
A Standard-Cell Placement Tool for Designs with High Row Utilization

Abstract
In this paper we study the correlation between wirelength and routabil-
ity for standard-cell placement problem, under the fixed-die place-and-
route environment. We present a placement tool with better routability
for designs with high row utilization. Compared to a well-known indus-
trial placement tool, our placer produces placements with equal or better
routability, 13.2% better half-perimeter wirelength, 15.3% better routed
wirelength, and 9.1% less vias. Compared to a state-of-the-art academic
placement tool Capo, our placer produces placements with significantly
better routability, 14.5% better half-perimeter wirelength, 18.1% better
routed wirelength, and 8.2% less vias. Experimental results show that
purely minimizing wirelength, without congestion optimization, still im-
proves routability and layout quality. Several novel algorithmic details
are presented in the paper with experimental results. The framework and
detailed implementation of our placer are described and various place-
ment techniques are investigated. Additionally, we have built a set of
benchmarks with reasonable circuit sizes and standard-cell sizes.

1. Introduction
Standard-cell placement problem has drawn extensive research atten-

tion in VLSI CAD area ever since its appearance. Nowadays, in spite
of wide use of hierarchical design methodology and floorplanning, the
problem of placing standard-cells remains one of the important topics.
This problem is becoming more challenging because of two reasons.
First, the circuit sizes are growing dramatically. The Semiconductor Re-
search Corporation (SRC) suggests that we should be able to place de-
signs containing up to one million cells within 16 hours. Such a problem
size means that there exists a huge space between the optimal solution
and the best solution by any known heuristic. The second reason is the
multi-objective placement process. In addition to the traditional objects
such as routability and timing, more issues must be taken into account
during the placement, e.g., cross talk, power. The placement problem
becomes harder when considering these objectives.

One common classification for traditional placement methods is to
put them into four basic categories: min-cut placement [1, 2], simulated
annealing [3], analytical method [4, 5], and force-directed approach [6].
However, recently proposed placement tools rarely reside in any one of
these categories. Most of them are more or less hybrid models1. Four
classical techniques, plus clustering and flow-based method, frequently
appear in these relatively new placement algorithms [10, 11, 12, 13, 14,
15, 16, 17, 18]. In addition to the above approaches that address half-
perimeter wirelength, many techniques are proposed for timing [19, 20,
12, 21, 22, 23] and congestion [24, 25, 26] optimization. Most of them
are based on wirelength minimization.

Wirelength is the fundamental objective in standard-cell placement
problem. It is generally believed that a timing or congestion oriented
approach can hardly be successful without a good wirelength minimiza-
tion engine. The idea of timing driven placement is to reduce the wire-
lengths on certain paths instead of the total wirelength. A placement
with shorter total wirelength is relatively easier to be modified to meet
timing constraints. Similarly, a good placement with optimized wire-
length has a higher probability that its congested regions are relatively
smaller or less serious.

The major contributions of this paper are the following. First, we
study the correlation between half-perimeter wirelength and routability
under practical physical design environment (using practical designs and

1Some exceptions are [7, 8] (pure min-cut) and [9] (analytical, with flow
method in detailed placement).

an industrial router). We claim that the desire to shorten half-perimeter
wirelength would never hurt although there does exist a mismatch be-
tween wirelength and routability. Second, we present a state-of-the-art
placement tool with superior quality on both wirelength and routability.
For designs with high row utilization, this tool produces placements with
better routability compared to a well-known commercial tool. Finally,
we describe several novel algorithmic details and many implementation
elements of the proposed placement tool. As a side effect of this work,
we have built a set of benchmarks for routability study which we believe
are more relevant than current placement benchmarks in the academic
research community.

The remainder of this paper is organized as follows. In Section 2,
we describe the work background and environment. We then introduce
the framework of our new standard-cell placement tool in Section 3.
In Section 4, we explain the relevant aspects of implementation, and
present novel algorithmic details. Section 5 shows the superior quality of
the placement tool by comparing it with an industrial tool. We conclude
and discuss future works in Section 6.

2. Background

2.1 Routability

For standard-cell placement, in order to study routability problem
with high credibility, a good router is necessary. In this work we use
a mature industrial router to evaluate placement quality.

In addition to the success/failure of the routing, the number of vio-
lations is an essential indicator of the routability. Another measure of
routability is the routing time. In our experiments we often observe big
difference (sometimes one is 5 or 6 times longer than another) on rout-
ing time for two placements, even though both routings are successful.
Shorter routing time means less iterations on rip-up and re-route to fix
the violations, thus corresponds to better routability.

Total routed wirelength and the number of vias are two measurements
of layout quality (not routability) if the routing is successful. They are
not very useful if the routing fails, but still good indicators for evaluating
placement quality.

2.2 Benchmarks

Collecting benchmarks is an inevitable step of this work. The old
MCNC benchmarks are small (except one circuit). Recent IBM-PLACE
benchmarks [14] are in reasonable size, but lack physical information.
We scale circuits in IBM-PLACE to match the standard-cell sizes in
a 0.18µm library, which was obtained from Artisan Components Inc.
through the academic research support program. We then output a pair
of LEF/DEF files and use an industrial floorplanner to decide the core
size and rows. Using an industrial place-and-route tool as the standard,
we found the transitional benchmarks by changing the number of rout-
ing tracks between rows, and the number of routing layers.

The above benchmarks do not have power, ground and clock net. To
acquire real designs, we downloaded ISPD01 benchmarks [22]. These
benchmarks are in structural verilog file format. We use an industrial
synthesis tool to compile them with 0.18µm standard-cell library, and
then perform the same procedure as described above. After the proce-
dure we have benchmarks of real designs.

2.3 Variable-die and fixed-die

A good description of fixed-die and variable-die can be found in [7].
Most previous placement techniques were developed under the variable-

die assumption2, while fixed-die is the common style in the real de-
sign world. Fortunately, the gap is not as big as it looks, because most
placement techniques do not care whether variable-die or fixed-die is
used. Nevertheless, the difference does exist. One obvious example
is: in fixed-die placement with large white space, placing all the cells
close to each other will get better wirelength. But the congestion will
be worse than a spread-out placement. The trade-off between conges-
tion and other metrics (wirelength, delay) must be made. Also it is very
hard for placement tool to handle congestion without knowledge of rout-
ing tracks, as an excessive congestion estimate leads to more efforts on
congestion minimization, impairing wirelength and delay.

Handling congestion in fixed-die mode is beyond the scope of this
paper. We deliberately choose very small white space for all bench-
marks. For these benchmarks, there is no difference between variable-
die and fixed-die approaches. We want to understand the wirelength and
routability problem in this context, and then move forward to the place-
ment with typical fixed-die mode, i.e., larger white space. Specifically,
we set white spaces of all the benchmarks less than 2%, corresponding
the row utilization more than 98%. We believe that under this high uti-
lization circumstance, the study on the wirelength and routability will
help us understand the correlation between them3.

3. Framework of Our Placement Tool

3.1 Overview

The flow of our placement tool is shown in Fig. 1. This is a similar
flow as in [14]. Compared to the work in [14], our placement flow con-
tains different features which will be described in Section 4. We also
address some practical problems on which [14] does not give the an-
swer. These problems include the limitation on the number of rows and
balancing the lengths of rows.

The main placement flow consists of two parts: recursive bisection
and simulated annealing. These two techniques appeared very early in
the literature of standard-cell placement and have proven effective. The
recent advances in multilevel partitioning [27, 28] and their implemen-
tations imposed effects on the placement research in academia. Several
placement tools [7, 14, 8] were proposed based on them.

As Fig. 1 shows, the given circuit is recursively partitioned along
alternatively horizontal and vertical cut line. The subcircuits after par-
titioning are assigned to rectangular bins. At some points a bin-based
simulated annealing (i.e. the moving objects are the subcircuits in the
bins) is performed to improve the current placement. Such a procedure
terminates when certain stop criteria (e.g. average number of cells per
bin is less than a given number) are satisfied. An adjustment step is then
executed to fit the current bin-based placement into row structures. The
next step is a cell-based simulated annealing. The bin structure still ex-
ists and the cells are moved between the centers of bins. The locations
of these centers can be changed during the annealing procedure. Af-
ter that, the final step simply spreads overlapped cells, and makes local
improvement to obtain the detailed placement.

3.2 Advantages and Disadvantages

Implementation
Multilevel partitioning implementation is available in source code or

C library files. In our case we use hMetis [27] as the partitioning tool.
Also, the cooling schedule of simulated annealing is well-known. Com-
pared to analytical or flow-based approaches, this flow is easier to be
implemented.

2There were a few placement papers presenting experimental results on
fixed-die mode, including [7] and [22]
3The benchmarks in [7] have various white space ratio up to 30%. In
this case, the half-perimeter wirelength in placement is no longer a good
indicator of routability.

Remove Overlap
Local Impr.

Annealing with
Bin Structure

Cell−based

Recursive
Bisection

Bin−based
Annealing

Adjust Bins
to Rows

Fig. 1: Framework of Our Placement Tool

Simulated Annealing
A weakness of pure min-cut type placement is its irreversibility: once

a cell is assigned to one side of the cut line, it will never move to the
other side to improve the placement. Combining simulated annealing in
this flow helps placements move out of the local minima.

We use multilevel simulated annealingin this placement flow. It is
similar to the hierarchical annealing used in [29]. The key idea is to
reduce the number of movable objectives in annealing. The difference
between our flow and [29] is: instead of using a single cooling schedule
through three hierarchical levels, we use low temperature annealing at
each level and do not fix the number of levels. Moreover, we avoid
using simulated annealing at final placement stage and use a fast greedy
improvement instead. Our final placement step takes approximately 5%
of the total runtime, while the final annealing stage in [29] often takes
more than 70% of the total runtime.

Both bin annealing and cell annealing use total wirelength as the cost
function. Also they adopt the same cooling schedule. Swapping is the
main move in both types of annealing and shifting is lightly used in cell
annealing (discussed in Section 4.5).

The disadvantage of simulated annealing is its expensive runtime cost.
Although our flow tries to reduce this cost by bin-based approach, an-
nealing is still the most time consuming part.

Bin Based Approach
Bin based placement is widely used [11, 14, 17]. The advantage is that

its regular structure provides various ways to speed up computationally
expensive operations in placement. At the cell annealing step in our
flow, bin structure confines the change of every move to be local. This
is much faster compared to the old “flat” annealing, in which every cell
move or swap changes locations of many other cells.

The weakness of bin based method is that it requires that the cells are
equally divided into bins. Therefore the tolerance (or unbalance factor)
of partitioning has to be small. This often degrades the quality of par-
titioning. Another drawback is that the bin based method can hardly be
extended to handle big macro cells.

There are two additional problems caused by bin-based structure: the
limitation on number of rows and bin unbalance. They are solved by
two new approaches proposed in this work. Please see Section 4.3 and
Section 4.4 for details.

3.3 Data Structure

In addition to cells, models and nets, pin structure is indispensable.
Pins of the same cell (or net) should be placed together in memory for
higher efficiency4. The other net (or cell) to pin mapping could be im-
plemented by a linked list.

Bin structure contains a double linked list for all cells in the bin. This
is for cell annealing within bin structure. Like the linked list for pins,
the linked list for bins can be built statically, as every cell belongs to one
and only one bin.

Two data structures can be used to speed up the bin annealing step. A
new net list could be created by eliminating the same nets or an external
net list could be built for every bin (internal nets are useless). We use
the second method in the implementation.

Each net has two fields other than the basic data. One is to save the
current bounding box before calculating new value. Thus a failure move
trial in annealing does not need computing bounding box again. The
other field is an integer tag indicating that the net was already visited
when swapping two cells or cell groups.

It is very useful, at the final placement stage, to sort the cells within the
same row and build a double linked list for each row. The reason is that
we need to quickly find neighbors of a given cell at local improvement
step.

4. Detailed Implementations
In this section, we present details of implementation for this place-

ment flow. Due to the space limitation, not every detail is showed with
support of experiment data. However, all of them are real problems we
have encountered and every conclusion comes from many experimental
runs.

4.1 Cut Minimization and Wirelength

Cut minimization is the basis of min-cut type placements. It is also the
key factor in our hybrid placement flow. The quality of the partitioning
affects the final wirelength result substantially.

However, if we compare a min-cut placer and our placer by analyzing
the net-cut sequence for the final placements, opposite phenomenon is
showing. The placement produced by a min-cut placer has better net-cut
at the first several levels than our placer, while our placer outputs place-
ment with shorter total wirelength. Fig. 2 illustrates this observation.

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12

A
ve

ra
ge

 C
ut

Placement Level

Net−cut at different Placement Level for test circuit 1

Pure Partition
Min−cut Placer

Our Placer

Fig. 2: Net-cuts at different placement levels. The curve of the place-
ment by our placer corresponds higher net-cuts at the coarser place-
ment levels, compared to the placement by min-cut approach. The
curve of “Pure Partition” indicates the net cuts obtained by recur-
sive bi-partitioning without terminal propagation.

This suggests that, at earlier levels of our placement flow, the cut min-
imization does not have to be greedy. In other words, we only need to

4This is because the increment (by one) operation is faster than an add
operation in most machines.

test circuit 1 test circuit 2
level wirelength runtime level wirelength runtime

1 4.300 130 1 4.524 130
2 4.273 124 2 4.544 120
3 4.324 119 3 4.561 110
4 4.317 112 4 4.549 96
5 4.361 97 5 4.598 70
6 4.347 65 6 4.539 40
7 4.368 52 7 4.560 16

Table 1: Wirelength and runtime comparison for placement using
different partitioning effort. level indicates at which placement level
we start using high-quality partitioning (longer runtime). Before
that level the partitioning is in the fast mode (worse quality). Wire-
lengths are in meters. Runtime is total partitioning runtime in sec-
onds. Every entry is the average value from three placement runs.

test circuit 1 test circuit 2
level wirelength level wirelength

1 4.316 1 4.560
2 4.328 2 4.521
3 4.322 3 4.608
4 4.264 4 4.508
5 4.305 5 4.503
6 4.311 6 4.582
7 4.329 7 4.492

Table 2: Wirelength and runtime comparison for placement using
different terminal propagation strategies in partitioning. level indi-
cates at which placement level we start using terminal propagation
in partitioning. Wirelengths are in meters. Every entry is the aver-
age value from three placement runs.

do a reasonable job for early partitionings. Runtime cost can be reduced
without much loss of quality. Experimental results showed in Table 1
support this point. The total runtime of partitioning can save up to 88%
without much loss in the quality of final placement.

4.2 Terminal Propagation

Terminal propagation is the essential technique to the success of min-
cut type placement. It leads to better bisection results for placement
compared to thepurepartitioning. This is because terminal propagation
uses geometrical information of external terminals.

However, in our placement flow that combines partitioning and simu-
lated annealing, terminal propagation is not as important as it is in min-
cut placement flow. The reason is the following. In pure partitioning,
although wrong decisions for cells are likely to be made without con-
sideration of external terminals, these mistakes can be fixed in the later
annealing stages. In addition, ignoring external connections may entail
partitioner to focus on internal connections, leading to a better partition-
ing solution.

We conduct the following experiments to study terminal propagation
in both our flow and min-cut placement flow. Table 2 lists the final wire-
length comparison for different terminal propagation usages. Experi-
ments show that in our placement flow, it is better not to start terminal
propagation too early or too late. Some medium levels are more reason-
able points to start using terminal propagation.

4.3 From Bins to Rows

An inevitable problem for the bin based approach is the difference
between the number of rows in the design and the number of rows in
the bin grids5. Because of this limitation, previous experiments of bin
based approach were performed by the aid of detailed placer (e.g., [15]),
or on the benchmarks that have 64 or 128 rows (e.g., [14]). We devise a

5Unbalanced partitioning (used in min-cut placement) does not apply
here, because bin annealing requires that all bins have roughly the same
size.

simple-but-effective adjustment step and put it before the cell annealing
process. The basic idea is to merge all the cells within the same column
in the bin grids, and then evenly divide them into rows. Fig. 3 explains
the algorithm.

Input: Placement with overlapped cells atm�n bins, and number of
rowsr
Output: Placement atm� r bins
for ith column in bin grids, 1� i �mdo

Sort all the cells within this column and put them into an arraycol()
curr width 0
for each cellc col(j), 1� j � sizeo f(col) do

cell width the width of cellcol(j)
y(j) curr width+cell width=2
curr width curr width+cell width

end for
total width total cell width for cells incol()
for each cellc col(j), 1� j � sizeo f(col) do

bin x the original bin x-coordinate for cellcol(j)
bin y by(j)=(total width=r)c
Put cellcol(j) into bin (bin x;bin y) at new bin grids

end for
end for

Fig. 3: Algorithm to adjust bins into row structure

This adjustment step does not consider connections between cells,
rendering quality loss of wirelength. In experiments we observed about
3% worse wirelength after this adjustment step6. A flow-based algo-
rithm could be used for this specific problem and lead to better solution.
However, minor loss of quality in this step is acceptable since the fol-
lowing cell annealing will cover the loss.

The adjustment step will make all rows equally long if we can put
fractional cells into bins. However, due to the variety of cell widths,
the formed rows have different lengths. In experiments we observed
�10% discrepancy for row lengths. Section 4.5 will discuss issues on
row balance control.

4.4 Cell Annealing with Bin Structure

We propose a new approach at the cell annealing stage. Specifically,
we allow cell moves between bins while changing the centers of bins.
Fig. 4 explains the difference between this method and previous ap-
proaches. In the figure, (a) and (b) were used in [19]; (c) was used in
[11, 14]; (d) is the new method in our approach.

In (a), cell clusters, not cells are swapped during simulated anneal-
ing. The freedom of cells are confined by clusters. In (b), cells are next
to each other. Moving a cell will change all the locations of cells on
the right. Although the authors in [19] employed wirelength estimation
technique, this flat annealing is still the most time consuming part. (c)
was used in [11, 14]. Its drawback is that all the bins have the same width
while every bin has different total cell width. This problem becomes se-
rious especially when the average number of cells per bin is small, or
the cell widths vary considerably. In this case the improved wirelength
does not correlate to the true wirelength after spreading cells. (d) is new
method in our approach. The idea is to keep cells overlapped at bin cen-
ters for speeding up cost evaluation process. However, the bin widths
are not fixed. The center of a bin will be updated periodically in the
simulated annealing7, according to the summation of bin widths for all
the bins on the left. As the temperature becomes lower, less moves are
accepted, thus the changes of bin widths become smaller. This proce-
dure of minimizing wirelength will converge at the end. The overlapped
6The comparison is made when the number of rows in the bin grids does
not change after adjusting. Otherwise the wirelengths are not compara-
ble.
7For example, before the temperature change.

Cluster swapping
(b) Flat annealing(a) Variable−width clusters

Cell swapping

Cell swapping
(c) Regular bins

Cell swapping
(d) Variable−width bins

Fig. 4: Comparison between different move types in simulated an-
nealing. (a),(b),(c) are previously used methods and (d) is our new
approach.

placement obtained by this method correlates well to the placement after
spreading out cells, providing a good initial point for detailed placement.

It should be noted that the method of variable-width bins could be
extended to low-density standard-cell designs. White space, or feed-
through area can be assigned into bins and the simulated annealing ap-
proach can still be applied. The only difference is that the bins are wider
now — it contains not only the cells but also the white space. Detailed
placement process needs to be modified accordingly.

4.5 Balance Control

Control of the maximum row length is a very important topic for de-
signs with high row utilization. A gradual budget assignment approach
was proposed in [16] on this problem. In our placement flow, the row
unbalance comes from the inexact bisections and bin annealing. It is
well-known that low tolerances of partitioning result in suboptimal ob-
jectives. Moreover, due to the accumulation of the unbalance for a series
of partitionings, it is extremely hard to control the row balance by low-
ering the tolerance in partitioning. Similarly, in the bin annealing stage,
banning the cluster moves that violate row balance substantially confines
the freedom of clusters and results in loss of placement quality.

The bin adjustment method in Section 4.3 partially helps reducing the
row unbalance, yet it cannot eliminate the unbalance. The author in [9]
uses a network flow based algorithm to solve the balancing problem.
We simplified the flow model in which cells can only be moved between
adjacent rows and implemented the similar approach.

The cell annealing stage provides a good opportunity to control the
maximum row length. There are two ways to achieve this objective:
penalizing the overflowed rows, or disallowing moves that violates row
balance. The former needs fine tuning of simulated annealing for appro-
priate coefficients, while the latter is relatively easy. According to our
simplicity principle, we adopt the second approach in our work.

Another detail for the implementation of cell annealing is the choice
of move types. We allow both cell swapping and cell shifting, i.e., mov-
ing a cell from one bin to another. Experiments show that introducing
cell shifting not only improves wirelength results, but also greatly helps
the balance control. Moreover, our experience indicates that the flow-
based row adjustment method is unnecessary in our flow — cell based
annealing solves the balance problem well.

In our experiments, we observed that balance control for very tight
design (e.g., 0.01% white space) is very difficult and usually leads to
significant loss of quality. Considering that this very tight design is less
relevant with current fixed-die issue, we do not further discuss balance
control problem for very tight designs.

test circuit 1 test circuit 2
stage random optimal random optimal

spreading spreading spreading spreading
after cell annealing 4.50 4.06

after spreading 4.68 4.55 5.20 4.79
after local impr. 4.52 4.52 4.46 4.41
Impr. at last step 3.4% 0.7% 14.2% 7.9%

Table 3: Comparison of final placement wirelengths using random
spreading or optimal spreading. Although optimal spreading gives
better wirelength at this step, the final wirelength after local im-
provement step is similar to that of random spreading.

4.6 Spreading Cells

At the beginning of the final placement stage, we face the problem of
spreading the cells within the bins. The authors in [30] use the optimal
placer for small placement instances. We integrated the same branch-
and-bound algorithm to spread cells in bins with less than 8 cells. How-
ever, we found that this step is unnecessary in our placement flow, as the
later local improvement covers the difference between an optimal spread
and a random spread.

Table 3 shows that the gain from optimal spreading cells is shadowed
by the later local improvement step. This is not the first time we have met
the situation: an optimization at a given step may not be necessary due
to the following optimizations. We hope that the experience obtained
from experiments will be helpful for understanding placement problem
in a global view.

4.7 Resource Aware Placement

In the over-the-cell routing context, each routing layer has different
rules on wire width and wire spacing. Also, a portion (or all) of layer
metal-1 usually is occupied by the standard-cells. Thus the routing re-
sources for horizontal wires and vertical wires are indeed not equal.
Placement algorithms should take this difference into account to im-
prove routability. However, previous placement work has not mentioned
about this issue.

In our benchmarks which use 4-layer or 6-layer routing, the horizontal
routing resources are less than vertical ones. Correspondingly, horizon-
tal wirelength should have higher weights compared to vertical wire-
length during the placement. We conduct experiments to evaluate the
correlation between routability and wire direction.

One way to shorten horizontal wirelength is adding a weight for hor-
izontal length when calculating bounding box of a net. This introduces
floating point operations in the bounding box computation, which is the
innermost operation of the simulated annealing. Another method is to
increase the width of the core area while keeping the height unchanged
during the bin annealing stage. This way the horizontal wirelength will
be less than that of the original approach as they have higher cost. We ex-
pect better routability although the total wirelength will likely increase.

In min-cut type placement, however, the weighting method does not
apply. We can use thecut sequence method proposed in [8] to affect
the horizontal/vertical wirelengths. An observation is: for a partitioning
based placement that alternatively uses horizontal and vertical cut, if we
use horizontal first cut, the final horizontal wirelength will be shorter
than that of using vertical first cut.

Table 4 shows the experimental results on dealing horizontal/vertical
wirelengths separately. We run the industrial tool and our placer to get
different half-perimeter wirelengths. For each placement run, horizon-
tal, vertical and total wirelengths are reported. Routing results are also
reported, including number of violations, routed wirelength and routing
time. The table shows that for our placement flow, the horizontal/vertical
wirelengths are not significantlly affected by the first cut. However, the
xfactor, which indicates the weight of the horizontal wires, does affect
the lengths of different directions. Also the routability (measured by
routing time) becomes better as the horizontal wirelength decreases.

Placement Routing
Placer and Options total horizontal vertical

W L W L W L vios W L time
Industrial de f ault 6.97 2.96 4.01 0 9.34 49

horizontal first 5.69 2.98 2.71 0 8.09 64
vertical first 5.59 2.98 2.62 0 7.92 60

Ours xfactor = 1.1 5.64 2.64 3.01 0 7.58 31
xfactor = 1.3 5.74 2.88 2.86 0 8.02 42
xfactor = 1.5 5.76 2.52 3.24 0 7.72 47
xfactor = 1.7 6.14 2.55 3.59 0 8.24 29

Table 4: Observation on the relationship between routability and
horizontal/vertical wirelengths for benchmark ibm01. Wirelength
is in 105 microns. Routing time is in minutes. For each placement
run, horizontal and vertical wirelengths are reported as well as total
wirelength. We control the first cut as horizontal one or vertical
one, and report the result for each run. xfactor means that we give
higher weights for horizontal wires during placement, resulting in a
relatively shorter horizontal wirelength.

The relationship between routability and different wire direction should
be studied further. We do not report the results of our placer using xfac-
tor in Section 5 because (a) usually it does not make much difference on
routability in our experiments (only routing time changes) and (b) we
want to understand the correlation between routability and pure wire-
length minimization.

5. Experimental Results
Our placement tool has been implemented in C. We tested the tool on

a series of selected benchmarks. These benchmarks originate from the
designs used in [22] and [14], and are carefully created as described in
Section 2.2. The circuit features are listed in Table 5.

white row core routing
circuits cells rows tracks space util: util: layers

matrix 3,083 56 0 1.06% 98.94% 98.94% 4
VP2 8,714 100 0 1.80% 98.20% 98.20% 4

32-MAC 8,902 84 4 1.36% 98.64% 68.29% 4
64-MAC 25,616 143 6 1.64% 98.36% 59.07% 4
ibm01 12,028 106 3 0.68% 99.32% 74.49% 4
ibm02 19,062 146 0 0.67% 99.33% 99.33% 6
ibm03 21,879 149 0 0.32% 99.66% 99.66% 6
ibm04 26,332 174 0 0.61% 99.39% 99.39% 6
ibm07 44,811 222 0 0.92% 99.08% 99.08% 6
ibm08 50,672 240 0 0.71% 99.29% 99.29% 6
ibm09 51,382 235 0 0.91% 99.09% 99.09% 6
ibm10 66,762 307 0 1.00% 99.00% 99.00% 6

Table 5: Tested circuit statistics, including number of cells, number
of nets, number of rows, number of routing tracks between rows,
row utilization, core utilization, core are and number of routing lay-
ers. Core area is in 106 square microns.

We compared our placement tool with a well-known industrial placer,
Cadence QPlace (Silicon Ensemble, Version 5.3), and a state-of-the-art
academic placer, Capo (September 2001 version).8 All three placers
read LEF/DEF files and output placement results in DEF format. We
then use Cadence WarpRouter to read the placement outputs and do
global and final routing. We consider the routing resultsuccess (no vio-
lation),finished (with a small number of violations) orfailure (too many
violations or out of time). In the case of successful and finished rout-
ing, the number of violations, routed wirelength and number of vias are
reported.

8We do not compare the work in [14] (Dragon2000) because: (a)
Dragon2000 can not read LEF/DEF files, and (b) Dragon2000 has the
limitation on the number of rows.

Table 6 shows the comparison. All the reported wirelengths are in
meters and the runtimes are in minutes on Sun Ultra10 workstation with
400MHz CPU. Due to the immense runtime, we only run each place-
ment once.

Compared to QPlace, our placer produces placements with similar
or better routability and significantly better layout quality for all tested
circuits. For 2 out of total 12 circuits, our placer produces routable
placement (without routing violation) while QPlace fails to do so. For
2 circuits both placers fail. For rest of the circuits, our placer’s result
corresponds to shorter half-perimeter wirelength, shorter routed wire-
length and less vias. For some benchmarks, the routing times for the
placements produced by our placer are much shorter than those from the
QPlace. (64-MAC, ibm02 and ibm07). Compared to Capo, our placer
shows significantly better ability to produce routable placement.

The wirelength and via improvements by our placement tool are sum-
marized in Table 7. Compared to QPlace, on average we reduce the
routed wirelength by 15.3% and vias by 9.1%. The half-perimeter wire-
lengths produced by our placer are on average 13.2% shorter than those
by QPlace. Compared to Capo, on average we reduce the routed wire-
length by 18.1% and vias by 8.2%. The half-perimeter wirelengths pro-
duced by our placer are on average 14.5% shorter than those by Capo.

Our placement tool usually takes 5 - 10 times longer runtime than
QPlace. It is still reasonable. We have tested our placer using the biggest
circuit which has 220,000 cells. It takes about eight hours to place it
on a PC with 733MHz CPU9. We expect that our placer can be speed
up by a factor 2 or 3, using approaches better exploiting the bin based
data structure. At this moment we focus on quality rather than speed,
as a placement with good quality often saves a great amount of time in
routing.

6. Conclusion
The main idea of this paper is a simple-but-good-enough placer for

wirelength minimization. We have shown that minimizing wirelength
is still the important topic for routability, even in modern fixed-die con-
text. We hope that the simplicity of the placer can help future studies
on more complex issues in placement process, such as meeting timing
constraints.

We have shown the superior routability of the placements produced
by our placer. Compared with the industrial tool and the state-of-the-
art academic tool, our placer produces placements with equal or better
routability, and much better layout quality after routing. Our future work
includes fix-die placement method for designs with general white space,
e.g., 50-80%. We believe congestion optimization, as well as wirelength,
is the essential step to achieve routability for general fix-die placement.

7. References
[1] M. A. Breuer. “A Class of Min-cut Placement Algorithms”. InDesign Automation

Conference, pages 284–290. IEEE/ACM, 1977.
[2] A. E. Dunlop and B. W. Kernighan. “A Procedure for Placement of Standard Cell

VLSI Circuits”. IEEE Transactions on Computer Aided Design, 4(1):92–98, January
1985.

[3] C. Sechen and A. Sangiovanni-Vincentelli. “TimberWolf3.2: A New Standard Cell
Placement and Global Routing Package”. InDesign Automation Conference, pages
432–439. IEEE/ACM, 1986.

[4] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J. Antreich. “GORDIAN: VLSI
Placement by Quadratic Programming and Slicing Optimization”.IEEE Transactions
on Computer Aided Design, 10(3):365–365, 1991.

[5] G. Sigl, K. Doll, and F. M. Johannes. “Analytical Placement: A Linear or a Quadratic
Objective Function”. InDesign Automation Conference, pages 427–432. IEEE/ACM,
1991.

[6] S. Goto and E. S. Kuh. “An Approach to the Two-Dimensional Placement Problem in
Circuit Layout”.IEEE Transactions on Circuits and Systems, 25(3):208–214, 1978.

[7] A. E. Caldwell, A. B. Kahng, and I. L. Markov. “Can Recursive Bisection Alone
Produce Routable Placements?”. InDesign Automation Conference, pages 477–482.
IEEE/ACM, June 2000.

9The placer in [9] spends six hours for a circuit with 200,000 cells.

Circuits Placer Placement Routing
W L time� result vios WL vias time

QPlace 0.10 0.5 Success 0 0.12 21556 1
matrix Capo 0.10 0.4 Success 0 0.13 21669 1

Ours 0.09 2.2 Success 0 0.11 21127 1
QPlace 0.38 1.2 Success 0 0.49 69913 15

VP2 Capo 0.36 1.1 Success 0 0.51 69257 5
Ours 0.33 9.1 Success 0 0.42 66185 39

QPlace 0.51 1.4 Success 0 0.69 95087 12
32-MAC Capo 0.56 1.3 Success 0 0.74 81382 20

Ours 0.46 10.9 Success 0 0.64 82440 17
QPlace 2.07 5 Finished 462 3.40 326344 439

64-MAC Capo 2.08 5 Success 0 2.88 264713 18
Ours 1.93 24 Success 0 2.60 252092 17

QPlace 0.70 3 Success 0 0.93 133383 49
ibm01 Capo 0.63 2 Failure - - - -

Ours 0.57 33 Success 0 0.81 126861 64
QPlace 1.62 7 Success 0 2.41 315699 103

ibm02 Capo 1.52 4 Finished 1 2.35 316261 111
Ours 1.44 65 Success 0 2.11 293244 50

QPlace 1.66 6 Success 0 2.06 253085 19
ibm03 Capo 1.80 4 Success 0 2.44 282647 44

Ours 1.38 40 Success 0 1.66 234388 17
QPlace 1.92 6 Finished 322 2.27 313036 179

ibm04 Capo 2.23 6 Finished 343 2.66 342134 266
Ours 1.68 63 Finished 343 1.91 279865 142

QPlace 3.66 11 Finished 50 5.10 621024 414
ibm07 Capo 3.90 11 Failure - - - -

Ours 3.21 76 Success 0 4.07 542015 92
QPlace 3.98 16 Finished 37 5.29 788828 970

ibm08 Capo 3.92 12 Failure - - - -
Ours 3.29 197 Finished 20 4.31 712121 316

QPlace 3.55 13 Success 0 4.23 590681 42
ibm09 Capo 3.49 12 Success 0 4.10 595388 47

Ours 2.93 145 Success 0 3.42 546233 35
QPlace 6.28 22 Success 0 7.54 906297 103

ibm10 Capo 6.69 17 Success 0 8.26 974678 203
Ours 5.48 276 Success 0 6.62 852972 93

Table 6: Comparison between Cadence QPlace, Capo and our
placer. Half-perimeter wirelength in placement and routed wire-
length are in meters. Runtime is in minutes. A routing is considered
failure if the number of violation is greater than 0. (*) Note that the
runtimes of QPlace and our placer are on Sun Ultra10 workstation
with 400MHz CPU, while the runtimes of Capo are on Intel/PC with
733MHz CPU.

Impr. over QPlace Impr. over Capo
Circuit placement routed placement routed

wirelength wirelength vias wirelength wirelength vias
matrix 10.0% 8.3% 2.0% 10.0% 15.4% 2.5%
VP2 13.2% 14.3% 5.3% 8.3% 17.6% 4.4%

32-MAC 9.8% 7.2% 13.3% 17.9% 13.5% -1.3%
64-MAC 6.8% 23.5% 22.8% 7.2% 9.7% 4.8%
ibm01 18.6% 12.9% 4.9% 9.5% - -
ibm02 11.1% 12.5% 7.1% 5.3% 10.2% 7.3%
ibm03 16.8% 19.4% 7.4% 23.3% 31.2% 17.1%
ibm04 12.5% 15.9% 10.6% 24.7% 28.2% 18.2%
ibm07 12.3% 20.2% 12.7% 17.7% - -
ibm08 17.3% 18.5% 9.7% 16.1% - -
ibm09 17.5% 19.1% 7.5% 16.0% 16.6% 8.3%
ibm10 12.7% 12.2% 5.9% 18.1% 19.9% 12.5%
average 13.2% 15.3% 9.1% 14.5% 18.1% 8.2%

Table 7: Improvement by our placer compared to QPlace and Capo
on half-perimeter wirelength, routed wirelength and number of
vias. “-” indicates that the comparison can not be made because
of the routing failure.

[8] M. C. Yildiz and P. H. Madden. “Improved Cut Sequences for Partitioning Based
Placement”. InDesign Automation Conference, pages 776–779. IEEE/ACM, 2001.

[9] Jens Vygen. “Algorithms for Large-Scale Flat Placement”. InDesign Automation
Conference, pages 746–751. IEEE/ACM, 1997.

[10] D. Huang and A. B. Kahng. “Partitioning-based Standard-cell Global Placement with
an Exact Objective”. InInternational Symposium on Physical Design, pages 18–25.
ACM, April 1997.

[11] M. Sarrafzadeh and M. Wang. “NRG: Global and Detailed Placement”. In
International Conference on Computer-Aided Design. IEEE, November 1997.

[12] H. Eisenmann and F. M. Johannes. “Generic Global Placement and Floorplanning”. In
Design Automation Conference, pages 269–274. IEEE/ACM, 1998.

[13] X. Yang, M. Wang, K. Eguro, and M. Sarrafzadeh. “A Snap-On Placement Tool”. In
International Symposium on Physical Design, pages 153–158. ACM, April 2000.

[14] M. Wang, X. Yang, and M. Sarrafzadeh. “Dragon2000: Fast Standard-cell Placement
for Large Circuits”. InInternational Conference on Computer-Aided Design, pages
260–263. IEEE, 2000.

[15] T. F. Chan, J. Cong, T. Kong, and J. R. Shinnerl. “Multilevel Optimization for
Large-Scale Circuit Placement”. InInternational Conference on Computer-Aided
Design, pages 171–176. IEEE, 2000.

[16] K. Zhong and S. Dutt. “Effective Partition-Driven Placement with Simultaneous Level
Processing and Global Net Views”. InInternational Conference on Computer-Aided
Design, pages 171–176. IEEE, 2000.

[17] S. Hur and J. Lillis. “Mongrel: Hybrid Techniques for Standard Cell Placement”. In
International Conference on Computer-Aided Design, pages 165–170. IEEE, 2000.

[18] O. Faroe, D. Pisinger, and M. Zachariasen. “Local Search for Final Placement in
VLSI Design”. In International Conference on Computer-Aided Design, pages
565–572. IEEE, 2001.

[19] W. Swartz and C. Sechen. “Timing Driven Placement for Large Standard Cell
Circuits”. In Design Automation Conference, pages 211–215. IEEE/ACM, 1995.

[20] M. Sarrafzadeh, D. A. Knol, and G. E. Tellez. “Unification of Budgeting and
Placement”. InDesign Automation Conference, pages 758–761. IEEE/ACM, 1997.

[21] S. L. Ou and M. Pedram. “Timing-driven Placement Based on Partitioning with
Dynamic Cut-net Control”. InDesign Automation Conference, pages 472–476.
IEEE/ACM, June 2000.

[22] Y. C. Chou and Y. L. Lin. “A Performance-Driven Standard-Cell Placer Based on a
Modified Force-Directed Algorithm”. InInternational Symposium on Physical
Design, pages 24–29. ACM, April 2001.

[23] B. Halpin, C. Y. Chen, and N. Sehgal. “Timing Driven Placement using Physical Net
Constraints”. InDesign Automation Conference, pages 780–783. IEEE/ACM, 2001.

[24] P. N. Parakh, R. B. Brown, and K. A. Sakallah. “Congestion Driven Quadratic
Placement”. InDesign Automation Conference, pages 275–278. IEEE/ACM, June
1998.

[25] M. Wang, X. Yang, and M. Sarrafzadeh. “Congestion Minimization During
Placement”.IEEE Transactions on Computer Aided Design, 19(10):1140–1148, 2000.

[26] X. Yang, R. Kastner, and M. Sarrafzadeh. “Congestion Reduction During Placement
Based on Integer Programming”. InInternational Conference on Computer-Aided
Design, pages 573–576. IEEE, 2001.

[27] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. “Multilevel Hypergraph
Partitioning: Application in VLSI Domain”. InDesign Automation Conference, pages
526–529. IEEE/ACM, 1997.

[28] C. J. Alpert, J. H. Huang, and A. B. Kahng. “Multilevel Circuit Partitioning”. In
Design Automation Conference, pages 530–533. IEEE/ACM, 1997.

[29] W. J. Sun and C. Sechen. “Efficient and Effective Placement for Very Large Circuits”.
IEEE Transactions on Computer Aided Design, 14(3):349–359, March 1995.

[30] A. E. Caldwell, A. B. Kahng, and I. L. Markov. “Optimal Partitioners and End-case
Placers for Standard-cell Layout”.IEEE Transactions on Computer Aided Design,
19(no.11):1304–1314, Nov 2000.

