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Abstract—Placement is an important step in the overall IC
design process in deep submicron technologies, as it defines
the on-chip interconnects which have become the bottleneck in
determining circuit performance. The rapidly increasing design
complexity, combined with the demand for the capability of han-
dling nearly flattened designs for physical hierarchy generation,
poses significant challenges to existing placement algorithms.
There are very few studies dedicated to understanding the
optimality (i.e., the comparison of the solution of an algorithm
to the optimal solution) and scalability (i.e., the analysis of the
degradation of the performance of an algorithm as the input size of
the problem increases) of placement algorithms, due to the limited
sizes of existing benchmarks and limited knowledge of optimal
solutions. The contribution of this work includes three parts. 1) We
implemented an algorithm [Placement Examples with Known
Optimal (PEKO) algorithm] for generating synthetic benchmarks
that have known optimal wirelengths and can match any given net
degree distribution profile. 2) Using benchmarks of 10 k to 2 M
placeable modules with known optimal solutions, we studied the
optimality and scalability of four state-of-the-art placers, Dragon
(Wang et al., 2000), Capo (Caldwell et al., 2000), mPL (Chan et
al., 2000), and mPG (Chang et al., 2002) from academia, and
a leading edge industrial placer, QPlace (Cadence 1999) from
Cadence. For the first time our study reveals the gap between
the results produced by these tools versus true optimal solutions.
The wirelengths produced by these tools are 1.59 to 2.40 times the
optimal in the worst cases, and are 1.43 to 2.12 times the optimal
on average. As for scalability, the average solution quality of each
tool deteriorates by an additional 9% to 17% when the problem
size increases by a factor of ten. These results indicate significant
room for improvement in existing placement algorithms. 3) We
studied the impact of nonlocal nets on the quality of the placers
by extending the PEKO algorithm (PEKU algorithm) to generate
synthetic placement benchmarks with a known upper bound of
the optimal wirelength. For these benchmarks, the wirelengths
produced by these tools are 1.75 to 2.18 times the wirelength upper
bound in the worst case, and are 1.62 to 2.07 times the wirelength
upper bound on average. Moreover, in our study we found that
the effectiveness of the algorithms varies for circuits with different
characteristics.

Index Terms—Deep submicron (DSM), optimization, physical
design, placement.

Manuscript received May 31, 2003; revised September 17, 2003 and
December 4, 2003. This work was supported in part by Semiconductor
Research Corporation under Contracts 98-TJ-686 and 2003-TJ-1019, in part
by the National Science Foundation under Grant CCR–0096383, and in part by
DARPA/GSRC under Contract SA2211-23106. This paper was recommended
by Guest Editor C. J. Alpert.

C.-C. Chang was with the Computer Science Department, University of Cali-
fornia, Los Angeles, CA 90095 USA. He is now with Cadence Design Systems,
Inc., San Jose, CA 95134 USA (e-mail:chinchih@cadence.com).

J. Cong, M. Romesis, and M. Xie are with the Computer Science De-
partment, University of California, Los Angeles, CA 90095 USA (e-mail:
cong@cs.ucla.edu; michail@cs.ucla.edu; xie@cs.ucla.edu).

Digital Object Identifier 10.1109/TCAD.2004.825870

I. INTRODUCTION

PLACEMENT is an important step in the overall IC design
process in deep submicron (DSM) technologies, as it de-

fines the on-chip interconnects, which have become the bottle-
neck in determining circuit performance.

According to the ITRS’01 Roadmap [6], the maximum
number of transistors per chip will be over 1.6 billion, with
a clock frequency of 28.7 GHz by the year 2016. Such high
complexity poses significant challenges to the scalability of
placement algorithms. The traditional way to handle large de-
signs is through partitioning according to the logical hierarchy.
However, it is pointed out in [7] that these hierarchies are
derived with little or no consideration for the physical layout
and they may not embed well in a two-dimensional silicon
surface. Therefore, it is proposed in [7] that the right way to
partition the design is to first flatten the logic hierarchy to the
extent that we are certain about the “physical locality” of each
module in the flattened design, and then construct a physical
hierarchy (coarse placement) on this nearly flattened netlist.
The algorithm presented in [4] is developed to support this
methodology. In general, this approach requires highly scal-
able placement algorithms which can handle nearly flattened
designs with 100 k to 10 M placeable objects.

Various algorithms have been proposed in the past 30 years,
including min-cut-based methods [2], analytical methods [8],
and iterative methods [9]. Direct comparison of placement al-
gorithms is usually difficult [10], [11] because placers make
different assumptions and use different test cases. By summa-
rizing published results, we found the rate of wirelength reduc-
tion to be only 5%–10% every two to three years since the 1980s.
In 1988, Gordian [12] reported substantial wirelength reduc-
tion over its predecessors. In 1991, Gordian-L [8] reported a
20% wirelength reduction over Gordian. TimberWolf 7.0 [13]
reduced Gordian’s wirelength by 10% in 1993. The iterative
force-directed method [14] outperformed Gordian-L in 1998 by
an average of 6%. mPL [3] runs 10 faster than Gordian-L with
a penalty of wirelength increase of 10%. The latest develop-
ments in placement algorithms in the past three years, including
Capo [2], Dragon [1], Mongrel [15], and mPG [4] vary mostly in
runtime. The wirelength difference between Dragon and Capo
is within 5% [16], but Dragon is 7 slower. mPG is about 2
faster than Dragon with a wirelength that is up to 5% longer [17].
Mongrel’s wirelength is also slightly worse than Dragon’s [18].
The lack of significant progress prompts us to wonder whether
there remains much room for improvement in circuit placement
(at least in terms of wirelength minimization).

Until now, there have been few studies dedicated to under-
standing the optimality and scalability of placement algorithms.
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This is due to the limited sizes of existing benchmarks and lim-
ited knowledge of their optimal solutions. Two types of bench-
marks are commonly used. One type of benchmark is based on
real designs [19]–[21]. They are either directly extracted from
real designs [19], or based on minor perturbations of real designs
[20], [21]. Another type of benchmark is synthetic, i.e., circuits
generated by computer programs. Several algorithms [22]–[25]
can generate benchmarks with the user-specified Rent’s param-
eter [26]. Other possible inputs to the generation algorithms in-
clude design size, net degree distribution, logic functionality,
etc. As an application of synthetic benchmarks, [27] used bench-
marks from [23] to search Rent’s parameter that incurred the
highest resource utilization ratio. The study in [28] attempted
to quantify the suboptimality of placement algorithms in terms
of chip area by “stitching” small designs to form large designs.
The study in [29] showed that in datapath layouts, the area of
automated standard cell-based designs can be 14 larger than
custom designs. The major drawback shared by these studies is
that the optimal solutions for placement are unknown. It is diffi-
cult to determine how the solution quality changes as the design
size grows.

The contribution of this work includes three parts. 1) We
implemented an algorithm [Placement Examples with Known
Optimal (PEKO) algorithm] for generating synthetic bench-
marks that have known optimal wirelengths and can match any
given net degree distribution profile. Our algorithm is similar
to the one first proposed by Boese, which was outlined in
[28].1 2) Using benchmarks of 10 k to 2 M placeable mod-
ules with known optimal solutions, we experimented with four
state-of-the-art placers from academia, Dragon [1], Capo [3],
mPL [9] and mPG [4], and a leading edge industrial placer,
QPlace [5] from Cadence. For the first time our study reveals
the gap between the results produced by these tools versus true
optimal solutions. The wirelengths produced by these tools
are 1.59 to 2.40 times the optimal in the worst cases, and are
1.43 to 2.12 times the optimal on the average. As for scal-
ability, the average solution quality of each tool deteriorates
by an additional 9% to 17% when the problem size increases
by a factor of 10. These results indicate significant room for
improvement in existing placement algorithms. 3) We studied
the impact of nonlocal nets on the quality of the placers by
extending the PEKO algorithm (PEKU algorithm) to generate
synthetic placement benchmarks with a known upper bound
of the optimal wirelength. Even for these benchmarks, the
wirelengths produced by these tools are 1.76 to 2.18 times the
wirelength upper bound in the worst case, and are 1.62 to 2.07
times the wirelength upper bound on average. Furthermore,
none of the placers produce consistently better results than
the others when the percentage of nonlocal nets goes from
0.25% to 10%. The preliminary results were published in [31]
and [32], and covered as feature stories in the Electrical Engi-
neering Times magazine in February [33] and April [34], 2003.
These results have generated great interest among the industrial
designers and academic researchers, and over 60 downloads
of the PEKO and PEKU test suites by major universities and
EDA and semiconductor companies, e.g., Cadence, Synopsys,
Magma, IBM, and Intel, etc.

1Boese, however, never implemented his idea nor experimented it with
any placer [30].

The rest of this paper is organized as follows: Section II
describes the PEKO benchmark generation algorithm. Sec-
tion III describes the PEKU benchmark generation algorithm.
Section IV presents experimental results for the synthetic
benchmarks. Section V gives conclusions and future work.

II. PLACEMENT BENCHMARK GENERATION WITH

KNOWN OPTIMAL WIRELENGTH

The optimal placement solutions for real circuits are usually
unknown. However, for our optimality study, we can construct a
circuit with known optimal wirelength using the characteristics
of a real circuit, and measure the solution quality of existing
placement algorithms on these circuits.

A. Problem Formulation

First, we introduce some notations: Given a netlist , let be
the number of placeable modules in the netlist, and let

be the Net Distribution Vector (NDV), where
is the total number of pin nets in the netlist.

We would like to solve the following problem: Given a
number and a vector , construct a placement benchmark
with placeable modules, such that its netlist has as its NDV
and has a known optimal half-perimeter wirelength solution.

B. PEKO Algorithm

1) Algorithm Description: Our algorithm, PEKO, makes
two assumptions: all the modules are of equal size, and there
is no space between the rows. It first places all the modules
in a rectangular region close to a square, then connects the
nets to the modules one-by-one, using the minimum perimeter
bounding box for each net. In the end, a netlist is extracted
from this placed configuration.2 Table I gives a description of
the algorithm.

Fig. 1 shows an example when , . Net
A is a four-pin net. According to our algorithm, it will connect
four modules located in a 2 2 rectangular region. In Fig. 1,
it connects the four modules in the lower left corner. The other
four-pin net B is placed on the lower right corner. Similarly,
the two three-pin nets are generated as C and D, respectively.
This process is repeated until the NDV is exhausted. The total
wirelength for this benchmark is .

2) Proof of Optimality: According to the generation algo-
rithm, the wire length of each -pin net is

. For any -pin net, the optimal half perimeter wire length can
only be achieved when the modules of this net are placed in
a rectangular region close to a square, i.e., the length of each
side is close to . In particular, the width and height of

the rectangle should be and , respectively (or

and ). The wirelength of such a configura-

tion is . The wirelength of an -pin net

2It is not explicitly checked if the netlist is connected. When the number of
nets is far less than that of cells, the netlist may have disconnected components.
However, the net profile we used always have comparable number of nets and
cells. Furthermore, our method picks the cell with the lowest number of con-
nections each time. As a result, the generated netlist is usually connected.
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TABLE I
ALGORITHM FOR PLACEMENT BENCHMARK GENERATION

Fig. 1. Benchmark generation for p = 9, D = (6; 2; 2).

achieved by our algorithm is optimal, and the total wirelength
is the sum of all the nets; therefore, it is also optimal.

Given a benchmark generated by PEKO with NDV ,
is the optimal wirelength of

the benchmark, denoted as . Given a placement solu-
tion to benchmark , we measure its wirelength and denote it
as . We define the ratio as the wire-
length ratio (WR) of placement solutions. This metric gives us
an objective evaluation of a solution.

C. Generation of a “Realistic” Benchmark Set With
Known Optimal Wirelength

In order to generate realistic benchmarks, we first extract the
module numbers and NDVs from the netlists in the ISPD’98 suite
[19] (originally from IBM) and generate a set of benchmarks
named suite-1 using PEKO. Table II gives the characteristics
of suite-1. The column “OW” gives the optimal half-perimeter
wirelength for each benchmark. Suite-2 is generated by scaling
the module number and NDV of each circuit in suite-1 by a
factor of ten.

One important feature of suite-1 and suite-2 is that there is no
net connected with pads. This feature is enforced from the con-

TABLE II
CHARACTERISTICS OF SUITE-1 (SUITE-2 IS GENERATED BY SCALING

THE MODULE NUMBER AND NDV OF EACH CIRCUIT IN SUITE-1 BY A

FACTOR OF 10)

TABLE III
CHARACTERISTICS OF SUITE-3 (SUITE-4 IS GENERATED BY SCALING

THE MODULE NUMBER AND NDV OF EACH CIRCUIT IN SUITE-3 BY A

FACTOR OF 10)

cern that such nets may give a hint about where to place each net.
To make our study complete, we also generate two more sets of
benchmarks that have nets connected with pads, since some an-
alytical placement algorithms make use of fixed pad locations to
avoid degenerate solutions. The generation of the pad-connected
nets is as follows. A pad is randomly picked on the boundary.
Then a rectangular region abutting it is determined. The dimen-
sion of this region is calculated from the degree of the net. A new
net is constructed by connecting the cells in this region with the
pad. It is obvious that the wirelength for such a net is still op-
timal. These circuits are named suite-3 and suite-4, respectively.
Table III gives a description of suite-3. All four suites are given
in both GSRC BookShelf format and LEF/DEF format, and can
be downloaded from [35].
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Fig. 2. White space generation methods.

D. White Space Generation

To further mimic real designs, we take a simplistic approach
to generate white space in the PEKO suite. After the optimal
configuration is obtained, white space is inserted to the right of
the placeable modules. For each circuit in PEKO, 15% of the
chip area is white space.3

An alternative is to first connect each module with at least
one net, then randomly remove modules and all the nets
connected with them, where is the ratio of desired space area
to the chip area, as shown in Fig. 2. It is easy to prove that
benchmarks thus generated also have a known optimal wire-
length. Furthermore, the white space is randomly distributed
on the chip. This method, however, may not give a benchmark
matching the desired NDV. Therefore, it is not used for our
benchmark generation.

III. PLACEMENT BENCHMARK GENERATION

WITH GLOBAL CONNECTIONS

The generation of the PEKO suite suffers from one draw-
back. In the optimal solutions, all the nets are local, i.e., their
wirelength is the minimum possible value. This may not be true
in real circuits, which may also have global connections that
span a significant portion of the chip, even when they are op-
timally placed. Table IV gives the profile of placed results of
the ISPD’98 benchmarks produced by Dragon. The second and
third columns are the width and height of the chip, respectively.
The fourth column gives the wirelength of the longest net in
each circuit. The last column gives the percentage of wirelength
contributed by the longest 10% of the total nets. It can be seen
that even for a small number of global connections, their wire-
length contribution is significant. Therefore, the performance
of a placer can be quite different due to the presence of these
global nets. It is worthwhile to study the performance of dif-
ferent placers in the presence of global nets.

We take two approaches to consider the impact of global nets.
One is to generate circuits consisting only of global nets; the
other is to introduce some randomly generated, nonlocal nets
into the PEKO suite. We use the term “nonlocal net” to denote
the nets in a placement solution whose wirelength is larger than
the minimum possible value.

3The initial circuits had no white space. However, the wirelength produced
by some placers are abnormally longer than the optima because of the tight area
constraint. To relieve this issue, we inserted 15% white space.

TABLE IV
PROFILE OF PLACEMENT RESULTS BY DRAGON [1] ON ISPD’98

A. Placement Examples With Global Connections Only

One way to study the impact of global connections is to create
circuits with global nets only. Our construction procedure takes
an integer , and a float , as inputs. It outputs a
netlist and a placement solution , such that has mod-
ules and an aspect ratio of . Each net in connects either an
entire row or column, as shown in Fig. 3. The number of nets is
the total number of rows and columns. There are no pads in these
examples. These examples are similar to datapath placement
examples, where data flows horizontally through the bit-slice
along buses and control signal flows vertically. One solution to
such benchmarks has a configuration similar to Fig. 3, whose
wirelength is the sum of the length of each row and column,
which is obviously an upper bound of the optimal wirelength.

B. Placement Examples With Nonlocal Connections

The second approach is to introduce nonlocal nets into bench-
marks which only have local nets in the optimal solution. Com-
pared with local nets, the nonlocal nets usually have a longer
wirelength, and are used to mimic the global connections in our
study. We need to further introduce some notations here.

Given a netlist and a placement solution , let be the
wirelength of the longest net in . Let
be the wirelength distribution vector (WDV), where is the
number of nets whose wirelength is between
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Fig. 3. Circuit with global connections only.

and . Without loss of generality, can be given as a
percentage of the chip size, and can be given as a percentage
of the total number of nets.

We would like to solve the following problem. Given a netlist
, an integer , two floats , , , and two vectors

, , construct a new netlist
and a placement solution , such that the following is true.

• has modules and has as its NDV.
• The ratio of nonlocal nets to the total number of nets in

is .
• The percentage of nonlocal nets with wirelength between

and is , for
.

We extended the algorithm presented in the previous section by
relaxing the optimality requirement for a subset of the nets. The
new algorithm works in two phases. In the preparation phase,
the nodes are put in a shaped region. The
netlist is scanned and a total of nets are designated
as nonlocal nets. For the nonlocal nets of degree , a total of

of them are assigned a wirelength range of
( , ), for . In the generation
phase, local nets are generated by the same method as in PEKO.
For each nonlocal net, one corner of its bounding box is ran-
domly picked from the chip. The other corner is selected within
the window satisfying its wirelength requirement, as shown in
Fig. 4. The rest of the cells in the net are randomly picked from
sites within the bounding box. In the end, a netlist is extracted
from the constructed configuration.

Although the optimal wirelength for the generated circuits is
no longer known, we can calculate the bounding-box wirelength
of the random nets and add it to the optimal wirelength of the
local nets. The sum serves as an upper bound of the optimal
wirelength.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Results for the PEKO Suite

We performed our experiments on the PEKO benchmarks
with four state-of-the-art placers from academia and one indus-
trial placer.

Dragon: Dragon is based on a multilevel framework. It uses
hMetis [36] to derive an initial partitioning result on the circuit,

Fig. 4. Nonlocal net generation. One corner of the bounding box is randomly
selected and the other is picked within the window satisfying its wirelength
range.

then undergoes a series of refinement stages doing bin-based
swapping with simulated annealing [1]. We used Dragon v.2.20,
downloaded from [37].

Capo: Capo is built on a multilevel partitioner. It aims to
enhance the routability with such techniques as tolerance com-
putation and block splitting heuristics [2]. We used Capo v.8.6
downloaded from [38].

mPL: mPL is also based on a multilevel framework. It
uses nonlinear programming to handle the nonoverlapping
constraints on the coarsest level, then uses Goto-based [39]
relaxation in subsequent refinement stages [3]. We used mPL
v.3.0 in our experiment. Compared with [3], mPL v.3.0 uses
an additional V cycle and does distance-based clustering in the
second V cycle [40]. Further, it uses AMG-based interpolation
to derive the starting solution on all the levels except the
coarsest level.

mPG: mPG is built on a multilevel framework. It performs
first choice (FC) clustering and uses hierarchical density con-
trol to minimize the overflow of each placement bin during the
refinement process. If necessary, it builds an incremental A-tree
to optimize the routability. We used mPG v.1.0 given in [4].

QPlace: QPlace [5] is the placement engine used in the Sil-
icon Ensemble of Cadence. The version we used is QPlace v.5.1,
subversion 5.1.55, in Silicon Ensemble v.5.3.

Experiments with Dragon, mPG and QPlace are performed
on a SUN Blade 1000 750 Hz running SunOs 5.8 with 4 GB of
memory.4 The experiments with Capo and mPL are performed
on a Pentium IV 2.40 GHz running RedHad 8.0 with 2 GB of
memory. Since all of the tools make use of randomization, run-
ning them multiple times may give different results. The result
is the average of five runs. Also, direct comparison of Capo and
mPL’s runtime with the others may not be meaningful.5 We need
to emphasize that it is not our purpose to give a comparison of

4When running QPlace, we set its congestion optimization parameter to
“false.”

5In the tables, we scaled Capo and mPL’s runtime according to the CINT2000
value obtained from [41]. However, this may still not be a fair comparison with
the other tools.
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TABLE V
STATISTICS OF PIN DEGREE AND CUT SIZE FOR PEKO SUITE-1

TABLE VI
EXPERIMENTAL RESULTS FOR SUITE-1

the five placers. The experiments are performed to determine
how much room is left for improvement in existing placement
algorithms.

Table V shows some interesting statistics for the circuits of
suite-1. The first columns show the average pin degrees of the
modules and their standard deviation. The latter columns show
the average cutsizes along the vertical and horizontal cutlines
of the chip and the corresponding standard deviations in the op-
timal placement. Excluded are the vertical cutlines in the white
space area. All these values in most of the cases stay in a limited
range, a fact that shows the robustness of the benchmarks.

The test results for suite-1 are given in Table VI. For each
benchmark, the WR is calculated for the four tools and given
in the columns labeled “WR.” According to the experiments,
none of these tools achieve a WR close to 1. The wirelengths
produced by these tools can be 1.59 to 2.40 times the optimal in
the worst cases.

It should be noted that there is some difference of white-space
utilization between the placers. Fig. 5 gives the placement re-
sults produced by them on Peko01. mPL, mPG, and Dragon
in wirelength driven mode displays the behavior of variable
die placers by packing the cells on each row to the left. Capo
and QPlace tend to spread cells across the entire core region,
aiming to enhance routability. This will certainly sacrifice the
wirelength to some extent. However, given the gap between
their wirelengths and the optimal value, there remains signifi-
cant room for improvement in existing placement algorithms.

The entire test is repeated on suite-2 to observe how the
WRs change as the design size grows. Since the benchmark
sizes are 10 larger in this set, we set an upper limit of
24 h to a tool’s runtime. The results are given in Table VII.
QPlace scales well in terms of runtime. It finishes 16 out of
18 benchmarks (up to 1.83 M placeable modules), and runs
out of memory on the remaining two (with 1.85 and 2.15 M
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Fig. 5. Placement Results on Peko01. mPL, mPG, and Dragon in wirelength-driven mode pack cells on each row to the left. Capo and QPlace tend to spread cells
across the entire core region.

TABLE VII
EXPERIMENTAL RESULTS FOR SUITE-2

placeable modules) on our machine’s configuration. Its average
WR increases by 11% from 1.83 to 1.94. Capo also shows
good scalability in runtime. It finishes 14 of the circuits (up
to 1.47 M placeable modules) and runs out of memory on the
remaining four circuits. Its average WR shows an increase of
13% with the increase in design size. mPL finishes 7 of the
18 benchmarks, and runs out of memory on the remaining
circuits. Its average WR increases by 11% from 1.43 to 1.54.
Dragon manages to complete the placement for only the first
6 benchmarks (up to 323 k placeable modules) within 24 h.
Its average WR increases from 2.12 to 2.29. mPG can place
13 of the circuits, and its average WR increases from 1.95
to 2.04. Figs. 6 and 7 give the combined results for suite-1
and suite-2. They show how the solution quality and runtime
of each tool change with the increase in cell numbers.

Tables VIII and IX give the experimental results for suite-3
and suite-4, which have nets connected with pads. For the cir-
cuits of suite-3, the wirelengths produced by the placers are 1.54
to 2.53 times the optimal in the worst cases, and are 1.45 to
2.10 times the optimal on the average. Their average solution
quality shows deterioration by an additional 6% to 30% when
the problem size increases by a factor of ten.

It can be seen from Tables VIII and IX that having nets con-
nected with pads provides some hint about the optimal solution
to some placers, especially mPG that shows a 12% improve-
ment, and QPlace that shows a 9% improvement. This is under-
standable, since in suite-3 and suite-4, modules connected with
pads are placed next to the pads in the optimal solutions. Inter-
estingly enough, Dragon, Capo, and mPL do not seem to benefit
from the additional information.
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Fig. 6. Solution quality versus cell number (combining suite-1 and suite-2).

Fig. 7. Runtime versus cell number (combining suite-1 and suite-2).

Although our algorithm is capable of generating arbitrarily-
sized benchmarks with known optimal wirelengths, given the
scalability problems encountered by these tools on suite-2 and
suite-4, it is not meaningful to construct larger designs to further
evaluate these algorithms.

B. Experimental Results for Benchmarks With Nonlocal Nets

Using the module numbers extracted from ISPD’98 and an
aspect ratio of 1, we generated a set of circuits with global
nets only. The circuits are named GPeku01 to GPeku18 and
are grouped as the G-PEKU suite (Global nets only Placement
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TABLE VIII
EXPERIMENTAL RESULTS FOR SUITE-3

TABLE IX
EXPERIMENTAL RESULTS FOR SUITE-4

Examples with Known Upper bound of wirelength). We also
generated several sets of benchmarks with nonlocal nets. We
call these benchmarks the PEKU suite (Placement Examples
with Known Upper bound of wirelength). The parameter is
gradually increased from 0.25% to 10%. The module number
and NDVs are derived from ISPD’98. To get the wirelength
distribution of nonlocal nets for each circuit, we extracted the
WDVs from ISPD circuits placed by Dragon. For each in
the WDV, we multiply it by a randomly generated coefficient

, , so that the created examples are not biased
for Dragon. Circuits in PEKU do not have nets connected
with pads. The G-PEKU and PEKU circuits used in our study
can be downloaded from [42].

We use the same five placers as in the previous section.
First, we tested the five placers on five circuits in G-PEKU.
The experimental results are given in Table X. The results

TABLE X
EVALUATION RESULTS ON G-PEKU

are the average of five runs for each placer. The WR is now
calculated as the ratio of a placement’s wirelength to the upper
bound of wirelength. Among the five placers, Capo gives the
closest solution to the upper bounds.6 For these examples

6Since mPL prunes all the nets with a degree higher than 60, it gives
no results on G-PEKU.
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Fig. 8. WR versus percentage of nonlocal nets.

with global nets only, the gap between their solutions and the
upper bound varies between 69% and 101% on average, which
are similar to the results obtained on PEKO, which has local
nets only. This is another validation that there is significant
room for improvement for the placement problem.

We also tested the placers on the PEKU benchmarks. For each
, we picked five of the circuits and fed them into the placers.

Each circuit was placed three times by the placers. Table X
and Fig. 8 show the experimental results for a subset of the
PEKU examples, as the value of changes from 0 up to 0.1 (for

, the examples are actually from the PEKO suite). The first
column gives the ratio of nonlocal nets to the total nets. Column
“LB” gives the lower bound of the optimal wirelength, assuming
that each net can be optimally placed. The upper bound of each
circuit is given in column “UB.” The last five columns give the
WR of the five placers. It can be observed that the WRs are de-
creasing with the increase of nonlocal nets. However, this does
not necessarily indicate that the solution quality of the placers
is improving. We believe that this is due to the upper bounds of
wirelength becoming looser as the percentage of nonlocal nets
increases. Therefore, the absolute value of the WRs may not be
meaningful. However, comparing WRs from different placers
can help us identify the technique that works best under each
scenario. Also, comparing the WRs of the same placer can test
a placer’s sensitivity to global connections. It can be seen that
the relative ranking of the placers changes as the percentage of
global nets increases.

Combining the results from Tables X and XI, we can make
the following observations.

i) None of the placers performs consistently better than the
others. Without global nets, mPL gives the shortest wire-
length. However, the effectiveness of Dragon improves

dramatically with the increase of nonlocal nets. When
the percentage of nonlocal nets reaches 10%, it gives the
shortest wirelength among the five placers. For examples
with global connections only, Capo gives the closest so-
lutions to the upper bounds. The effectiveness of a placer
can vary significantly for designs of similar sizes but dif-
ferent characteristics.

ii) The study suggests that new hybrid techniques, which are
more scalable and stable, may be needed for future gen-
erations of placement tools.

V. CONCLUSION AND FUTURE WORK

In this paper, we implemented an algorithm for generating
synthetic benchmarks that have known optimal wirelengths
and can match any given net distribution vector. Using bench-
marks of 10 k to 2 M placeable modules with known optimal
solutions, we experimented with four state-of-the-art placers
from academia, Dragon [1], Capo [2], mPL [3], and mPG [4],
and a leading edge industrial placer, QPlace [5] from Cadence.
For the first time, our study reveals the gap between the results
produced by these tools versus true optimal solutions. The
wirelengths produced by these tools are 1.59 to 2.40 times
the optimal in the worst cases, and are 1.43 to 2.12 times
the optimal on the average. As for scalability, the average
solution quality of each tool deteriorates by an additional 9%
to 17% when the problem size increases by a factor of ten.
We also studied the impact of nonlocal nets on the quality
of the placers by extending the PEKO algorithm to generate
synthetic placement benchmarks with a known upper bound
of the optimal wirelength. Even for these benchmarks, the
wirelengths produced by these tools are 1.75 to 2.18 times the
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TABLE XI
EXPERIMENTAL RESULTS FOR THE PEKU CIRCUITS

wirelength upper bound in the worst case, and are 1.62 to 2.07
times the wirelength upper bound on the average. Moreover,
none of the placers produces consistently better results than
the others with the presence of global nets. The fact that there
is 50% to 150% room for placement quality improvement is
significant. If this quality gap could be closed, the resulting
benefit would be equivalent to advancing several technology
generations. In comparison, the introduction of copper inter-
connects is equivalent to a 30% wirelength reduction, and so
is each process technology scaling. But each of these requires
multibillion dollar investments.

Our study is by no means complete. We did not have a chance
to experiment with a number of well known placers, such as
Gordian-L [8], TimberWolf [9] from academia, as well as com-
mercial placement tools from Synopsys, Avanti! etc. Also, the
benchmarks generated by our algorithm have several limita-
tions. For example, all modules in these circuits are of uniform

size, making them unsuitable for evaluating the legalization ca-
pability of detailed placement algorithms. Therefore, obtaining
good results for these benchmarks may not guarantee good so-
lution quality in real circuits. Finally, these benchmarks can
not be used to evaluate routability and performance. Neverthe-
less, we have made a very important step in understanding the
optimality and scalability of existing placement algorithms. We
plan to further enhance our benchmark construction algorithm
and broaden its applicability in the future.
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