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Graph Isomorphism Testing without Numerics 
for Graphs of Bounded Eigenvalue Multiplicity 

Martin Fiirer * 

Abstract 

There are several parameterized classes of graphs 
for which polynomial time isomorphism tests are 
known. Attempts have been made to develop one 
conceptionally simple parameterized class of algo- 
rithms to solve the graph isomorphism problem 
for all of these classes. Such unified algorithms 
have been designed to handle almost all of these 
classes except for the case of bounded eigenvalue 
multiplicity. It is shown here that this case can 
also be handled in a more direct way by discrete 
methods. The new algorithm uses combinatorics 
and group theory closely related to the methods 
used for the other feasible classes of graphs. 

The classical polynomial time graph isomor- 
phism test of Babai, Grigoriev and Mount for 
graphs of bounded eigenvalue multiplicity consists 
of two distinct parts. First, in the linear alge- 
bra part, numerical approximations of all eigen- 
values and projections of the basis vectors into the 
eigenspaces are computed. The precision has to 
be chosen carefully to ensure that it is decidable 
whether two such projections are equal or have 
equal length. Also equal angles between such pro- 
jections have to be recognized. In a second combi- 
natorial and group theoretical part, this informa- 
tion is used to try isomorphisms in the projections 
and either to combine them to a global isomor- 
phism or to detect that none exists. 

The numerical part is alien to such a discrete 
mathematical problem. A direct combinatorial 
approach is more natural and gives more insight. 
It is shown that such an approach is indeed pos- 
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sible. It is an important step towards one unified 
algorithm for the graph isomorphism problem for 
all natural polynomially solvable classes. It helps 
understanding under which circumstances compu- 
tationally feasible isomorphism tests are possible. 

1 Introduction 

Graphs are flexible enough to easily encode any 
finite structure. Therefore the graph isomorphism 
problem is of fundamental importance. It asks 
for an efficient algorithm to decide whether two 
finite structures are intrinsically distinct or merely 
different representations of basically the same 
structure. 

Despite great efforts over decades, no poly- 
nomial time algorithm is known for the graph 
isomorphism problem. On the other hand, the 
problem is not assumed to be NP-complete, as 
this would have the following very strange con- 
sequences. It would imply #P C NP [ll] mean- 
ing that counting the number of solutions would 
not be harder than deciding whether a solution 
exists for any NP-complete problem. A further 
consequence would be co-NP C AM forcing the 
polynomial hierarchy to collapse [3, ?I* 

There are several interesting parameters of 
graphs with a polynomial time isomorphism test 
for the classes of graphs with bounded values for 
their parameters. The most prominent examples 
are 

l The graphs of bounded genus (see, e.g., [12]) 

l The graphs of bounded degree (also called 
valence) [lo] 

l The graphs of bounded eigenvalue multiplic- 

ity PI 

l The graphs of bounded color size [l] 

624 
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It is an obvious question to ask about the es- 
sential ingredients of these classes that makes their 
isomorphism problem feasible. In particular, it 
would be interesting to know whether there is a 
nice algorithm handling all these classes. Does 
there exist an efficient, conceptually simple and 
uniform algorithm such that several or all of these 
feasible classes, with arbitrary fixed parameter 
value, could be tested for isomorphisms in polyno- 
mial time by this single algorithm. Furthermore, 
such an algorithm might solve the isomorphism 
problem efficiently for some new classes not con- 
tained in this list. There have been attempts to 
handle these problems. Miller 1121 has been able 
to handle a strict generalization of bounded degree 
and bounded genus graphs. Finally, Ponomarenko 
[13] has presented such an algorithm that solves 
all known feasible classes except for the graphs of 
bounded eigenvalue multiplicity. The latter class 
is only solved by his uniform method if the auto- 
morphism group is primitive, which is a severely 
restricted case. 

Indeed, the known polynomial time graph iso- 
morphism test of Babai, Grigoriev and Mount [2] 
for graphs of bounded eigenvalue multiplicity has a 
very different flavor than any other classical graph 
isomorphism test. To solve this discrete combina- 
torial problem, it involves numerical computations 
of eigenvalues and eigenvectors. These quantities 
are computed with sufficient numerical precision 
to make it decidable which projections of different 
standard basis vectors into given eigenspaces have 
equal length or form equal angles. Once all these 
discrete results are known, the algorithm contin- 
ues in a discrete manner reminiscent of other iso- 
morphism tests. 

The purpose of this paper is to propose 
an efficient discrete isomorphism test for graphs 
of bounded eigenvalue multiplicity, completely 
avoiding any numerical approximations. Further- 
more, the algorithm explores the power of edge 
coloring and its important relation to spectral 
properties of graphs. Vertex and edge coloring 
have often been claimed to solve the graph iso- 
morphism problem completely. Many such claims 
have been made in the chemical literature, which 
is not astonishing, because molecule graphs can 
hardIy be so complicated as to defy this simple ap- 

proach. In fact, this approach alone is sufficiently 
strong to handle random graphs and random reg- 
ular graphs. 

Edge coloring alone fails to distinguish be- 
tween two nonisomorphic strongly regular graphs 
with the same parameters. Nevertheless, edge col- 
oring is not only the most important preprocessing 
tool for practical isomorphism tests. Its theoreti- 
cal power in cooperation with other combinatorial, 
algebraic, and group theoretical methods calls for 
further examination. The investigations of sta- 
ble edge colorings have already led to the develop- 
ment of important algebraic disciplines studying 
association schemes and coherent configurations 

115, 5, 6, 8, 91. 
Not only are vertex coloring and edge coloring 

not sufficiently strong to identify the orbits of 
the automorphism group of a graph, the natural 
generalization from vertex and edge coloring to 
coloring of Ic-tuples has been shown to fail too [4]. 
In fact, it fails not only for every constant Ic, but 
also for every k = o(n) even for graphs of degree 
3 and color class size 4. 

2 Notation and Background 

In this section, we relate eigenspaces to graphs, 
and define stable edge colorings. 

All input graphs considered are finite and 
undirected. We denote graphs by X = (V, E) 
with IV) = 72 and adjacency matrix A. With every 
graph we associate the vector space of its vertex 
labelings. 

DEFINITION 2.1. The vector space of vertex 
labelings is the set of functions from V into the 
real numbers. The value of such a function in 
a vertex v is often called the label of v or the 
v-component xv of the vector x. The standard 
basis of this vector space consists of the functions 
assigning value 1 to one vertex and value 0 to 
all the others. We use the symbol v not only 
for the vertex v, but also to denote the standard 
basis vector with value 1 in vertex v and value 0 
everywhere else. 

Throughout this paper, the vector space of 
vertex labelings, its isomorphic image Rn (ob- 
tained through an arbitrary enumeration of the 
standard basis), and the subspaces of these spaces 
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are the only vector spaces considered. All eigen- 
values and eigenvectors studied are eigenvalues 
and eigenvectors of the linear mapping defined by 
the adjacency matrix A. Since A is symmetric and 
real, its eigenvalues are real too, and there exists 
an orthonormal basis consisting of eigenvectors. 
The spectrum of an adjacency matrix A (i.e., the 
eigenvalues with multiplicities) is independent of 
the enumeration of the vertices. In other words, 
the spectrum is an invariant of the isomorphism 
class of a graph. Therefore, it is also called the 
spectrum of a graph. 

The linear mapping z H AZ- associated with 
the adjacency matrix A can be viewed as follows. 
An old labeling is transformed into a new one. The 
new label of any vertex w, is the sum of the old 
labels over all neighbors of ZI. With this picture 
in mind, one can easily “see” the eigenvectors of 
some simple graphs. 

Example. The path of length 2 has the follow- 
ing basis of eigenvectors: (1, &fi, 1) with eigen- 
values Xi = -\/2, X3 = -\/2, and (l,O, 1) with 
eigenvalue Xs = 0. 

Even though the original input graphs are 
undirected, we will study complete directed 
graphs with colored edges. Vertex and edge colors 
are an old tool to exhibit different kinds of edges. 
The idea is to color an edge (u, v) different from 
an edge (u’, z!), as soon as a testing algorithm dis- 
covers that no automorphism can map (u, ZJ) to 
(u’, u’). Every ordinary graph can be viewed as 
a complete colored graph with all original edges 
colored black and all original non-edges colored 
white. The vertices 2, are identified with the pairs 
(w, TJ) and are colored with a third color. The adja- 
cency matrix A is still the original adjacency ma- 
trix uneffected by the coloring. The intention of 
using a coloring is to identify different “kinds” of 
edges. Idealy we would like to color two edges 
differently iff they do not lie on the same orbit 
of the automorphism group. As no efficient algo- 
rithm is known to do that (otherwise, the graph 
isomorphism problem would be solved), we are a 
bit more modest and only color two edges differ- 
ently when we have discovered that they cannot 
possibly lie on the same orbit. 

More precisely, a caloting refinement step is 
defined as follows. If the old colors of two edges 

are already distinct, then the new colors remain 
so. Furthermore, the new colors of two edges (u, U) 
and (u’, u’) are distinct if there is a pair of colors, 
say (red, green) such that the number of directed 
paths of length 2 colored (red, green) from u to w is 
different from the number of such paths from u’ to 
w’. A coloring is called stable if no such refinement 
is possible. Stable edge colorings can be computed 
in time O(n310gn) [7]. 

Vertex coloring is even simpler. Initially all 
vertices have the same color. During a refinement 
step, two vertices of the same old color receive 
different new colors, if they differ in the number of 
adjacent vertices of any old color. Therefore, after 
the first refinement step, the vertices are colored 
by their degrees. Later the vertices are colored 
by the multiset of neighbor colors. (In a multiset, 
every element is given with its multiplicity.) 

Let C1 be the stable vertex coloring produced 
by this iterative vertex coloring algorithm. We can 
get another vertex coloring C2 by using the edge 
coloring algorithm. We just consider the color of 
the loop edge (v, w) to be the color of v. 

The stable coloring C2 of the vertices obtained 
by edge coloring is always a refinement of the 
stable coloring C1 obtained by vertex coloring. 
Often it is a strict refinement. 

In addition to the vertex coloring C’ obtained 
by starting with the trivial vertex coloring, we 
study the stable colorings C, obtained by starting 
with a coloring distinguishing the vertex 21, i.e., 
the vertex 2, starts with one color, and all other 
vertices start with the same other color. 

We also denote by Cl, C,, C2 any stable 
refinements of the colorings defined above. 

We can easily make colorings of edges and 
vertices canonical. This implies that isomorphic 
graphs are colored in such a way that vertices 
or edges of any color red, are mapped by any 
isomorphism to red vertices or edges. 

To achieve a canonical stable coloring, it is 
sufficient to define a canonical order on the initial 
colors and to show how to maintain a canonical 
order over each refinement step. The start is 
straightforward. Let us say that non-edges are 
colored with color 0, edges with color 1, and 
vertices with color 2. When the old colors are 
already ordered at some stage, the new colors 
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after one additional step can initially be viewed as 
vectors of multiplicities (where the ith component 
of the new vector color of a vertex v is the number 
of neighbors of v with old color i). Now the vector 
colors are ordered lexicographically and can be 
replaced by ordinary integer colors before the next 
step. 

DEFINITION 2.2. Two stable colorings C and 
C’ are similar if the number of vertices colored by 
any color in C is equal to the number of vertices 
colored by the same color in C’. 

For stable edge colorings, we know that any 
vertex color determines the multiset of incident 
edge colors. Therefore, in similar edge colorings, 
every color occurs equally often in both colorings. 

3 Projections on Eigenspaces 

Let C be some vertex coloring, and let C(V) be 
the color class of C containing vertex V. We define 
the averaging matrix M associated with the vertex 
coloring C by 

LEMMA 3.1. The following statements are 
equivalent: 

(a) The coloring C is stable. 

(b) The averaging matrix M of the coloring C 
commutes with the adjacency matrix A, i.e., 
AM = MA. 

(c) AM is a symmetric mutti. 

Proof. (b) and (c) are clearly equivalent, be- 
cause the matrices A and M are symmetric. If 
AM = MA, then 

(AM)T = MTAT = MA = AM 

If (AM)T = AM, then 

AM = (AM)T = MTAT = MA 

For the equivalence of (a) and (b), Let Euul be 
the number of edges from vertices of U to vertices 
of U’. Then 

(MA),, = ‘) WwLu 
VEV 

(AM),, = c &vMww VEV = c &w Mm vay7u) 

If C is stable, then the two expressions 

and 

for (MA) Uw and (AM),, are equal, because 

1 
Em){4 = Iqw)I --%yw)C(u) 

and 

If C is not stable, then there exists a vertex u 
and a color class C(w) such that U’S degree into 
the color class C(w) is more than the average for 
vertices in C(U), i.e., 

On the other hand, every set C(w) contains a 
vertex w whose degree into the color class C(U) 
is not more than the average for vertices of C(w), 

In this case the two previous expressions for 
(MA),, and (AM), are’not equal. 1 
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THEOREM 3.1. Let x be an eigenvector of the 
adjacency matrix A for an eigenualue X. Let 
2 be obtained by averaging the components of x 
over each color class of any stable vertex coloring. 
Then Z belongs to the eigenspace of the eigenvalue 
x too. 

Proof. Using Lemma 3.1 and observing that 
3 = Mx, we get 

Az=AMx=MAx=MXx=XMx=Xz 

Hence, tc belongs to the same eigenspace as x. I 

One should note that r~ is not necessarily an 
eigenvector, as it might be 6. 

THEOREM 3.2. The projectionp of a standard 
basis vector v into any eigenspace S has constant 
components on each color class of C,. 

Proof. Let p be obtained from p by averaging 
the components of P over each color class of C,. 
If 21 is orthogonal to S, then p = 8 and the 
claim of the Theorem is trivial. Otherwise, the 
v-component p, of p is not zero. As v forms a 
color class of its own, 15, = p,, and therefore 17 is 
not zero either. The Cauchy-Schwarz Inequality 
implies lp( 2 (pi. Therefore, we get 

Now we use the fact that a unit vector in the 
direction of the projection of v forms an inner 
product with v that is the unique minimum among 
all inner products of unit vectors of S with v. This 
implies that p and p have the same direction. As 
they have also the same non-zero v-component, 
they are equal. I 

COROLLARY 3.1. The number of eigenspaces 
containing non-zero projections of u is less than 
or equal to the number of colors in C,. 

Proof. By Theorem 3.2 all these projections 
have constant components on the color classes. 
But the dimension of the subspace of vectors 
having constant components on the color classes 
is equal to the number of color classes \CA 1. As all 
these projections are pairwise orthogonal, at most 
lC,/ of them can be non-zero. I 

DEFINI’IYION 3.1. Let C, and C!, be the sta- 
ble colorings obtained by the same canonical col- 
oring algorithm applied to the same graph with 
distinguished vertex u and v respectively. Let 
the color classes be O,, l,, 2,, . . . and O,, l,, 2,, . . . 
with 0, = {u} and 0, = {v}. Then the col- 
oring C,, is defined by forming the vertex sets 
0, U O,, 1, II 1,) 2, U 2,, . . . and then replacing any 
overlapping vertex sets by their unions. 

COROLLARY 3.2. Vectors p which are com- 
mon projections of u and v into some eigenspace 
are constant on the color classes of CUv. 

Proof. This is an immediate consequence of 
Theorem 3.2 and Definition 3.1. I 

DEFINITION 3.2. For every stable vertex col- 
oring C, the color respecting space ? is the sub- 
space of the vector space of all vertex labelings de- 
fined by having equal labels on equally colored ver- 
tices. 

DEFINITION 3.3. Two vectors x E & and y E 
& are similar, if C, is similar to C,, and equally 
colored components of x and y have equal values. 

With any permutation 7r of the vertices, we 
associate the corresponding permutation matrix 
P. This is a matrix with 0 and 1 entries defined 

by 
P,, = 1 iff T(V) = u 

LEMMA 3.2. If Cu. is similar to C, and x is 
an eigenvector in cu to some eigenvalue X, then 
there exists a permutation rr and its associated 
permutation matrix P such that Px is a vector 
similar to x, and Px is an eigenvector in cv to 
the eigenvalue X. 

Proof. If C, is similar to C,, then we can 
choose n to be any color respecting permutation 
of the vertices (i.e., the color of any vertex w 
in C, is equal to the color of r(u) in CV. The 
corresponding permutation matrix P maps the 
eigenvector x into a vector y = Px. This vector y 
is an eigenvector, and it has the same eigenvalue 
X as x, because corresponding vertices (under 7r) 
not only have equal labels, but (as the similar 
colorings are stable) also have an equal number 
of neighbors with any given label. I 
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LEMMA 3.3. Ifrr is a permutation of the com- 
ponents of x and y with permutation matrix P, 
then the inner product x . y is equal to the inner 
product Px+ Py. 

Proof. Px . Py = (Px)~. Py = xTPTPy = 
xTy = x * y I 

THEOREM 3.3. If C, and C, are similar vertex 
colorings, then for every eigenspace S, u and v 
have similar projections into S. In particular, 
these projections prs(u) and prs(v) have equal 
lengths. 

Proof. Let pr’(u), pr2 (u), . . . , pP(u) be the 
collection of all projections of u into the 
eigenspaces. By Theorem 3.2, these projections 
belong to CU. They are constant on every vertex 
color class of CU. For every vector in &, there 
exists a corresponding vector in &, with the same 
component values on equally colored vertices. 

Letql,... , qm be a sequence of vectors similar 
to pr1(u),pr2(u), . . . , prm(u) respectively, in the 
graph colored by C,. As the eigenspaces are 
orthogonal and span the whole space, we have 

5 pr’(u) = u 
i=l 

and by similarity 

&yv) = v 
i=l 

As pr1(u),pr2(u), . . . , prm (u) are pairwise orthog- 
onal eigenvectors to different eigenvalues, also 
q’,... , qm are pairwise orthogonal by Lemma 3.3 
and eigenvectors to different eigenvalues by 
Lemma 3.2. Hence, ql,. . . , qm are the projections 
of v into the eigenspaces. Because corresponding 
projections of u and v are similar, they have equal 
length. t 

THEOREM 3.4. 1f the edges (u,v) and (u’,v’) 
have the same color in some stable edge coloring, 
then the inner products prs(u).prs(v) and prs(u’). 
prs(v’) of projections of standard basis vectors u 
and v into the same eigenspace S are equal. 

Proof. For every w, w’ E V, let prS(w)Wl be 
the w’-component of the projection pi-S(w) of 
the standard basis vector w into the eigenspace 

S. The edge color of (w, w’) determines the 
vertex color of w’ in C,, which in turn (by 
Theorem 3.3) determines the value of the w’- 
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component prs (w) We of the projection prs(w). 
If the colors of (u, v) and (u’, v’) are equal, 

then for every pair of edge colors (red, green), 
the number of vertices w with (u, w) colored 
red and (v, w) colored green, is equal to the 
number of vertices w’ with (u, w’) colored red 
and (v, w’) colored green. Because prs (u)m = 
prS(u’)W/ and prs(v)w = pr~(&,r are the same, 
the contribution prs(u)Wprs(v), of each such 
vertex w to the inner product prs(u) 1 prs(v) is 
equal to the contribution prS(z&l prs(v’)Wt of 
each such vertex w’ to the inner product prS(u’) . 
prs(v’). Hence, the two inner products are equal. 
I 

COROLLARY 3.3. All angles between projec- 
tions of standard basis vectors into eigenspaces are 
determined by the edge colors ofC2. 

Proof In any stable coloring, the edge color 
of (u, v) determines the colors of (u, u) and (v, v), 
which determine the lengths of the projections of 
u and v into eigenspaces by Theorem 3.3. Edge 
colors determine inner products by Theorem 3.4. 
Together they determine the cosines of the angles. 
I 

COROLLARY 3.4. For every eigenspace S, 
there is a set of edge colors in C2, such that the 
color of any edge (u, v) is in the set, if and only if 

P%(u) = P%+J). 

Proof. Equal projections into and eigenspace 
S are characterized by equal lengths and angle 0 in 
the projection. By Corollary 3.3, all lengths and 
angles in turn are determined by the edge colors. 
I 

LEMMA 3.4. The projection of a basis of any 
vector space into any subspace spans the subspace. 

Proof. Every vector z is spanned by the basis 

Zl,..., z, as x = Cy& ajzi. If x is in the subspace 
S, then 

n n 
2 = prs(x) = prs(C aizi) = C ai pr,s(zi) 

i=l i=l 

I 
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LEMMA 3.5. & is spanned by eigenvectors. 

Proof AS OUT graphs are undirected, there 
exists a basis of eigenvectors for the whole vector 
space of vertex labelings. The averaging matrix M 
associated with C, has rank equal to the number 
of color classes I&]. It maps eigenspaces into 
eigenspaces by Theorem 3.1. Therefore, it maps 
any basis of eigenvectors into a set of vectors 
spanning a ]C,]-dimensional subspace of CU. As & 
itself has only dimension ]&I, this subspace has to 
be the whole space &. I 

LEMMA 3.6. For any pair of vertices (u, w), 
the subspace cuV of vectors being constant on any 
color class of C,, is spanned by eigenvectors. 

Proof. Just replace C, by C,, in the proof of 
Lemma 3.5. I 

It remains to be shown that for every pair of 
vertices u, u, belonging to the same C2 vertex color 
class, there is an eigenspace S such that u and w 
have a common projection into S. Furthermore, 
this is a common projection of all vertices from the 
color class of u and v in C,,. In addition, if C,, 
has any other color class, then such an eigenspace 
S can be chosen such that not every vertex has 
the same projection. 

This allows our algorithm to partition the 
equally colored vertices very much the same 
way as done by Babai, Grigoriev, and Mount 
[2], even though, we have no handle on the 
eigenspaces themselves and cannot characterize 
which eigenspace has produced a partition. 

4 The Algorithm 

The new algorithm starts by producing a canoni- 
cal stable vertex coloring C from scratch and also 
for each vertex v a canonical stable vertex color- 
ing C, with distinguished vertex V. Furthermore, 
it has to identify corresponding final colors when 
starting with different distinguished vertices. The 
simplest way to get all this done together is to run 
the edge coloring algorithm (without any distinct 
vertices). We just view the color of edge (u, v) as 
the color of v in the edge coloring with distinct 
vertex u. This method might actually produce a 
finer coloring than strictly required, but that does 
never do any harm. Anyway, we will need the edge 
coloring too. 

Noticing that every automorphism will respect 
this colorin,g of vertices and edges, we build now 
a tree on t,op of every vertex color class. The 
leaves of each such tree are the vertices of one color 
class. All automorphisms will respect the trees 
too. Hence, these trees have properties similar 
to imprimitivity trees, but we neither insist that 
the automorphism group should act transitively 
on the vertex color classes, nor that it should act 
primitive on all the children of any node. 

The formation process for these trees is quite 
simple. Initially, the trees all have height one. The 
children of each root are all the vertices of one 
color class. Pairs of vertices in the forest are al- 
ways colored by the set of colors of graph edges 
between their descendent leaves. As long as there 
is an edge color say green such that some chil- 
dren of a tree node u are connected by a green 
edge, but not all of them are connected by a green 
path, we insert a new layer. The node u is now 
the grandparent of its previous children. All com- 
ponents (of these previous children) connected by 
green paths, obtain their own parent. This pro- 
cess stops, when no such refinement (by inserting 
new levels) is possible anymore. 

In each such refinement step, we consider a 
finer partitioning of the vertex set of G corre- 
sponding to some level of a tree. The partitioning 
is defined by putting two vertices into the same 
class if we have not yet handled a tree node that 
is an ancestor of only one of them. Corresponding 
to the finer partitioning, we have a new eigenvec- 
tor with constant values on the classes of the finer, 
but not the coarser partitioning. The finer par- 
titioning is indeed produced by reclassifying ver- 
tices according to the projection on its eigenspace. 
Therefore, as in the previous algorithm of Babai, 
Grigoriev, and Mount [2], there are only polynomi- 
ally many possibilities to try to extend any single 
automorphism of the upper parts of the tree to 
include the new layer. 

A crucial observation is how to extend these 
automorphisms. Babai, Grigoriev, and Mount 
[2] have used vector space considerations. The 
automorphism has to be a linear mapping and 
is therefore defined by its images on a basis. 
We have not identified the projections onto these 
eigenspaces numerically. Instead we extend the 
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automorphism based on Theorem 3.4. 
Therefore, whenever the image of some pro- 

jections has been selected, the images of linearly 
dependent projections are uniquely determined by 
the edge cclors. 

Handling every tree separately, we replace 
the numerical part in the algorithm of Babai, 
Grigoriev, and Mount [a]. The algorithm is 
followed by the group theoretical part of [2]. 

5 Conclusion 

We have designed a very simple discrete algorithm 
ADiscrete that can be used to replace the lin- 
ear algebra part -ALin-Alg in the Graph isomor- 

phism test of Babai Grigoriev and Mount [2]. The 
latter involves the computation of numerical ap- 
proximations to eigenvalues and projections into 
eigenspaces. Our new algorithm retains the sub- 
sequent group theoretic part dGroup [2]. Even 
though the new algorithm is very simple, its anal- 
ysis is more involved, because this algorithm has 
no immediate access to the eigenspaces. We sum- 
marize the result of this paper as follows. 

THEOREM 5.1. The algorithm dDiscrete to- 
gether with AGrou solves the isomorphism prob- 
lem for graphs of ounded eigenvalue multiplicity K 
in polynomial time. 

The degree of the polynomial running time is 
the same as in the original algorithm. The advan- 
tages of the new algorithm are first its potential 
for a better theoretical understanding of the in- 
terplay between stable edge colorings and spectral 
properties of graphs, and second the fact that it is 

a discrete algorithm for a discrete problem. E’rom 
a practical point of view, the results of such an 
algorithm are probably more reliable, because a 
typical implementation of the numerical approxi- 
mation algorithm would hardly contain a rigorous 
analysis of the required precision. Although theo- 
retically possible, it would be very tedious. 
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