less area than

the quadratic cost function of the original Gordian

procedure. Therefore, in this paper, we will use the

half-perimeter cost function for area minimization.

Timing-driven placement problem has also been

studied. The notion of zero-slack was introduced in

[9]. In [8] criticality was used as a guide to select cells

from a cell library. For a history of the timing-driven

placement problem see [1, 14, 10].

In an attempt to simplify and possibly speed up the

placement process, this paper presents a new formu-

lation that splits the domain of the placement prob-

lem. We de�ne two new problems known as the global

placement and detailed placement problems. The in-

tuition behind our strategy is that we should be able

to quickly determine a good global placement of gates

for a circuit without devoting too much attention to

details. After performing the global placement, de-

tailed placement can concentrate further on the exact

position and timing of a gate given that its �nal gen-

eral vicinity is favorable and known.

One of the main issues in performing global place-

ment is determination of the global grid size. We will

show an arbitrary grid in the global placement prob-

lem is not necessarily good. Indeed, we show exam-

ples where a wrong choice of the grid produces very

bad placement results. We propose an input (circuit)

analysis scheme, based on breadth-�rst search of the

circuit, followed by a correlation analysis to decide on

the size of the global grid.

Once the grid size has bee determined global place-

ment phase starts. by performing iterative improve-

ment. Finally, a detailed placement followed by local

optimization is performed.

This paper is organized as follows: In Section 2

we introduce some terminology and modeling of the

problem. In Section 3 a motivating example is pro-

vided followed by a summary of the proposed NRG

placement tool in Section 4. In Section 5, details of

the proposed placement tool is discussed followed by

experiments in Section 6. We conclude the paper in

Section 7.

2 Terminology
In this paper we assume that we are given a syn-

chronous circuit denoted C(M;N), which consists of

a set of modules M = fMiji = 1; : : : ; jMjg, and a set

of nets N = fNiji = 1; : : : ; jN jg. The set of modules

consists of four subsets: primary inputs I, primary

outputs O, storage elements R, and combinational el-

ements A, i.e., M = I [O [R[A. A sample circuit

is given in Figure 1.

8

Figure 1: Sample circuit.

For this work, we use a row-based placement model,

which cover standard cell and sea of gates layout

styles. The concepts developed here can be applied

to other styles, however, we have not explored them

yet.

3 A Motivating Example: Linear

Placement
Consider the linear placement problem as shown in

Figure 2a. Consider a circuit Clin containing n mod-

ules. For simplicity, assume all modules have the same

width. Size of the solution space is n!, for there are n!

permutations of the modules.

A B C D E F

FEDCBA

(b) The corresponding 2-in-1 problem

(c) An optimal solution to the 2-in-1 problem

(d) Placement after final refinement

C F BAED

FED BCA

(a) An instance of 1-in-1 linear placement problem

Figure 2: Example of the linear placement problem.

Now, let's conduct an experiment. Suppose that

instead of n positions for the modules, we can use

only n=2 positions, with exactly two modules to each

position, as shown in Figure 2b. We will call the new

problem the 2-in-1 problem (meaning 2 modules in

one position) and the original problem 1-in-1. The

objective is to solve the 2-in-1 problem optimally as

shown in Figure 2c. Then re�ne it, that is, to \locally"

move the modules to their �nal position, as shown in

Figure 2d. The hope is that the two step approach can

�nd a good solution to the original problem. Thus,

we need to investigate the size of the reduced solution

space and its quality.

Fact 1 The search space in the 2-in-1 problem is re-

duced by a factor of 2n=2 with respect to the original

1-in-1 problem.

Proof: There are a total of n modules. In the 2-in-1

problem

�
n

2

�
of them can be placed in the leftmost

position. Once that is decided, we are left with n� 2

modules. Thus,

�
n� 2

2

�
modules can be placed in

the second position and so on. Thus, the total number

of solutions is:�
n

2

�
�

�
n� 2

2

�
�

�
n� 4

2

�
� : : :�

�
2

2

�

=
n� (n� 1)

2
�

(n� 2)� (n� 3)

2
� : : :

2� 1

2

=
n!

2n=2

2

Given that the solution space is reduced by a

\large" factor, there is a hope to obtain an optimal

solution to the 2-in-1 problem very quickly and then

re�ne it to obtain a good solution to the original prob-

lem. We call the 2-in-1 problem the global placement

problem (GP) and the subsequent re�nement, the de-

tailed placement problem (DP) and the combined step

the global-detailed placement (or GDP) problem. The

main question that remains is the quality of GDP. To

answer this question, we have done experiments on

a number of benchmarks. Lets look at the MCNC

benchmark highway2. Results are summarized in Ta-

ble 1. For quick prototyping, all methods used in the

table are simulated annealing (SA) based. In sum-

mary, Table 1 shows that in 4.1 seconds (1.4 plus 2.7)

we can obtain results that are of comparable qual-

ity to the best solution. Therefore, we can reduce

the search space without sacri�cing the qual-

ity. Certainly, this is just one small example. We will

show in later sections that that same behavior can be

observed in all benchmarks.

Method WireLength RunTime (sec)

1-in-1 14712 18

2-in-1 GP 15065 1.4

DP 14790 2.7

Table 1: Experiments with highway2 (62 cells).

Note that we can generalize the idea to 3-in-1 GP,

4-in-1, etc. Results of quality versus GP size is sum-

marized in Table 2. As can be observed, not every

GP size is suitable. Indeed, some produce very poor

results. We will make use of this observation in the

NRG placement algorithm.

2-in-1 4-in-1 8-in-1 16-in-1

GP 15065 15887 19535 19385

Time 1.4 1.3 1.3 1.1

DP 14790 15556 20180 17940

Time 2.7 2.8 3.1 3.3

Table 2: Various GP grids in highway2.

4 Summary of NRG

The main objective of global and detailed place-

ment (GDP) is to reduce the search space and thus

obtain better results faster. Two major advantages

are:

� It will be much faster to get a similar (or better)

placement results.

� It can be used as a very good placement predic-

tor. This feature will be very useful when used in

a logic-synthesis or high-level synthesis environ-

ment.

We divide the circuit placement problem into �ve

phases: input analysis, grid determination, GP, DP

and �nal optimization. In the next section, we will

elaborate on each step.

5 Details of NRG

In this section, we will discuss each phase of NRG.

5.1 Input Analysis

Consider a circuit C. It can be modeled as a hyper-

graph GC : Vertices associated with primary inputs of

C are called PI vertices. PO vertices are symmetrically

de�ned. We perform a breadth-�rst search (BFS) of

GC : PI vertices will be placeed in level 1, all vertices

connected to vertices in level iwill be placed in level i+

1. Level number of a circuit C is the number of levels in
BFS of the corresponding graph GC . Intuitively, given

two circuits with the same number of modules, the one

with a higher level number is less tightly connected

and thus easier to place. To account the number of

vertices, we de�ne the BFS number of GC as n divided

by the level-number, where n is the total number of

modules. BFS number of a circuit will be used in

determination of the GP grid.

5.2 Determination of the GP Grid

As observed before (in the linear placement exper-

iment), size of the global grid makes a big di�erence

in the result. Lets look at a similar experiment done

with Primary1. As shown in Table 3 di�erent GP

grids produce very di�erent placement results. Note

that we have run the algorithm very fast to obtain

these results. Thus, the �nal results is not as good

as the best we have obtained. The point is, even in

this case, we can get a sense of which grid size can po-

tentially produce good solutions. As can be seen, GP

grids of size 16�6 and 16�8 produces good placement

results.

2�2 4�4 8�8 16�2

GP 838800 919700 968700 870800

DP 1373500 1091600 1062600 1143800

16�4 16�6 16�8 16�10

GP 925400 963700 970900 991600

DP 1032100 982700 982500 1004200

16�12 16�14 16�16 16�18

GP 1022300 1022200 1033400 1037200

DP 1025700 1029000 1011000 992600

Table 3: Grid sizes in GP for Primary 1.

BFS number suggests whether a larger GP grid is

most suitable for the problem or a smaller GP grid.

To �nd the exact grid to choose, we perform a corre-

lation analysis. It basically determines the how well is

the cost function obtained during GP is correlated to

DP. The di�erence of wirelength between GP and DP

is shown is Figure 3. As can be seen the � function is

convex. Therefore we can perform a binary search to

�nd the right grid size. To �nd � for a given grid size,

we perform a very fast GP followed by a very fast DP.

Since simulated annealing is our current implementa-

tion, so a "fast" GP or DP can be easily obtained by

reducing the number of random moves at each temp-

ture.

GP cost - DP cost

+
2x2 4x4 16x2 16x4 16x6 16x10 16x12 16x1416x8

+
0

Grid size

16x1816x16

100000

200000

300000

400000

500000

+ + +

+

+

+

+

+
+

+

Figure 3: Correlation between GP and DP in Pri-

mary1

5.3 The Global Placement Problem

Consider an a�b GP grid imposed on the chip area.

A total of ab disjoint bins is obtained,

A good solution to the Global Placement Problem

will manage to keep a fairly even distribution while

minimizing the given cost function.

In this paper we propose the following Global

Placement Problem:

Given a standard cell circuit and a GP grid, as-

sign the modules to GP regions so as to mini-

mize a cost function based on the wirelength Fur-

thermore, assure that the modules are distributed

evenly among GP regions.

These two factors can be combined and expressed

as a singular objective cost function:

f(x) = PWIRELENGTH + �PGBCD (1)

where x is a certain placement needs to be evaluated,

PWIRELENGTH is the sum of the bounding box of all

nets and and PGBCD is the GP region distribution

penalty. � is a simple scaling factor.

We chose to use a simulated annealing approach

in iteratively improving the GP results. We de�ned

our move set as follows: pick two cells in two di�erent

bins and evaluate the cost of swapping them with each

other. We set all parameters using trial-and-error and

making use of published results, e.g., [12].

5.4 The Detailed Placement Problem

Given a \good" global placement, we must then cre-

ate a \good" �nal placement. This step is called the

detailed placement stage. Its goal is to take the global

bin assignments and produce a legal placement while

trying to minimize its objective function. We imple-

ment DP using a low tempreture annealer. The objec-

tive function is a combination of wirelength, overlap

penalty and row penalty. Contact the anthor for more

details.

5.5 Final Optimization

Althouth we put the overlapping penalty in the cost

function of DP, there still might be some overlapping

exist in the �nal placement of DP. So the �rst thing

we need to do is to perform a "clean up" operation to

shift cells to eliminate overlapping. After this is done,

we ip the cells. We chose to implement the same

algorithm reported in [11]. For details of this phase,

see [11].

5.6 Comparison of NRG with Other
Placement Algorithms

TimberWolf's commercial placement tool has a hi-

erarchical methodology which shows more or less the

similiar idea as NRG. The similarity between NRG

and TimberWolf's hierarchical placement is: Both al-

gorithms try to simplify the placement problem by try-

ing to determine an approximate location for each

module �rst.

Although they have the same goal in general, they

take di�erent approaches. First of all, the major dif-

ference lies between the idea of global vs. the idea

of clustering. Hierarchical placement is based on the

idea of clustering, i.e., by combining a certain num-

ber of cells to form a bigger cell(cluster) to reduce the

problem size. The main problem is once a cluster is

formed in an iteration it cannot be broken during an

iteration. Thus, modules do not have the required

moving exibility. So the problem arises that a move

might be good for only some modules in that moving

cluster but In NRG, we do not cluster the modules.

So, potentially, a move takes place only if it is good

for all modules.

6 Experimental Results

NRG placement tool were implemented in C++

and the experiments were run on a Sun Spark-20 work-

station. Five MCNC benchmark standcell circuits are

used for experiments. Table 4 lists the characteristics

of all 5 test circuits.

TestCase # Cells # IO # Nets # Rows

highway2 62 11 87 4

fract 125 24 163 6

struct 1888 64 1920 16

Primary1 833 107 1266 16

Primary2 3014 132 3817 32

Table 4: Testing benchmark circuits.

The �rst experiments we did was to compare NRG

with TimberWolfSC1.2.6 (the commercial version) us-

ing the half-perimeter cost function. We ran Tim-

berWolf three times on each benchmark and have re-

ported the best result of the three runs in Table 5.

NRG results have been obtained also by running the

algorithm three times. Since, NRG also use simulated

annealing in parts of it, di�erent outputs is obtained

in di�erent runs. However, NRG's output is more de-

terministic than that of TimberWolf. Results are sum-

marized in Table 5. As can be seen, NRG produces

results better than that of TimberWolf in most cases.

This is a surprising result, given that TimberWolf is

a \mature" tools and has many details not yet imple-

mented in NRG. It shows that better algorithms can

improve the placement quality.

Test Case TW NRG % improvement

highway2 9221 8646 6.2%

fract 26773 25602 4.4%

struct 314762 287631 8.6%

Primayr1 900745 894545 0.7%

Primary2 3401378 3412195 -0.3%
result from TimberWolf

result from NRG

highway2 fract struct Primary1 Primary2

0.125

0.250

1.000

0.875

0.750

0.625

0.500

0.375

Normalized Wirelength

Table 5: Wirelength result: NRG vs. TimberWolf

1.2.6

Table 6 shows how well GP can predict the cost

function. As can be seen the prediction error is within

3-20%. Therefore, in addition to providing a good

input to DP, GP can be used as a good predictor (e.g,

in a high-level synthesis system).

Table 7 shows the speed-up o�ered by GDP versus

the at approach and the quality tradeo�. In sum-

mary, by sacri�cing 1-3 % in quality a speed-up of 2x

is obtained.

7 Conclusions

We proposed a two-step (GP followed by DP) ap-

proach to the classical placement problem. It is very

Test Case NRG GP predict. % accur. spdup

highway2 8646 9009 4.2% 19

fract 25602 28494 11.3% 4.9

struct 287631 349399 21.4% 2.3

Primayr1 894545 918435 2.7% 7.3

Primary2 3412195 3941040 15.4% 5.1
result from NRG flat

result from GP prediction

highway2 fract struct Primary1 Primary2

0.125

0.250

1.000

0.875

0.750

0.625

0.500

0.375

Normalized Wirelength

Table 6: Wirelength result: NRG vs. GP prediction

important how the the placement problem is divided

between these two step. Algorithms, based on input

analysis, for determination of this division along with

techniques for performing GP and DP have been pro-

posed.

The two step approach allows for fast exploration

of the search space. It results in good quality solution

with about 3x speed-up. The notion of global and

detailed placement will be more important as design

problems get harder. We also showed that GP alone

can serve as a good predictor if the corresponding grid

has been carefully determined.

The notion of GDP can be coupled with most exist-

ing algorithms to speed them up and possibly produce

better quality solutions. Future work include theoret-

ical study of the quality of GP as a function of the

corresponding GP grid and inclusion of non-uniform

grids in GP.

Acknowledgments

This work was supported in part by the National

Science Foundation under Grant MIP-9527389.

References

[1] \Issues in Timing Driven Layout". pages 1{24,

1993. M. Sarrafzadeh and D. T. Lee, editors.

[2] H. Anway, G. Farnham, and R. Reid. \Plint

Layout System for VLSI Chip Design". In

Test Case HQ NRG Fast NRG % deg. spdup

highway2 8646 8877 2.7% 2.1

fract 25602 26075 1.8% 2.0

struct 287631 291078 1.2% 1.3

Primayr1 894545 904520 1.1% 2.0

Primary2 3412195 3512926 3.0% 1.3

highway2 fract struct Primary1 Primary2

0.125

0.250

1.000

0.875

0.750

0.625

0.500

0.375

Normalized Wirelength
result from NRG fast

result from NRG flat

Table 7: Wirelength result: Fast NRG vs. high-

quality

Design Automation Conference, pages 449{452.

IEEE/ACM, 1985.

[3] M. A. Breuer. \A Class of Min-cut Placement

Algorithms". In Design Automation Conference,

pages 284{290. IEEE/ACM, 1977.

[4] M. A. Breuer. \Min-cut Placement". J. De-

sign Automation and Fault-Tolerant Computing,

1(4):343{382, 1977.

[5] C. K. Cheng and E. S. Kuh. \Module Place-

ment Based on Resistive Network Optimization".

IEEE Transactions on Computer Aided Design,

3(3):218{225, 1984.

[6] A. E. Dunlop and B. W. Kernighan. \A Proce-

dure for Placement of Standard Cell VLSI Cir-

cuits". IEEE Transactions on Computer Aided

Design, 4(1):92{98, January 1985.

[7] C. P. Hsu et al. \APLS2: A Standard Cell Layout

System for Double-layer Metal Technology". In

Design Automation Conference, pages 443{448.

IEEE/ACM, 1985.

[8] S.P. Lin, M. Marek-Sadowska, and E.S. Kuh.

\Delay and Area Optimization in Standard Cell

Design". In Design Automation Conference,

pages 349{352. IEEE/ACM, 1990.

[9] R. Nair, C. L. Berman, P. S. Hauge, and E. J.

Yo�a. \Generation of Performance Constraints

for Layout". IEEE Transactions on Computer

Aided Design, CAD-8(8):860{874, August 1989.

[10] M. Sarrafzadeh and C. K. Wong. An Introduction

to VLSI Physical Design. McGrwa Hill, 1996.

[11] C. Sechen. VLSI Placement and Global Routing

Using Simulated Annealing. Kluwer, B. V., De-

venter, The Netherlands, 1988.

[12] C. Sechen and K. W. Lee. \An Improved Simu-

lated Annealing Algorithm for Row{Based Place-

ment". In Design Automation Conference, pages

180{183. IEEE/ACM, 1988.

[13] C. Sechen and A. Sangiovanni-Vincentelli. \Tim-

berWolf3.2: A New Standard Cell Placement and

Global Routing Package". In Design Automation

Conference, pages 432{439. IEEE/ACM, 1986.

[14] N. A. Sherwani. Algorithms For VLSI Physical

Design Automation. Kluwer Academic Publish-

ers, 1993.

[15] G. Sigl, K. Doll, and F. M. Johannes. \Analyt-

ical Placement: A Linear or a Quadratic Objec-

tive Function". In Design Automation Confer-

ence, pages 427{431. IEEE/ACM, 1991.

[16] T. Ohtsuki T. Sudo and S. Goto. \CAD Systems

for VLSI in Japan". In Information and Control,

volume 59, 1983.

