
DRAGON2000: STANDARD-CELL PLACEMENT TOOL FOR LARGE INDUSTRY

CIRCUITS

Maogang Wang Xiaojian Yang Majid Sarrafzadeh

Department of Electrical and Computer Engineering, Northwestern University, Evan ston, IL 60208
mgwang,xjyang,majid@ece.nwu.edu

ABSTRACT

In this paper, we develop a new standard cell place-
ment tool, Dragon2000, to solve large scale placement
problem e�ectively. A top-down hierarchical approach is
used in Dragon2000. State-of-the-art partitioning tools are
tightly integrated with wirelength minimization techniques
to achieve superior performance. We argue that net-cut
minimization is a good and important shortcut to solve the
large scale placement problem. Experimental results show
that minimizing net-cut is more important than greedily
obtain a wirelength optimal placement at intermediate hi-
erarchical levels. We run Dragon2000 on recently released
large benchmark suite ISPD98 as well as MCNC circuits.
For circuits which have more than 100k cells, comparing to
iTools1.4.0, Dragon2000 can produce slightly better place-
ment results (1:4%) while spending much less amount of time
(2� speedup). This is also the �rst published placement re-
sult on the publicly available large industrial circuits.

1. INTRODUCTION

Placement is a classical problem in VLSI physical design. A
lot of e�ective placement tools have been proposed in the last
twenty years [6, 8, 7]. Although they were quite successful
at their release time, as the VLSI circuit size gets larger and
the deep sub-micron (DSM) technology becomes dominant,
these tools are obsolete or not e�ective anymore. It is time to
re-think and develop a new placement tool which can handle
the large industrial circuits.

Previous work on the placement problem falls into two
classes: constructive and iterative. It is generally believed
that placement iterative approaches can produce better re-
sults than constructive approaches but are slower. When
the circuit size gets larger and larger, quality degradation is
expected for the
at iterative approaches. The multi-level
hierarchical technique is regarded indispensable for solving
today's complex VLSI placement problem without sacri�cing
quality [6, 7, 10, 2].

Almost all previously published placement algorithms use
MCNC benchmark suite for testing. This suite was released
in 1992 with most circuits having less than 30k cells. How-
ever, circuits designed in today's industry have typically
more than 100k cells. While MCNC circuits become out-
dated, there is no new benchmarks released for placement.
Some new placement tools [2] use large circuits obtained from
industry for testing. Unfortunately, these circuits can not
be accessed to other researchers due to the security reason.
This makes it extremely di�cult to evaluate and compare
with these placement tools. In 1998, Alpert modi�ed and
released 18 industrial circuits from IBM to form the ISPD98

partitioning benchmark suite [1]. ISPD98 circuits are much
larger (from 10k to 200k cells) and therefore closer to the
current VLSI design than MCNC circuits. Although they
were originally released for the purpose of partitioning, they
should be modi�ed and used in placement as well. Howevr,
there is no reported placement results on these circuits yet.
In this paper we aim at developing a placement tool

which can handle large industrial circuits. We argue that
the top-down hierarchical approach should be the correct
way to solve the large sized placement problem. We suc-
cessfully integrate the state-of-the-art partitioner and place-
ment technique into one fast and powerful placement tool,
Dragon2000. Comparing Dragon2000 to highly optimized
commercial iTools (formerly TimberWolf), Dragon2000 can
produce slightly better placement results using much less
amount of runtime (2� speedup). Dragon is for wirelength
minimization, it can also be used as part of a congestion
minimization process [9].
The rest of the paper is organized as follows: In Sec-

tion 2, we brie
y describe the
ow and algorithms used in
Dragon2000. In Section 3, we will explain the detailed im-
plementation of Dragon2000. Experimental results will be
shown in Section 4 followed by Conclusion in Section 5.

2. OVERVIEW OF DRAGON2000

The top-down based hierarchical approach is the backbone
of Dragon2000. In this section, we will have a brief overview
of the general hierarchical placement approaches and algo-
rithms used in Dragon2000.
A typical top-down hierarchical placement approach can

be generalized as follows: at a given hierarchical level, the
layout area is partitioned into several global bins. All cells of
the circuit will be distributed into these global bins to min-
imize a certain placement objective. This cell distribution
problem is called a hierarchical placement problem. If a cell
is distributed into a particular global bin, it will be placed
within the area of this bin in the �nal layout. As we pro-
ceed to �ner levels, the number of global bins increases and
the physical size of global bins decreases. Thus we can get
more and more detailed information about physical locations
of cells as we proceed. The top-down approach terminates
when there are only a few cells in each global bin.
Dragon2000 is divided into two phases, global placement

(GP) and detailed placement (DP). A top-down hierarchical
approach is used in the GP phase. We recursively solve the
hierarchical placement problem and quadrisect each global
bin into four smaller bins at each level. Overlap between
cells are allowed in the GP phase. In fact, all the cells belong
to the same bin are placed at the center of the bin. The DP
phase takes the output from GP and produces an overlap free
layout. Then it iteratively improves the legal layout using

a greedy heuristic. Due to the computational complexity,
the DP heuristic is only capable of performing optimization
locally. Thus it is expected that the top-down hierarchical
GP phase should �nish majority of work in placement.
Wirelength and net-cut are two popularly used objectives

in di�erent hierarchical placement algorithms. It is com-
monly believed that partitioning tools (minimizing net-cut)
are much more mature and e�ective than wirelength mini-
mization tools. On the other hand, wirelength at di�erent
hierarchical levels is a more accurate estimation of the �nal
wirelength than net-cut. In order to achieve high perfor-
mance, we integrate wirelength and net-cut together in the
GP phase of Dragon2000 to take advantage of both objec-
tives. Intuitively, net-cut correlates with wirelength. By
using the Rent's rule and experimental data, we theoreti-
cally proved that the wirelength obtained from a top-down
approach using the net-cut objective is indeed bounded.

Theorem 1 In a top-down quadrisectional approach, the to-
tal wirelength at the �nal level H is between the total net-cut
and the total net-cut times 2H: Cut �WL � (2 logNc)�Cut,
where Nc is the number of cells in the circuit.

Due to the page limit, we have to omit the actual proof
here. Please contact us to obtain the complete proof.

3. DETAILED IMPLEMENTATION OF
DRAGON2000

The top-down hierarchical approach is used in the GP phase
of Dragon2000. We integrate net-cut and wirelength to-
gether to solve the hierarchical placement problem at each
level. Speci�cally, we start our GP from level 1 with four
global bins. We go from level h to level h+1 by partitioning
each subcircuit in a global bin at level h into four parts to
reduce net-cut. Global bins at level h will be split into four

smaller bins correspondingly. Thus there will be 4h+1 global

bins and 4h+1 subcircuits at level h + 1. We have a post
bin swapping stage at the end of each level. In this stage we

swap all 4h+1 subcircuits in level h + 1 around to minimize
the overall wirelength. GP terminates when each global bin
contains less than about seven cells.
A traditional top-down hierarchical placement approach

con�nes locations of subcircuits at level h+ 1 within the re-
gion of the global bin where the subcircuits reside in at the
previous level h. This approach can greatly reduce the com-
putational complexity. However, it can never correct wrong
decisions made at higher levels. Our GP does not con�ne
locations of subcircuits. This gives cells more freedom to
move to achieve better placement results at each level. In
order to reduce runtime, we limit our wirelength optimiza-
tion searches in a local range.
We pick hMetis [5] as the partitioner for Dragon2000 be-

cause of its superior quality and friendly user interface. A
low temperature simulated annealing is used as the base al-
gorithm to minimize wirelength because it is very easy to
implement. The DP phase of Dragon2000 uses a greedy algo-
rithm to perform local optimization and improve the quality
of �nal placement iteratively. We will discuss implementa-
tion details of Dragon2000 in the following subsections.

3.1. Interactions between wirelength and net-cut

At each level in GP, we quadrisect each subcircuit inside a
global bin into four smaller subcircuits before we perform
the post bin swapping stage. Based on previous work and
intuition, we tried four approaches in the partitioning stage
to improve the performance. Figure 1 illustrates these ap-
proaches. Assume we are about to partition the subcircuit

within global bin B0. Cell 1, 2, 3, 4, 5, 6, 7 are inside B0.
Cell 8, 9, 10, 11 are outside B0 but have connections to cells
inside B0. We denote an n-terminal net by net (c1; c2; :::; cn),
where c1, c2, ..., cn are terminal cells of the net.

1. Approach A (Figure 1a): When we partition a subcir-
cuit in a global bin at any level, nets which have termi-
nal cells outside this global bin will be removed because
these nets are alway cut no matter how we distribute
the inside cells. In Figure 1a, net (2; 6; 11), (5; 6; 10),
(4; 7; 8; 9), (7; 9) are removed when partitioning subcir-
cuit in B0.

2. Approach B(Figure 1b): When we partition a subcircuit
in a global bin at any level, terminal cells which are out-
side this global bin are ignored. In Figure 1b, since ter-
minal cell 8, 9, 10, 11 are ignored, original net (2; 6; 11),
(5; 6; 8), (4; 7; 8; 9), (7; 9) become new net (2; 6), (5; 6),
(4; 7), respectively (net (7; 9) is gone). This method en-
courages grouping the remaining inside terminal cells
together even there are always outside terminal cells.

3. Approach C(Figure 1c): In approach A and B, we iso-
lated the subcircuits within a global bin by removing
connections between inside cells and outside cells. Intu-
itively, this is not good. The idea of \terminal propaga-
tion" was proposed [3] to solve this problem. It adds to
the current subcircuit dummy cells that are �xed in the
appropriate partitions. In Figure 1c, cell 8 is mapped
to a �xed vertex in the lower-left part of B0; cell 9 and
10 are mapped to two �xed vertices in the lower-right
part of B0; cell 11 is mapped to a �xed vertex in the
upper-right part of B0. This approach encourages cells
be distributed in a global bin which is close to their
outside neighbor cells.

4. Approach D(Figure 1d): In all above approaches, the
post bin swapping stage is used to swich subcircuits
around. Instead of moving the subcircuits in whole, we
can also move/switch single cells around to reduce wire-
length at this level. This idea was �rst proposed in [7].
Wirelength obtained by this approach should be bet-
ter than wirelength obtained by other three approaches.
However, it is not clear whether a optimal wirelength
placement at any hierarchical level will produce a good
�nal placement.

B 0

B 1

B 2 B 3

B 0

B 1

B 2 B 3

B 0

B 1

B 2 B 3

B 0

B 1

B 2 B 3

B 0

B 1

B 2 B 3

move single cells to
reduce wirelength

(d) Approach D: move single cells to reduce
wirelength after partitioning approach

1

2

3

4

5

7

8
9

10

116
1

2

3

4

5

7

8
9

10

11

1

2

3

4

5

7

6
1

2

3

4

5

7

8
9

10

116

1

2

3

4

5

7

8
9

10

116
6

11

10

98

11

9

8

10

(a) Approach A: delete all the external netsOriginal subcircuit at B (b) Approach B: delete all the external
terminals from the net

(c) Approach C: terminal propagation

Figure 1. Illustration of Approach A, B, C and D.

In order to �nd out which approach performs the best,
we test all four approaches on several benchmark circuits.

Table 1 shows the experimental results. The best result for
each circuit among all four approaches is shown in the bold
face. Quite surprisingly, approach B out-performs other ap-
proaches including approach C (terminal propagation) which
is widely accepted and used in other placement tools.
In placement tools which use terminal propagation, sub-

circuits at each level are con�ned within the region of the
global bin where they belong to at previous levels. We do
not con�ne locations of subcircuits at each level because we
perform the post bin swapping stage to reduce the overall
wirelength after the subcircuits are formed. This post bin
swapping stage is used in approach A, B and C. The use
of the post bin swapping stage might be a reason why ap-
proach B works better in our GP than approach C does.
To further investigate this interesting issue, we implemented
the conventional min-cut scheme with and without terminal
propagation. The conventional scheme with terminal propa-
gation is basically the same as approach C except it does not
perform post bin swapping. Similarly, the scheme without
terminal propagation is the same as approach B without the
post bin swapping stage. Table 2 shows the experimental re-
sults comparing two conventional min-cut schemes and their
counter parts in our approaches (approach B and C). Indeed,
the terminal propagation can improve the wirelength results
over the non terminal propagation min-cut scheme. How-
ever, the post bin swapping stage can help improve perfor-
mance: approach C (terminal propagation + post bin swap-
ping) outperforms pure terminal propagation. Finally, it is
very interesting to �nd that the widely used terminal propa-
gation scheme actually degrade performance while the post
bin swapping stage is used (approach B is better than ap-
proach C).
Another interesting fact is that approach D is not suc-

cessful either. This fact suggests that conserving connecting
information between cells is more important than greedily
obtain a wirelength optimal placement at each level. Min-
imizing net-cut not only can obtain placement results fast
at each level, it also helps to improve the �nal placement
quality.

Ckts #cells App. A App. B App. C App. D
ibm01 12282 4.79 4.71 4.98 4.81
ibm02 19321 13.70 13.91 14.38 13.99
ibm03 22207 13.12 12.83 13.02 12.93
ibm04 26633 17.66 16.58 17.54 17.21
ibm05 29347 38.94 38.21 39.32 39.12

Table 1. Comparison of four di�erent approaches.

mincut w/o mincut w/
Ckts term. prop. term. prop. App. C App. B
ibm01 6.05 5.36 4.98 4.71
ibm02 16.77 15.04 14.38 13.91
ibm03 17.29 14.05 13.02 12.83
ibm04 22.58 18.34 17.54 16.58
ibm05 52.35 49.09 39.32 38.21

Table 2. Comparison of conventional min-cut
schemes and our approaches.

3.2. The Final Stage of GP

The previous subsection shows that a minimum wirelength
placement at each level does not help to produce a good �nal

placement. However, we �nd that such a \single cell switch-
ing" strategy to minimize wirelength is extremely helpful in
the last level of GP where there are about seven cells per
global bin. After GP stops at the last level, we switch single
cells locally to minimize wirelength. We use a low tempera-
ture simulated annealing algorithm in this �nal stage of GP.
As shown in [7], since the number of possible locations for
each cell is the number of global bins, the size of solution
space is greatly reduced. Therefore, performing annealing at
this stage is reasonably fast. Table 3 shows the comparison
of the �nal placement wirelength using this �nal stage vs.
not using this stage.

Ckts w/o �nal stage w/ �nal stage % impr.
ibm01 4.99 4.70 5.8%
ibm02 14.71 13.76 6.5%
ibm03 13.56 12.74 6.0%
ibm04 17.07 15.79 7.5%
ibm05 42.19 38.57 8.6%
avg 6.88%

Table 3. E�ect of the �nal GP stage.

3.3. DP Heuristics

The simulated annealing approach is the most popular DP
algorithm used in other placement tools. However, due to the
huge computational complexity in the DP phase, simulated
annealing at this stage is very slow. For instance, the DP
phase of iTools (formerly TimberWolf) consumes more than
80% of the total runtime on large circuits. In Dragon2000,
since there is relatively little work left after GP is done. In-
stead of widely used simulated annealing, a greedy algorithm
is used in the DP phase. Our DP consists of two steps.
First, all the overlapping cells are spread out to produce a
legal placement. Then the greedy cell exchange algorithm is
used to further reduce wirelength. The algorithm randomly
chooses a base cell. Then it decides whether to perform a
vertical search or a horizontal search by using a adjustable
parameter Rv. Rv is the ratio of vertical searches and satisfy
0 � Rv � 1 . If a vertical search is picked to perform, the
cell directly above or below the base cell will be picked as
the target cell. Positions of all the cells to the right of the
base and the target cell might also be adjusted to remove
the possible overlap and whitespace. If a horizontal search
is picked to perform, all the W � 1 cells to the left or right
of the base cell will be picked as target cells. All the target
cells and the base cells will be re-arranged horizontally in an
exhaustive search manner to look for possible reduction in
wirelength. We empirically set W = 5 and Rv = 20% in our
DP.

4. EXPERIMENTAL RESULTS

Dragon2000 is implemented in C++. All the experiments
were performed on a 500 MHz PC running under the Solaris-
x86 operating system. We picked �ve large circuits from
MCNC suite and eight large circuits from ISPD98 suite as
our testing circuits. MCNC circuits are picked because they
have been widely used in literature. However, all MCNC
circuits except golem3 are too small (< 30k cells). The
eight ISPD98 circuits we picked are relatively large (from
60k to 200k cells) in the suite . Due to the existence of
very large cells, the original ISPD98 circuits are not suit-
able for standard cell placement. We modi�ed ISPD98 cir-
cuits by removing very large cells. Speci�cally, we remove
cells with the area larger than twenty times the area of the

smallest cell in the circuit. The degree of a net might de-
crease due to removing of large cells. Table 4. shows the
characteristics of the testing circuits we use in this paper.
We compare Dragon2000 with iTools1.4.0 (formerly Timber-
Wolf, http://www.internetcad.com) on all testing circuits.
Since we do not have the access to other older placement
tools, we use numbers reported in literature on MCNC cir-
cuits for comparison. Since ISPD98 circuits have not been
used for placement before, only Dragon2000 and iTools1.4.0
are compared on ISPD98 circuits.

Ckts #cells #nets #pins #rows
in2 12142 13419 125555 72
in3 15059 21940 176584 54
avqs 21854 22124 82601 80
avql 25114 25384 82751 86
golem3 99932 143379 336299 128
ibm11 68119 78843 248889 128
ibm12 69026 75157 301604 128
ibm13 81018 97574 311403 128
ibm14 147088 147605 547333 128
ibm15 157861 183684 653684 128
ibm16 181633 188324 762218 128
ibm17 182359 186764 834953 128
ibm18 210323 201560 817331 128

Table 4. Properties of the testing circuits.

Table 5 shows the placement results of Dragon2000,
iTools1.4.0, TimberWolf7.0 and TUM [4] for MCNC cir-
cuits. Wirelength results of TimberWolf7.0 and TUM are
obtained from [8] and [4], respectively. Runtime compar-
ison is very di�cult since di�erent machines were used in
literature. Therefore we do not report the runtime for Tim-
berWolf7.0 and TUM. On small MCNC circuits (less than
30k cells), Dragon uses less time than iTools but the wire-
length results are about 5% worse. However, it still outper-
forms other successful university tools like TimberWolf7.0
and TUM.

Ckts TW7.0 TUM iTools1.4.0 Dragon
WL WL WL time WL time

ind2 13.53 14.6 12.30 1537 12.88 1461
in3 42.84 45.1 40.13 3154 42.33 2849
avqs 5.41 4.91 4.84 1915 5.17 1420
avql 5.86 5.38 5.19 2043 5.25 1984
golem3 90.39 - 85.44 24380 77.56 8422

Table 5. MCNC circuits comparison.

Table 6 shows the placement results of Dragon2000 and
iTools1.4.0 on large testing circuits which has more than 60k
cells including eight ISPD98 circuits and one MCNC cir-
cuit. On average, Dragon produces placement results with
the same quality as iTools for these circuits while spend-
ing much less time (1:9� speedup). We also observed that
Dragon performs better on circuits larger than 100k cells
(1:4% better results and 2:1� speedup).

5. CONCLUSION

In this paper, we use a top-down hierarchical approach to de-
velop a powerful standard cell placement tool, Dragon2000.
We argue that net-cut minimization is a good and important
shortcut to get high quality placement results in the short-
est amount of time. In fact, experimental results show that

Ckts iTools1.4.0 Dragon Comparison
WL time WL time impr. spdup

ibm11 39.76 18251 40.82 10301 -2.6% 1.8�
ibm12 69.56 18075 70.38 14198 -1.2% 1.3�
ibm13 49.11 22577 51.02 15456 -3.9% 1.5�
ibm14 118.8 43057 118.0 31894 0.7% 1.4�
ibm15 130.6 54262 130.8 22808 0.0% 2.4�
ibm16 163.8 70320 168.8 39001 -3.0% 1.8�
ibm17 256.6 72094 255.1 38752 0.5% 1.9�
ibm18 191.7 75363 189.6 39603 1.1% 1.9�
golem3 85.44 24380 77.56 8422 9.2% 2.9�
ave 0.1% 1.9�
ave� 1.4% 2.1�

Table 6. Placement results for 60k+ cell circuits (*
average value for 100k+ cell circuits).

minimizing net-cut is more important than greedily obtain
a wirelength optimal placement at intermediate hierarchi-
cal levels. We run Dragon2000 on recently released large
benchmark suite ISPD98 and old MCNC suite. For circuits
which have more than 100k cells, Dragon2000 can produce
slightly better placement results (1:4%) while spending much
less amount of time (2� speedup) than the highly optimized
commercial iTools1.4.0. This is also the �rst published place-
ment result on ISPD98 suite.

REFERENCES

[1] C. J. Alpert. \The ISPD98 Circuit Benchmark Suite".
In International Symposium on Physical Design, pages
18{25. ACM, April 1998.

[2] A. E. Caldwell, A. B. Kahng, and I. L. Markov.
\Can Recursive Bisection Alone Produce Routable
Placements?". In Design Automation Conference.
IEEE/ACM, 2000.

[3] A. E. Dunlop and B. W. Kernighan. \A Procedure
for Placement of Standard Cell VLSI Circuits". IEEE
Transactions on Computer Aided Design, 4(1):92{98,
January 1985.

[4] H. Eisenmann and F. M. Johannes. \Generic Global
Placement and Floorplanning". In Design Automation
Conference, pages 269{274. IEEE/ACM, 1998.

[5] G. Karypis and V. Kumar. \Multilevel k-way Hyper-
graph Partitioning". In Design Automation Conference,
pages 343{348, 1999.

[6] J. M. Kleinhans, G. Sigl, F. M. Johannes, and K. J.
Antreich. \GORDIAN: VLSI Placement by Quadratic
Programming and Slicing Optimization". IEEE Trans-
actions on Computer Aided Design, 10(3):365{365,
1991.

[7] M. Sarrafzadeh and M. Wang. \NRG: Global and
Detailed Placement". In International Conference on
Computer-Aided Design. IEEE, November 1997.

[8] W. J. Sun and C. Sechen. \A Loosely Coupled Paral-
lel Algorithm for Standard Cell Placement ". In Inter-
national Conference on Computer-Aided Design, pages
137{144. IEEE, 1994.

[9] M. Wang, X. Yang, and M. Sarrafzadeh. \Congestion
Minimization During Placement". IEEE Transactions
on Computer Aided Design, 2000. to appear.

[10] X. Yang, M. Wang, K. Eguro, and M. Sarrafzadeh. \A
Snap-On Placement Tool". In International Symposium
on Physical Design, pages 153{158. ACM, April 2000.

