
Chapter 68

Graph Isomorphism Testing without Numerics
for Graphs of Bounded Eigenvalue Multiplicity

Martin Fiirer *

Abstract

There are several parameterized classes of graphs
for which polynomial time isomorphism tests are
known. Attempts have been made to develop one
conceptionally simple parameterized class of algo-
rithms to solve the graph isomorphism problem
for all of these classes. Such unified algorithms
have been designed to handle almost all of these
classes except for the case of bounded eigenvalue
multiplicity. It is shown here that this case can
also be handled in a more direct way by discrete
methods. The new algorithm uses combinatorics
and group theory closely related to the methods
used for the other feasible classes of graphs.

The classical polynomial time graph isomor-
phism test of Babai, Grigoriev and Mount for
graphs of bounded eigenvalue multiplicity consists
of two distinct parts. First, in the linear alge-
bra part, numerical approximations of all eigen-
values and projections of the basis vectors into the
eigenspaces are computed. The precision has to
be chosen carefully to ensure that it is decidable
whether two such projections are equal or have
equal length. Also equal angles between such pro-
jections have to be recognized. In a second combi-
natorial and group theoretical part, this informa-
tion is used to try isomorphisms in the projections
and either to combine them to a global isomor-
phism or to detect that none exists.

The numerical part is alien to such a discrete
mathematical problem. A direct combinatorial
approach is more natural and gives more insight.
It is shown that such an approach is indeed pos-

*Department of Computer Science and Engineering, Penn-
sylvania State University, University Park, PA 16802,
furer@cse .psu. edu and Department of Computer Science,
Princeton University, Princeton, NJ 08544. This work is sup-
ported in part by NSF grant CCR-9218309 and DIMACS.

sible. It is an important step towards one unified
algorithm for the graph isomorphism problem for
all natural polynomially solvable classes. It helps
understanding under which circumstances compu-
tationally feasible isomorphism tests are possible.

1 Introduction

Graphs are flexible enough to easily encode any
finite structure. Therefore the graph isomorphism
problem is of fundamental importance. It asks
for an efficient algorithm to decide whether two
finite structures are intrinsically distinct or merely
different representations of basically the same
structure.

Despite great efforts over decades, no poly-
nomial time algorithm is known for the graph
isomorphism problem. On the other hand, the
problem is not assumed to be NP-complete, as
this would have the following very strange con-
sequences. It would imply #P C NP [ll] mean-
ing that counting the number of solutions would
not be harder than deciding whether a solution
exists for any NP-complete problem. A further
consequence would be co-NP C AM forcing the
polynomial hierarchy to collapse [3, ?I*

There are several interesting parameters of
graphs with a polynomial time isomorphism test
for the classes of graphs with bounded values for
their parameters. The most prominent examples
are

l The graphs of bounded genus (see, e.g., [12])

l The graphs of bounded degree (also called
valence) [lo]

l The graphs of bounded eigenvalue multiplic-

ity PI

l The graphs of bounded color size [l]

624

GRAPH ISOMORPHISM TESTING WITHOUT NUMERICS 625

It is an obvious question to ask about the es-
sential ingredients of these classes that makes their
isomorphism problem feasible. In particular, it
would be interesting to know whether there is a
nice algorithm handling all these classes. Does
there exist an efficient, conceptually simple and
uniform algorithm such that several or all of these
feasible classes, with arbitrary fixed parameter
value, could be tested for isomorphisms in polyno-
mial time by this single algorithm. Furthermore,
such an algorithm might solve the isomorphism
problem efficiently for some new classes not con-
tained in this list. There have been attempts to
handle these problems. Miller 1121 has been able
to handle a strict generalization of bounded degree
and bounded genus graphs. Finally, Ponomarenko
[13] has presented such an algorithm that solves
all known feasible classes except for the graphs of
bounded eigenvalue multiplicity. The latter class
is only solved by his uniform method if the auto-
morphism group is primitive, which is a severely
restricted case.

Indeed, the known polynomial time graph iso-
morphism test of Babai, Grigoriev and Mount [2]
for graphs of bounded eigenvalue multiplicity has a
very different flavor than any other classical graph
isomorphism test. To solve this discrete combina-
torial problem, it involves numerical computations
of eigenvalues and eigenvectors. These quantities
are computed with sufficient numerical precision
to make it decidable which projections of different
standard basis vectors into given eigenspaces have
equal length or form equal angles. Once all these
discrete results are known, the algorithm contin-
ues in a discrete manner reminiscent of other iso-
morphism tests.

The purpose of this paper is to propose
an efficient discrete isomorphism test for graphs
of bounded eigenvalue multiplicity, completely
avoiding any numerical approximations. Further-
more, the algorithm explores the power of edge
coloring and its important relation to spectral
properties of graphs. Vertex and edge coloring
have often been claimed to solve the graph iso-
morphism problem completely. Many such claims
have been made in the chemical literature, which
is not astonishing, because molecule graphs can
hardIy be so complicated as to defy this simple ap-

proach. In fact, this approach alone is sufficiently
strong to handle random graphs and random reg-
ular graphs.

Edge coloring alone fails to distinguish be-
tween two nonisomorphic strongly regular graphs
with the same parameters. Nevertheless, edge col-
oring is not only the most important preprocessing
tool for practical isomorphism tests. Its theoreti-
cal power in cooperation with other combinatorial,
algebraic, and group theoretical methods calls for
further examination. The investigations of sta-
ble edge colorings have already led to the develop-
ment of important algebraic disciplines studying
association schemes and coherent configurations

115, 5, 6, 8, 91.
Not only are vertex coloring and edge coloring

not sufficiently strong to identify the orbits of
the automorphism group of a graph, the natural
generalization from vertex and edge coloring to
coloring of Ic-tuples has been shown to fail too [4].
In fact, it fails not only for every constant Ic, but
also for every k = o(n) even for graphs of degree
3 and color class size 4.

2 Notation and Background

In this section, we relate eigenspaces to graphs,
and define stable edge colorings.

All input graphs considered are finite and
undirected. We denote graphs by X = (V, E)
with IV) = 72 and adjacency matrix A. With every
graph we associate the vector space of its vertex
labelings.

DEFINITION 2.1. The vector space of vertex
labelings is the set of functions from V into the
real numbers. The value of such a function in
a vertex v is often called the label of v or the
v-component xv of the vector x. The standard
basis of this vector space consists of the functions
assigning value 1 to one vertex and value 0 to
all the others. We use the symbol v not only
for the vertex v, but also to denote the standard
basis vector with value 1 in vertex v and value 0
everywhere else.

Throughout this paper, the vector space of
vertex labelings, its isomorphic image Rn (ob-
tained through an arbitrary enumeration of the
standard basis), and the subspaces of these spaces

626 FERRER

are the only vector spaces considered. All eigen-
values and eigenvectors studied are eigenvalues
and eigenvectors of the linear mapping defined by
the adjacency matrix A. Since A is symmetric and
real, its eigenvalues are real too, and there exists
an orthonormal basis consisting of eigenvectors.
The spectrum of an adjacency matrix A (i.e., the
eigenvalues with multiplicities) is independent of
the enumeration of the vertices. In other words,
the spectrum is an invariant of the isomorphism
class of a graph. Therefore, it is also called the
spectrum of a graph.

The linear mapping z H AZ- associated with
the adjacency matrix A can be viewed as follows.
An old labeling is transformed into a new one. The
new label of any vertex w, is the sum of the old
labels over all neighbors of ZI. With this picture
in mind, one can easily “see” the eigenvectors of
some simple graphs.

Example. The path of length 2 has the follow-
ing basis of eigenvectors: (1, &fi, 1) with eigen-
values Xi = -\/2, X3 = -\/2, and (l,O, 1) with
eigenvalue Xs = 0.

Even though the original input graphs are
undirected, we will study complete directed
graphs with colored edges. Vertex and edge colors
are an old tool to exhibit different kinds of edges.
The idea is to color an edge (u, v) different from
an edge (u’, z!), as soon as a testing algorithm dis-
covers that no automorphism can map (u, ZJ) to
(u’, u’). Every ordinary graph can be viewed as
a complete colored graph with all original edges
colored black and all original non-edges colored
white. The vertices 2, are identified with the pairs
(w, TJ) and are colored with a third color. The adja-
cency matrix A is still the original adjacency ma-
trix uneffected by the coloring. The intention of
using a coloring is to identify different “kinds” of
edges. Idealy we would like to color two edges
differently iff they do not lie on the same orbit
of the automorphism group. As no efficient algo-
rithm is known to do that (otherwise, the graph
isomorphism problem would be solved), we are a
bit more modest and only color two edges differ-
ently when we have discovered that they cannot
possibly lie on the same orbit.

More precisely, a caloting refinement step is
defined as follows. If the old colors of two edges

are already distinct, then the new colors remain
so. Furthermore, the new colors of two edges (u, U)
and (u’, u’) are distinct if there is a pair of colors,
say (red, green) such that the number of directed
paths of length 2 colored (red, green) from u to w is
different from the number of such paths from u’ to
w’. A coloring is called stable if no such refinement
is possible. Stable edge colorings can be computed
in time O(n310gn) [7].

Vertex coloring is even simpler. Initially all
vertices have the same color. During a refinement
step, two vertices of the same old color receive
different new colors, if they differ in the number of
adjacent vertices of any old color. Therefore, after
the first refinement step, the vertices are colored
by their degrees. Later the vertices are colored
by the multiset of neighbor colors. (In a multiset,
every element is given with its multiplicity.)

Let C1 be the stable vertex coloring produced
by this iterative vertex coloring algorithm. We can
get another vertex coloring C2 by using the edge
coloring algorithm. We just consider the color of
the loop edge (v, w) to be the color of v.

The stable coloring C2 of the vertices obtained
by edge coloring is always a refinement of the
stable coloring C1 obtained by vertex coloring.
Often it is a strict refinement.

In addition to the vertex coloring C’ obtained
by starting with the trivial vertex coloring, we
study the stable colorings C, obtained by starting
with a coloring distinguishing the vertex 21, i.e.,
the vertex 2, starts with one color, and all other
vertices start with the same other color.

We also denote by Cl, C,, C2 any stable
refinements of the colorings defined above.

We can easily make colorings of edges and
vertices canonical. This implies that isomorphic
graphs are colored in such a way that vertices
or edges of any color red, are mapped by any
isomorphism to red vertices or edges.

To achieve a canonical stable coloring, it is
sufficient to define a canonical order on the initial
colors and to show how to maintain a canonical
order over each refinement step. The start is
straightforward. Let us say that non-edges are
colored with color 0, edges with color 1, and
vertices with color 2. When the old colors are
already ordered at some stage, the new colors

GRAPH ISOMORPHISM TESTING WITHOUT NUMERICS 627

after one additional step can initially be viewed as
vectors of multiplicities (where the ith component
of the new vector color of a vertex v is the number
of neighbors of v with old color i). Now the vector
colors are ordered lexicographically and can be
replaced by ordinary integer colors before the next
step.

DEFINITION 2.2. Two stable colorings C and
C’ are similar if the number of vertices colored by
any color in C is equal to the number of vertices
colored by the same color in C’.

For stable edge colorings, we know that any
vertex color determines the multiset of incident
edge colors. Therefore, in similar edge colorings,
every color occurs equally often in both colorings.

3 Projections on Eigenspaces

Let C be some vertex coloring, and let C(V) be
the color class of C containing vertex V. We define
the averaging matrix M associated with the vertex
coloring C by

LEMMA 3.1. The following statements are
equivalent:

(a) The coloring C is stable.

(b) The averaging matrix M of the coloring C
commutes with the adjacency matrix A, i.e.,
AM = MA.

(c) AM is a symmetric mutti.

Proof. (b) and (c) are clearly equivalent, be-
cause the matrices A and M are symmetric. If
AM = MA, then

(AM)T = MTAT = MA = AM

If (AM)T = AM, then

AM = (AM)T = MTAT = MA

For the equivalence of (a) and (b), Let Euul be
the number of edges from vertices of U to vertices
of U’. Then

(MA),, = ‘) WwLu
VEV

(AM),, = c &vMww VEV = c &w Mm vay7u)

If C is stable, then the two expressions

and

for (MA) Uw and (AM),, are equal, because

1
Em){4 = Iqw)I --%yw)C(u)

and

If C is not stable, then there exists a vertex u
and a color class C(w) such that U’S degree into
the color class C(w) is more than the average for
vertices in C(U), i.e.,

On the other hand, every set C(w) contains a
vertex w whose degree into the color class C(U)
is not more than the average for vertices of C(w),

In this case the two previous expressions for
(MA),, and (AM), are’not equal. 1

628 F~IJRER

THEOREM 3.1. Let x be an eigenvector of the
adjacency matrix A for an eigenualue X. Let
2 be obtained by averaging the components of x
over each color class of any stable vertex coloring.
Then Z belongs to the eigenspace of the eigenvalue
x too.

Proof. Using Lemma 3.1 and observing that
3 = Mx, we get

Az=AMx=MAx=MXx=XMx=Xz

Hence, tc belongs to the same eigenspace as x. I

One should note that r~ is not necessarily an
eigenvector, as it might be 6.

THEOREM 3.2. The projectionp of a standard
basis vector v into any eigenspace S has constant
components on each color class of C,.

Proof. Let p be obtained from p by averaging
the components of P over each color class of C,.
If 21 is orthogonal to S, then p = 8 and the
claim of the Theorem is trivial. Otherwise, the
v-component p, of p is not zero. As v forms a
color class of its own, 15, = p,, and therefore 17 is
not zero either. The Cauchy-Schwarz Inequality
implies lp(2 (pi. Therefore, we get

Now we use the fact that a unit vector in the
direction of the projection of v forms an inner
product with v that is the unique minimum among
all inner products of unit vectors of S with v. This
implies that p and p have the same direction. As
they have also the same non-zero v-component,
they are equal. I

COROLLARY 3.1. The number of eigenspaces
containing non-zero projections of u is less than
or equal to the number of colors in C,.

Proof. By Theorem 3.2 all these projections
have constant components on the color classes.
But the dimension of the subspace of vectors
having constant components on the color classes
is equal to the number of color classes \CA 1. As all
these projections are pairwise orthogonal, at most
lC,/ of them can be non-zero. I

DEFINI’IYION 3.1. Let C, and C!, be the sta-
ble colorings obtained by the same canonical col-
oring algorithm applied to the same graph with
distinguished vertex u and v respectively. Let
the color classes be O,, l,, 2,, . . . and O,, l,, 2,, . . .
with 0, = {u} and 0, = {v}. Then the col-
oring C,, is defined by forming the vertex sets
0, U O,, 1, II 1,) 2, U 2,, . . . and then replacing any
overlapping vertex sets by their unions.

COROLLARY 3.2. Vectors p which are com-
mon projections of u and v into some eigenspace
are constant on the color classes of CUv.

Proof. This is an immediate consequence of
Theorem 3.2 and Definition 3.1. I

DEFINITION 3.2. For every stable vertex col-
oring C, the color respecting space ? is the sub-
space of the vector space of all vertex labelings de-
fined by having equal labels on equally colored ver-
tices.

DEFINITION 3.3. Two vectors x E & and y E
& are similar, if C, is similar to C,, and equally
colored components of x and y have equal values.

With any permutation 7r of the vertices, we
associate the corresponding permutation matrix
P. This is a matrix with 0 and 1 entries defined

by
P,, = 1 iff T(V) = u

LEMMA 3.2. If Cu. is similar to C, and x is
an eigenvector in cu to some eigenvalue X, then
there exists a permutation rr and its associated
permutation matrix P such that Px is a vector
similar to x, and Px is an eigenvector in cv to
the eigenvalue X.

Proof. If C, is similar to C,, then we can
choose n to be any color respecting permutation
of the vertices (i.e., the color of any vertex w
in C, is equal to the color of r(u) in CV. The
corresponding permutation matrix P maps the
eigenvector x into a vector y = Px. This vector y
is an eigenvector, and it has the same eigenvalue
X as x, because corresponding vertices (under 7r)
not only have equal labels, but (as the similar
colorings are stable) also have an equal number
of neighbors with any given label. I

GRAPH ISOMORPHISM TESTING WITHOUT NUMERICS

LEMMA 3.3. Ifrr is a permutation of the com-
ponents of x and y with permutation matrix P,
then the inner product x . y is equal to the inner
product Px+ Py.

Proof. Px . Py = (Px)~. Py = xTPTPy =
xTy = x * y I

THEOREM 3.3. If C, and C, are similar vertex
colorings, then for every eigenspace S, u and v
have similar projections into S. In particular,
these projections prs(u) and prs(v) have equal
lengths.

Proof. Let pr’(u), pr2 (u), . . . , pP(u) be the
collection of all projections of u into the
eigenspaces. By Theorem 3.2, these projections
belong to CU. They are constant on every vertex
color class of CU. For every vector in &, there
exists a corresponding vector in &, with the same
component values on equally colored vertices.

Letql,... , qm be a sequence of vectors similar
to pr1(u),pr2(u), . . . , prm(u) respectively, in the
graph colored by C,. As the eigenspaces are
orthogonal and span the whole space, we have

5 pr’(u) = u
i=l

and by similarity

&yv) = v
i=l

As pr1(u),pr2(u), . . . , prm (u) are pairwise orthog-
onal eigenvectors to different eigenvalues, also
q’,... , qm are pairwise orthogonal by Lemma 3.3
and eigenvectors to different eigenvalues by
Lemma 3.2. Hence, ql,. . . , qm are the projections
of v into the eigenspaces. Because corresponding
projections of u and v are similar, they have equal
length. t

THEOREM 3.4. 1f the edges (u,v) and (u’,v’)
have the same color in some stable edge coloring,
then the inner products prs(u).prs(v) and prs(u’).
prs(v’) of projections of standard basis vectors u
and v into the same eigenspace S are equal.

Proof. For every w, w’ E V, let prS(w)Wl be
the w’-component of the projection pi-S(w) of
the standard basis vector w into the eigenspace

S. The edge color of (w, w’) determines the
vertex color of w’ in C,, which in turn (by
Theorem 3.3) determines the value of the w’-

629

component prs (w) We of the projection prs(w).
If the colors of (u, v) and (u’, v’) are equal,

then for every pair of edge colors (red, green),
the number of vertices w with (u, w) colored
red and (v, w) colored green, is equal to the
number of vertices w’ with (u, w’) colored red
and (v, w’) colored green. Because prs (u)m =
prS(u’)W/ and prs(v)w = pr~(&,r are the same,
the contribution prs(u)Wprs(v), of each such
vertex w to the inner product prs(u) 1 prs(v) is
equal to the contribution prS(z&l prs(v’)Wt of
each such vertex w’ to the inner product prS(u’) .
prs(v’). Hence, the two inner products are equal.
I

COROLLARY 3.3. All angles between projec-
tions of standard basis vectors into eigenspaces are
determined by the edge colors ofC2.

Proof In any stable coloring, the edge color
of (u, v) determines the colors of (u, u) and (v, v),
which determine the lengths of the projections of
u and v into eigenspaces by Theorem 3.3. Edge
colors determine inner products by Theorem 3.4.
Together they determine the cosines of the angles.
I

COROLLARY 3.4. For every eigenspace S,
there is a set of edge colors in C2, such that the
color of any edge (u, v) is in the set, if and only if

P%(u) = P%+J).

Proof. Equal projections into and eigenspace
S are characterized by equal lengths and angle 0 in
the projection. By Corollary 3.3, all lengths and
angles in turn are determined by the edge colors.
I

LEMMA 3.4. The projection of a basis of any
vector space into any subspace spans the subspace.

Proof. Every vector z is spanned by the basis

Zl,..., z, as x = Cy& ajzi. If x is in the subspace
S, then

n n
2 = prs(x) = prs(C aizi) = C ai pr,s(zi)

i=l i=l

I

630 FERRER

LEMMA 3.5. & is spanned by eigenvectors.

Proof AS OUT graphs are undirected, there
exists a basis of eigenvectors for the whole vector
space of vertex labelings. The averaging matrix M
associated with C, has rank equal to the number
of color classes I&]. It maps eigenspaces into
eigenspaces by Theorem 3.1. Therefore, it maps
any basis of eigenvectors into a set of vectors
spanning a]C,]-dimensional subspace of CU. As &
itself has only dimension]&I, this subspace has to
be the whole space &. I

LEMMA 3.6. For any pair of vertices (u, w),
the subspace cuV of vectors being constant on any
color class of C,, is spanned by eigenvectors.

Proof. Just replace C, by C,, in the proof of
Lemma 3.5. I

It remains to be shown that for every pair of
vertices u, u, belonging to the same C2 vertex color
class, there is an eigenspace S such that u and w
have a common projection into S. Furthermore,
this is a common projection of all vertices from the
color class of u and v in C,,. In addition, if C,,
has any other color class, then such an eigenspace
S can be chosen such that not every vertex has
the same projection.

This allows our algorithm to partition the
equally colored vertices very much the same
way as done by Babai, Grigoriev, and Mount
[2], even though, we have no handle on the
eigenspaces themselves and cannot characterize
which eigenspace has produced a partition.

4 The Algorithm

The new algorithm starts by producing a canoni-
cal stable vertex coloring C from scratch and also
for each vertex v a canonical stable vertex color-
ing C, with distinguished vertex V. Furthermore,
it has to identify corresponding final colors when
starting with different distinguished vertices. The
simplest way to get all this done together is to run
the edge coloring algorithm (without any distinct
vertices). We just view the color of edge (u, v) as
the color of v in the edge coloring with distinct
vertex u. This method might actually produce a
finer coloring than strictly required, but that does
never do any harm. Anyway, we will need the edge
coloring too.

Noticing that every automorphism will respect
this colorin,g of vertices and edges, we build now
a tree on t,op of every vertex color class. The
leaves of each such tree are the vertices of one color
class. All automorphisms will respect the trees
too. Hence, these trees have properties similar
to imprimitivity trees, but we neither insist that
the automorphism group should act transitively
on the vertex color classes, nor that it should act
primitive on all the children of any node.

The formation process for these trees is quite
simple. Initially, the trees all have height one. The
children of each root are all the vertices of one
color class. Pairs of vertices in the forest are al-
ways colored by the set of colors of graph edges
between their descendent leaves. As long as there
is an edge color say green such that some chil-
dren of a tree node u are connected by a green
edge, but not all of them are connected by a green
path, we insert a new layer. The node u is now
the grandparent of its previous children. All com-
ponents (of these previous children) connected by
green paths, obtain their own parent. This pro-
cess stops, when no such refinement (by inserting
new levels) is possible anymore.

In each such refinement step, we consider a
finer partitioning of the vertex set of G corre-
sponding to some level of a tree. The partitioning
is defined by putting two vertices into the same
class if we have not yet handled a tree node that
is an ancestor of only one of them. Corresponding
to the finer partitioning, we have a new eigenvec-
tor with constant values on the classes of the finer,
but not the coarser partitioning. The finer par-
titioning is indeed produced by reclassifying ver-
tices according to the projection on its eigenspace.
Therefore, as in the previous algorithm of Babai,
Grigoriev, and Mount [2], there are only polynomi-
ally many possibilities to try to extend any single
automorphism of the upper parts of the tree to
include the new layer.

A crucial observation is how to extend these
automorphisms. Babai, Grigoriev, and Mount
[2] have used vector space considerations. The
automorphism has to be a linear mapping and
is therefore defined by its images on a basis.
We have not identified the projections onto these
eigenspaces numerically. Instead we extend the

GRAPH ISOMORPHISM TESTING WITHOUT NUMERICS

automorphism based on Theorem 3.4.
Therefore, whenever the image of some pro-

jections has been selected, the images of linearly
dependent projections are uniquely determined by
the edge cclors.

Handling every tree separately, we replace
the numerical part in the algorithm of Babai,
Grigoriev, and Mount [a]. The algorithm is
followed by the group theoretical part of [2].

5 Conclusion

We have designed a very simple discrete algorithm
ADiscrete that can be used to replace the lin-
ear algebra part -ALin-Alg in the Graph isomor-

phism test of Babai Grigoriev and Mount [2]. The
latter involves the computation of numerical ap-
proximations to eigenvalues and projections into
eigenspaces. Our new algorithm retains the sub-
sequent group theoretic part dGroup [2]. Even
though the new algorithm is very simple, its anal-
ysis is more involved, because this algorithm has
no immediate access to the eigenspaces. We sum-
marize the result of this paper as follows.

THEOREM 5.1. The algorithm dDiscrete to-
gether with AGrou solves the isomorphism prob-
lem for graphs of ounded eigenvalue multiplicity K
in polynomial time.

The degree of the polynomial running time is
the same as in the original algorithm. The advan-
tages of the new algorithm are first its potential
for a better theoretical understanding of the in-
terplay between stable edge colorings and spectral
properties of graphs, and second the fact that it is

a discrete algorithm for a discrete problem. E’rom
a practical point of view, the results of such an
algorithm are probably more reliable, because a
typical implementation of the numerical approxi-
mation algorithm would hardly contain a rigorous
analysis of the required precision. Although theo-
retically possible, it would be very tedious.

References

(11 L&szlo Babai, Monte Carlo Algorithms in Graph
Isomorphism Testing, Tech. Rep. DMS 79-10,
Universite de Montreal, 1979.

[2] Babai, L., Grigoryev, D.Y., Mount, D.M., Iso-
morphism of Graphs with Bounded Eigenvalue
Multiplicity, Proceedings 14th ACM Symposium
on Theory of Computing, STOC (1982), 310-324.

PI

141

PI

[61

171

PI

PI

POI

1111

I121

I131

1141

[I51

631

R.B. Boppana, J. Hastad, and S. Zachos. Does
co-NP have Short Interactive Proofs? IPL,
25:127-132, 1987.
Cai, Jin-Yi, Martin Fiirer, Neil Immerman, An
Optimal Lower Bound on the Number of Vari-
ables for Graph Identification, Combinatorics 12
(1992), 389-410.
Ya. Yu. Gol’fand and M.H. Klin, On &Regular
Graphs, in Algorithmic Research in Combina-
torics, Nauka Publ., Moscow, 1978, 76-85.
D.G. Higman, Coherent Configurations I.: Or-
dinary Representation Theory, Geometriae Dedi-
cata 4 (1975), l-32.
Neil Immerman and Eric S. Lander, Describing
Graphs: A First-Order Approach to Graph Can-
onization, in Complexity Theory Retrospective,
Alan Selman, ed., Springer-Verlag, 1990, 59-81.
M.H. Klin, M.E. Muzichuk, and I.A. Faradzev,
Cellular Rings and Groups of Automorphisms of
Graphs, Introductory Article to a Book to be
Published by D. Reidel Publ. Co.
M.Ch. Klin, R. Poschel, and K. Rosenbaum,
Angewandte Algebra, Vieweg & Sohn Publ.,
Braunschweig 1988.
Eugene M. Luks, Isomorphism of Graphs of
Bounded Valence Can be Tested in Polynomial
Time, J. Comput. System 5% 25 (1982), 42-65.
Rudolf Mathon, A Note On the Graph Isomor-
phism Counting Problem, Inform. Proc. Let. 8
(1979), 131-132.
Gary Miller, Isomorphism of Ic-Contractible
Graphs, a Generalization of Bounded Valence
and Bounded Genus, Information and Control 56
(1983), l-20.
Ilja N. Ponomarenko, The Isomorphism Problem
for Classes of Graphs, Soviet Math. Doll. 39
(1989), 119-122.
U. Schoning. Graph Isomorphism is in the Low
Hierarchy. J. Comp&. Syst. Sci., 37~312-323,
1987.
Boris Weisfeiler, ed., On Construction and Identi-
fication of Graphs, Lecture Notes in Mathematics
558, Springer, 1976.

