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ABSTRACT. We announce an algebraic approach to 
the problem of assigning canon~oal forms to graphs. 
We compute canonical forms and the associated 
canonical labelings (or renumberings) in poly- 
nomial time for graphs of bounded v@$@nce, in 
moderately exponential, exp(n ~ + °tIJ),time 
for general graphs, in subexponential, n ±°g n, 
time for tournaments and for 2-(v,k,l) block 
designs with k,l bounded and nlog log n time 
for h-planes (symmetric designs) with I bounded. 
We prove some related problems NP-hard and 
indicate some open problems. 

i. Introductio n • 
The computational complexity of finding 

canonical representatives for the isomorphism 
classes of finite algebraic and combinatorial 
structures is a long-standing unresolved question 
in the theory of computation. As such structures 
can be canonically represented by polynomial- 
time computable graphs ~HP ], (Mill, it would 
suffice to find canonical forms for graphs. 

It would appear that the canonical form 
problem for graphs is closely related to the 
problem of testing isomorphism; the second task 
can be performed at least as fast as the first 
and, in most instanceS, an isomorphism test for 
a class of graphs either consisted of a procedure 
for canonizing or else had an analogue for that 
problem (cf. remarks in [Lip], [Mil]). In some 
recent studies, however, the gap between these 
problems seemed wider. In [Bali the "tower of 
groups" approach was introduced and used in a 
polynomial-time Las Vegas isomorphism test of 
colored graphs with bounded color classes. The 
same method yields a polynomial-time isomorphism 
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test for graphs with bounded multiplicities of 
eigenvalues [BGM ]. In iFHL ], these Las Vegas 
algorithms were replaced by deterministic versions. 
In (Lull, deeper group-theoretic techniques were 
described that yield a polynomial-time test for 
graphs of 5ounded valence. In the same paper, 
subexponential isomorphism tests for tournaments 
and for symmetric (v,k,l) block designs were 
announced. An ingenious valence reduction pro- 
cedure led Zamlyachenko [ZKT],[Ba3] to a 
moderately exponential (exp(nl-c)) test for 
general graphs via the techniques of (Lull. 
Subsequent improvements of the bounded valence 
algorithm have brought this bound down to 
exp(c/fn io~ ~) [eu2] (We use the letter c to 
denote a positive absolute constant thrQughout, 
but possibly a different one each time). In 
contrast to algorithms with a combinatorial 
flavor, ~HT ] [FM ] [Mi2] [Mi3] [Ba2], none of 
these group-theoretic isomorphism tests appeared 
to have implications for canonical forms. Indeed 
both [Bal] and [Lull explicitly ask whether 
the methods can be modified to perform this other, 
potentially more useful, job. For graphs with 
bounded color-classes, this was soon done ~KL ] by 
a naive "lexicographie leader" idea. However, a 
similar approach leads to NP-hard problems even 
in the context of trivalent graphs (of. §3.1). 
Thus, despite the fact that trivalent graph 
isomorphism had been brought down to O(n31og n) 
[GHLSW] the fastest canonical form algorithm for 
this class was apparently n cy~ (applying the 
Bounded color class result of [KL J via reductions 
of [Bal]l. Remarks on this diserepency appear 
also in ICG ], where a combinatorial technique of 
canonization of general graphs in e n is given. 

If the difference between the problems 
appears subtle, we offer the following (naive) 
observation, The algebraic methods for testing 
isomorphism involve the determination of generators 
for Aut(X), the automorphism group of a graph X. 
In fact, the ability to do so is both necessary 
and sufficient for isomorphism testing [Ma ]. 
Does knowledge of Aut(X)lead to a canonical form? 
In the canonical form problem the objective is to 
select~ wisely, from the various representations. 
If, as is almost always the case, Aut(X) is trivial, 
the number of such representations is n!. How do 
we select? 

The main purpose, then, of the present paper 
is to close the remaining complexity gap. The 
approach begins with an algebraization of the 
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canonical form problem. For this purpose, we 
propose the string placement problem with respect 
to a permutation group action. General graph 
canonization is easily reducible to general string 
placement, but, much more significantly, special 
cases of graph canonization are reducible to 
special cases of string place1~ent in which crucial 
properties of the groups are forced. We offer a 
string canonization algorithm and show how its 
timing can be tied into the group structure. 

In the applications, our CF-algorithms reach 
the time bounds known for isomorphism. At the end 
we briefly mention an alternative, mainly combina - 
torial, method to obtain an exp(n "2/3 +°(I) ) 
canonization of general graphs. Finally, we list 
some outstanding open problems related to isomor- 
phism and canonization. One of these (no. 5) 
suggests that, the present work notwithstanding, 
there might be a greater gap between the problems 
than has been suspected. 

Some preliminaries: For a graph X =<V,E>, 
~(X) refers to the vertex set, V. The group of 
permutations of an n element set is denoted Sn, 
or, if the set A requires explication Sym(A). 
The subgroup generated by a set ~ is indicated 
by <~>. In all algorithms, input and output 
groups are assumed to be specified by a generating 
set (see §1.2 of [Lul]). 

2. Canonical forms 

2.1 Canonical labeling-cosets. For a graph X 

with ~(X) = V and ~ e Sym(V) we note by X O 

the graph obtained by joining u and v whenever 
a-1 0-1 

u and v are adjacent in X. The graphs 

X and Y are isomorphic, denoted X ~ Y 

iff Y = X ° for some a. Let ~ denote a class 

of graphs, closed under isomorphisms, on a 

linearly ordered vertex set V (e.g. V = {1,2,..., 

n}). A function CF:~----+~ is a canonical form 
for ~ if 

(i) For X in %, CF(X)~ X 

(ii) For X,Y in X, X ~ Y (if and) 

only if 

CF(X) = CF(Y) 

The definition can be extended to digraphs, 

possibly with colored vertices/edges and, more 

generally, to finite structures with any number 

of relations/operations. 

It is convenient to generalize the notion of 

canonical forms as follows. Let G be a group 

acting on V. We say that X is G-isomorphic to 

Y, denoted X ~G Y, if Y = X ° for some ~ e G. 

Let ~ be a class of structures on V closed 

under G-isomorphisms, i.e. 

(0) If X e ~ and o e G then X ° s ~. 

We call a function CF:~ > ~ a canonical form 
with respect ~o G if 

(i) For X in ~, CF(X) ~G X. 

(ii) For X,Y in ~, X ~G Y (if and) 

only if 

CF(X) = CF(Y) 

We shall usually write CF(X,G) for ~ch a form, 

reserving the notation CF(X) for CF(X, Sym(V)). 

Given some CF(-,G), there is a natural extension 

to cosets of G. If ~ is closed under <¢;G> 

where o c Sym(V), we define CF(X,oG), the 
canonical for~ of X w.r.t, oG, to be CF(Xa,G) 

It is important to observe that CF(X,oG) depends 

only on the coset oG and not on the choice of 
-i o, for if oG = YG then T o e G so that 

= Xr(~-la) ~G X O X Y, whence CF(X°,G) = CF(XY,G). 

A canonical form corresponds to a set of labelings, 
namely the renumberings of V which put X in 

canonical form 

CL(X,aG) = {TcoG I XT = CF(X,OG)}. 

Clearly (I) CL(X,oG) = sCL(XS,G) 

(II) CL(X,sG) = TAUtG(XT ) for any 

T e CL(X,oG). 

Here AutG(Y) denotes the group of G-automorphisms 

of Y. In particular, CL(X,aG) is a subcoset of 

~G which we call a canonical labeling-coset of 
X w.r.t. ~G. 

For purposes of reeursion, it will be useful to 

have algorithms which return the full coset CL 

(although, for the structures we study, an oracle 

for CF, in fact an oracle for any complete set of 

invariants, i.e. for a certificate, could be used 

to construct CL.). We observe that properties I 

and II characterize canonical labeling-cosets. To 

be precise, let G be a subgroup of Sym(V) and 

suppose ~ is closed under ~-isomorphism. Denote 

by ~ the set of subcosets of G. Then 

Lemma 2.1 Let CL: ~(x~--+~ be a function 
such that, if X is in ~ and o eaG e ~, 
then CL(X,aG) ~ sG and (I) and (II) hold. 
Then 

CF(X,aG) = X T for any r e CL(X,aG) 

define~ a canonical form on ~ w.r.t, the 
subcoset aG and CL is the corresponding 
canonical labeling-coset. 
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Proof: First, X T does not depend on the choice 

of T. For, if T, ~ e CL(X,aG) then 

oG = TG = ~G so that (II) yields 

TA~tG(X T) = ~AUtG(X~); it follows that 
T- ~ e AutG(XT) so that X T = (XT) ~-I~ = X u . 

To show that the map X~-+ CF(X,G) is a canonical 

form w.r.t. G we need only verify CF(X,G) = 

CF(Y,G) if, for p EG, Y = X p. But by (I), 

CL(X,G) = CL(X,oG) = pCL(Y,G). Hence, if 

T e CL(Y,G) then pT e CL(X,G) and CF(X;G) = 

XOT = yT = CF(Y,G). Finally, the fact that 

CF(X,aG) = CF(X°,G) is immediate from (I). I~ 

2.2 Strings and graphs. Let V be a linearly 

ordered set and Z an alphabet. A E-string on 

V is a function x :V---+ Z. The set of all 

Z-strings on V is denoted by Z V. Strings can 

be regarded as particular structures with only 

unary relations. Thus, for o ~ Sym(V) the 

string x a satisfies x~(v) = x(vO-l). Canonical 

forms for strings are defined as above. Since we 

have found 'labeling v awkward in this setting, we 

shall refer to the subcoset of oG which maps x 

to CF(x, aG) as a canonical placement-coset, 
denoted CP(x,aG). 

Whereas for graphs, etc., our basic problem is 

to find canonical forms w.r.t. Sym(V), this problem 

becomes trivial for strings: the lexicographically 

first string obtained by reordering V will do it. 

However, the canonical form problem for graphs is 

easily reduced to the canonical form problem for 

strings with respect to a particular group. The 

adjacency matrix of an n-vertex graph (digraph, 

colored graph, etc.) is a string of length n 2 

(indices ordered lexicographically) over a suitable 

alphabet. Then ~ e Sym(V) acts on such strings via 
a~(i,j) = a(i °-I, ja-l). 

Observation 2.2. A canonical form for graphs w.r.t. 
aGe Sym(V) i8 precisely a canonical form for 
strings of length n 2 w.r.t, the induced action of 
oG. 

Switching back and forth between graphs and 

strings will enable us to combine geometric and 

algebraic ideas, each in their natural setting, 

Our basic tool is the string placement algorithm of 

§3.2, the canonicity of which is rigorously proved. 

,When referring to combinatorial properties of 

graphs, we shall use procedures whose canonicity 

is intuitively clear and in fact has been used 

in the literature (cf. [CG ] [We]). There are 

two sorts of particularly notable examples. 

(]) Refinement procedures. The simplest example 

is the classification of the vertices of a graph 

X by their valence. Let V. denote the set of 1 
vertices of valence i. Let the per[nutation 

e Sym(V) reorder the vertices by their valences: 
• ~ j~ l ~ iff deg(i) ~ deg(j). Let 

H = Sym(V~)× --. × Sym(V~). Now we have reduced 

the canonization problem w.r.t. G to one w.r.t. 

H by setting 

CL(X,G) = CLI(X,oH), 

where CL 1 refers to any applicable canonical 

labeling. Note that, while a is not canonical, 

the coset oH is. 

(2) Individualization. Canonization with respect 

to G can be broken into a set of canonization 

problems with respect to cosets of the stabilizer 

subgroups G (v c V). One can then take the v 
lexicographically first of the resulting n 

canonical forms and recover the canonical coset as 

the union of those corresponding to the same 

canonical form. 

While our references herein to the canonicity 

of such procedures will be informal, they can be 

justified directly from our definitions. Details 

of an algebraic machinery which encompasses such 

proofs will appear in the final paper. 

3. String placement 

3.1Lexicographic placement. Suppose G~Sym(A) 

and x ~ Z A. A natural candidate for CF(x,G) is 

the lexicographic leader in the G-orbit of x. 

As we remarked, this is easily computable when 

G = Sym(A). Thus it is worth observing that the 

general problem of finding such lexicographic 

leaders is NP-hard. To see this, consider the 

interpretation of adjacency matrices as 

{0,1}-strings on A(n) = {(i,j) I 1 j i, j j n}. 

Order A(n) so that A(m), for m < n, (the 

upper left square) always precedes its complement. 

Then knowledge of the lexicographic leader w.r.t. 

the natural action of S would reveal the size of n 
the largest independent set in the corresponding 

graph. (We remark that similar observations have 

been made by D. Corneil [Co ] and G. Miller [Mib]). 
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Nevertheless, the NP-hardness of the general 

problem is not, in itself, a deterrent to investi- 

gations for restricted groups. By way of analogy, 

we do not know how to test general string isomor- 

phism subexponentially but the problem is in P 

for groups that turn up in the study of graphs of 

bounded valence [Lul]. Thus, it is worth pointing 

out that the Lexicographic Leader problem remains 

NP-hard even for those groups, indeed even for a 

very restricted subclass. 

Proposition 3.1 The problem of finding the 

lexicographic leader in the G-orbit of x is 
NP-hard even if G is restricted to be an 
elementary abelian 2-group (every element has 

order 2). 

Proof: We reduce from 3-Dimensional Matching 

(see, e.g., [GJ ]). Thus let M~U x V x W be 

an instance of 3DH, that is, IUI = Ivl = IWl and 

we ask whether a subset of M projects bijectively 

onto U,V and W. Form the set, Q, consisting of 

unordered pairs, {m,m'}, of elements of M which 

overlap (i.e. have a common coordinate) and the set, 

P of ordered pairs, (m,m'), of elements of M 

which overlap. Fix any orderings of U,V,W,Q,F 

and form the ordered set A by taking, in sequence, 

UIVIWIQIPQ2U2V2W2 , wherein the subscript indicates 

an ordered copy of the respective set. For each 

m = (u,v,w) in M, form the involution a so m 
that 

(i) a m switches u I and u2, v I and v2, 

w I and w 2 (u i is the image of u 

in Ui, etc.) 

(ii) for each m' which overlaps m, 

a m switches {m,m'h in Q1 with 

(m,m') in P and switches (m',m) 

in P with {m,m'} 2 in Q2" 

Set G = ~Om}meM> . Finally, let x be the 
{0,1}-string on A which takes the value 1 

on UI,VI,W1,Q2 and the value 0 on U2,V2, 

W2,QI,P. Then, one checks that a matching exists 

in M if and only if the lexicographic leader in 

the G-orbit of x takes the value 0 on UI,VI, 

Wl' QI" 

Remarks. i. Another proof, our initial one, employs 

the 2-group actions constructed by A. Lubiw [Lub ] 
from instances of 3-SAT. 

2. If the orbits on A are restricted to have 

length~ 2 (which, itself, forces the group to be 

an elementary abelian 2-group) there is a straight- 

forward polynomial-time solution to the Lexico- 

graphic Leader problem. However, the above proof 

shows the problem hecomes NP-hard for 2-groups if 

the orbits are allowed to have length ~ 4. Another 

avenue of generalization appears difficult as well. 

For every p > 2, the problem is NP-hard for 

elementary abelian p-groups with orbits of length 

p. 

3.2 A string canonization algorithm. We shall give 

an algorithm which computes canonical placement for 

E A, with respect to any G. After proving it 

'works' we discuss the timing for special G. 

Some additional preliminaries: Both Z A and 

the collection of subsets of A inherit lexico- 

graphic orders. In particular, if G ~ Sym(A), 

it makes sense to refer to the first orbit of G. 

If G acts transitively on A there is also a 

'first' minimal G-block system determined as follows. 

If G acts primitively the system is A itself. 

Otherwise, let a denote the first element in A. 

Find the first b in A, b # a such that the 
G-invariant equivalent relation generated by a ~ b 

is non-trivial. The induced partition is ordered 

and so the process may be repeated until the block 

system is minimal. 

We now present the algorithm. To allow for 

recursion, we compute canonical placement-cosets 

w.r.t, aG for substrings induced on any G-invariant 

subset B of A, denoted, for convenience, 

CP~(aG). Thus CP(x,aG) is CP~(aG). We denote 

by x B the restriction of x to B. 

The algorithm - 

INPUT: x e EA; a coset aG in Sym(A); a G-stable 

subset B of A. 

OUTPUT: CP~(aG), a subcoset of oG. 

METHOD: 

(i) 

(2) 

if IBl=ithen cP~c~)= 

If G isintransitive on B, let C 

the first G-orbit in B, B = C U D. 

Then 
x CP~ (oG) = CP D CP~ (~G) 

be 
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(3) If G is transitive on B and IBI > i, 

let H be the stabilizer of the blocks 

in the first minimal G-block system in 

B. Decompose oG as 

oG = O ~i H 
i=l 

Say 

CP~ (~i H) = PiHi 

Reorder these cosets so that 

Pl P2 Ps (xPs+I)B 
(x )B = (x )B ..... (x )B < 2"'" 

(Choices of P.'s and of reordering will have to i 
be justified). (Note that we only look at x pi on 

B). Then 

CP~ (oG) = Pl <HI' {P~ipi}l<i<s> ~I 

Recalling Lemma 2.1, we prove 

Lemma 3.2 

(i) CP~ i8 well defined 

(ii) If (XO)B = YB then CP~(oG)= aCP~(G) 

(iii) If T e CP~ (oG) then 

CP~(oG) = {~ e oG I (xB) B = (xT)B}; 

equivalently, CP~(~G) = T AutG((XT)B). 

(Note AutG((XT)B) is a group since B 

is G-stable). 

Proof: We prove (i), (ii), (iii) simultaneously 

via a double induction on IBI, INf. If either 
IBI or IGI is 1 then CP~ (oG) = qG and 

(ii), (iii) are easy; (i) is no problem since 
we do not enter (3) in the algorithm. Suppose 

then that IGI > 1 and IB; > 1 and that (i) 

(ii), (iii) hold if either the subset is smaller 

or the subset is the same and the group is 
smaller. 

Proof of (i): Choices are made only in (3). 

By (iii) for (H~B) the string (xPi) B is unaffected 

by choice of i in 0i~ so the collection 

{pih}i<s is well defined. Also by (iii), 

Pi 
H 1 = Aut H ((x )B ) = H i for i ~ s. But, since 

the groups HI, ..., H s are identical, the output 
in (iii) is precisely the smallest subcoset of oG 

containing Ui<sPiH i (Actually, a consequence of 

the leamna is that the output equals this union). 

Proof of (ii): Assume (x°) B = YB" Suppose first 
that the pair (G,B) sends us into case (2). Then, 

by induction for C,D, CP~(oG) = CPcCPD(aG)X x = 

CPc(~CPD(G))X Y = oCP~CP~(G) = oCP~(G) (note that 

CP~(G) is a group by (iii) for D). Suppose next 

that (G,B) sends us into case (3). Let G = OT.H 
I 

so that oG = ~oTiH and say CP~(TiH) = PiH i. 

Let z. = xOTi. Since T. e G "" Stab(B), 
i i -- 

T i 
(Zi)B = (Y)B SO, as IHI < IGI, 

CP~(oriH) = zi oTiCP B (H) = aCP~(TiH) = ~PiHi . 

Since (i) has been established'for (G,B) we may 
assume the strings {(yPi) B} and {(x°Pi) B} were 

those considered in processing CP~(G), CP~(oG), 

respectively. But, as Pie G ~Stab(B), 
ixOPi) B = (YPi) B so these are identical collections. 

Thus, CP~(G) and CP~(oG) are the smallest subco- 

sets of G,oG containing ~i<sPi H and 

~i<sOPiHi, respectively. Hence 

CP~(oG) = ~CP~(G). 

Proof of (iii): The inclusion 

{~ e ~G I (x~) B = (xT)B} CCP~ (OG) 

is derivable from (ii) (now established for (G,B)). 
T To see this, set y = x so that, as TG = ~G, 

CP~(oG) = TCP~(G). If also (x~) B = YB for 

s oN then CP~(qg) = ~CP~(G) and so 

= ~T T e ~T-Icp (oG) = CP (oG). For the reverse 

inclusion, suppose first that (G,B) sends us into 
case 2. Let ~ e CP~(aG). We must show 

(x~) B = (XT)B . Since 

~,T e CP~(oG) = x x _ CP~(ag) CPD(CPc(qG)) = 

the induction hypothesis and (iii) for C yields 

(x~) C = (xT)c. Since p,T g CP~(--), (x~) D = (xT) D 

(induction for D). The result follows since 

B = C V D. 

So suppose finally that (G,B) sends us to case 3. 

We need to show 
- Pl 

<H I, {P lli}i<s > ~AUtG((X )B ) 

By induction on H 
Pl Pl 

H I = AUtH((X )B ) ~ AUtG((X )B ) 
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-I So we need only worry about the elements p I Pi' 
-i 

i ~ s. But the fact that Pl Pi c G~Stab(B) and 
Pi Pl 

(xPl) B = (x )B puts p~Ip i in AutG((x )B ). I~ 

Hence, by Lemma 2.1, we conclude 

x Theorem 3.3 The map x--+ xT, where Te CPA(~G),zS a 
form for E A w.r.t, oG and CP~(~G) canonical is 

the correspondins 3 canonical placement-coset. 

3.3 Comment on timin$. Good groups. Composition 

width. The group operations (including finding 

orbits, first minimal block system, stabilizer of 

block decomposition) require only polynomial (in 

IAI) time. Ignoring these, the decomposition in 

case (2) leads to a recurrence 

t(IBI) ~ t(Icl) + t(IB I - IcJ) 

for the timing. The bottlenec~ is in the passage 

in case (3) from a problem for (G,B) to [G:H] 

problems for (H,B). However, each of the latter 

problems decomposes into problems on disjoint orbit% 

each of size ~ JBJ/m where m is the number of 

blocks in the first minimal block decomposition. 

For a group G, let the composition width 

of G, denoted cw(G), be the smallest positive 

integer d such that every nonabelian composition 

factor of G embeds in the symmetric group S d. 

(For solvable groups, cw~G) = i). Standard 

arguments show cw(H) ~ cw(G) if H is a subgroup 

or a homomorphic image of G. For a reason to 

become obvious soon, we call a class afgroups good 

~e composition widths of its members are bounded. 

The following result shows how the timing of 

our algorithm is controlled by cw(G). 

Theorem 3.4 (Babai, Cameron, P~ify [BCP ]). If G 
is a primitive permutation group of degree n and 

cw(G) ~ d then IGI ~ n ~(d). (See (*) below) 

For d = I (solvable groups), P~ify [Pa ] 

proves ~(d) < 3.4. 

It is implicit in [BCP , p. 162, ~. 9-11] that 

~(d) < 2 + log(da(d)) where a(d) = max{IAut H I H is 

a simple subgroup of Sym(d)}. Using consequences 

of the classification of finite simple groups [Ca2] 

we obtaina(d) J d! for sufficiently large d, hence 

(*) ~(d) < d logd + c. 

One can avoid use of the classification, invoking 

more elementary group theory [Ba4], [Ba5] to prove 

~(d) < cd log4d (cf..[Ba3]). 

By Theorem 3.4, case (3) of the algorithm 

yields a recurrence of the form 

t(IBl) ~ m e(d)+l t (IBl/m). 

We have then 

Theorem 3.5 
Z A w . r . t .  G 

n = IAI  and 
I I 

The canonical placement algorithm for 
runs in time O(n ~(d)+e) where 

d = cw(G). In particular, the 
algorithm runs in polynomial time if we consider 
good groups (bounded cw). 

An immediate application(cf. Observation 2.2) is 

Corollary 3.6 If ~ is a class of (possibly 
colored, directed) graphs on a vertex set V, 
closed under isomorphisms by G~ Sym(V), then a 
canonical form and corresponding canonical Zabeling- 

coset w.r.t. G for X in ~ can be found in 
n ~(d)+c time. 

3.4 Lexicographic placement revisited. In view of 

Proposition 3.1, it is worth noting that there is 

a sense in which efficient lexicographic placement 

is now available for good groups. To be precise, 

Z. Galil [Ga] pointed to an interpretation of the 

canonization algorithm as lexicographic placement 

relative to an easily determined reordering. 

Galil's suggestion develops into a striking 

counterpoint to Proposition 3. i. 

Proposition 3.7 Let A,E be linearly ordered, 
G ~ Sym(A). There is a canonical reordering of A 
relative to which the lexicographic leader problem 
for every x in Z A w.r.t. G is solvable in 
IAI ~(d)+c time, d = cw(G). Furthermore, the 

reordering can be determined in polynomial time. 

Outline of proof: The essential idea is that one 

can create, in a canonical fashion from G and A, 
a tree, T = TREE(G,A), of subsets through which 

the recursion will always descend, so that 

(i) The leaf set is A 

(ii) For any mode B, the stabilizer of B in G 

acts trivially or primitively on the sons. 

The tree is then laid out so that the sons of any 

mode appear, left to right, in increasing order. 

The reordering is obtained by numbering the entire 

leaf set, left to right. 

In the earlier algorithm, the decomposition of a • 

subset B was guided by the action of the subgroup 

at hand, denoted now by G*. Now, in computing 
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CP~(~G) at a node B, we replace (2) and (3) of 

the algorithm by 

(2') Let H be the stabilizer in G* 

of the sons B I, ..., B m (listed in order). 
• D 

Let oG* = ~TiH and determine, for each i, 

giHi = CP~m'''CP~I(TiH) 

Proceed with {oiH i} as in (3). 

The output for CP~(G) this time is always the 

lexicographic leader in the G-orbit of x (relative 

to the reordered A). The idea now is that, for 

i < j, all the points in B. precede all the 1 
points in B.; thus lexicographic placement of 

3 
x on B is achievable by lexicographically 

placing on BI, then B2, etc. 

For the timing, the crucial observation is 

that, eith4r H = G*, so there's only one T i or 

else the B i all have size IBI/m and IG*/HI 

the order of a primitive group acting on 

{B I, -.., B m} ~ m ~(d). 

There are several reasonable choices for 

T = TREE(G,A). One such is analogous to the 

'structure tree' construction of [GHLSW, 

Theorem 1] (and is useful in extending the 

tricks of that paper to speed up trivalent 

canonization). If G acts intransitively on A, 

TREE(G,A) is the union, joined to a new root, of 

{TREE(G,Ai)} where {A i} is the set of orbits. If 

G acts transitively, let {A i} be the first 

minimal block system, A 1 the first block and let 

T' = TREE(GI,AI) , where G I is the stabilizer in 

G of AI; choose any {oi } so that oi(Al) = Ai; 

then TREE(G,A) is the union of {o.(T')}. i 

4. Applications t__ographs. 

4.1 Tournaments. It is convenient to use the 

language of round-robin tournaments with no draws. 

The players are the vertices of the tournament. 

Each pair of players play exactly once. An arrow 

from v to w indicates that v beat w. We 

show 

Theorem 4.1 Canonical forms for tournaments, T, 
can be computed in n c log n time, where 

n = I~/(T) I and c = ½ + o(i) (logarithms are taken 
base 2). 

It is well known that the automorphism groups 

of tournaments have odd order (an involution would 

reverse an arrow). Thus, by the Odd Order Theorem 

of Felt and Thompson [FT ], tournaments have 

solvable automorphism groups. However, it requires 

some effort to force the appearance of these groups 

in a string setting. 

Let T be a tournament on the vertex set V. 

We seek a canonical labeling-coset for T w.r.t. 

Sym(V). If the tournament is not regula r (i.e. 

if there are vertices with different out-valences) 

we can reduce the group to~i>_oSym(Vi) , where V i 

is the set of vertices of out-valence i. Then, 

denoting the induced tournament on V i by Ti, 

we find, reeursively, 

CLtour(~,Sym(Vi) ) = 0iH i for i ~ 0. 

So we may let 

CLtour(T,Sym(V)) = CLcor.3.6(T,~0iHi). 

Note that we are dealing here with a coset of the 

good group ~Aut(Ti). 
Suppose, then, the tournament is regular so that 

each vertex has out-valence (n-l)/2. Here we 

use the individualization process, fixing v and 

finding the canonical labeling-cosets w.r.t, the 

cosets of Sym(V'), where V' = V - {v}. Viewing 

CL(T,aSym(V')) as aCL(T ~, Sym(V')), we have n 

problems for regular tournaments T' on V w.r.t. 

Sym(V') (which fixes v). In such a case, V' 

immediately splits in half, V' = V I' ~ V~, vertices 

' or ' according to whether being assigned to V I V 2 

they beat or are beaten by v. Thus, again we can 

replace the group Sym(V') by Sym(V{)× Sym(V~), 

find, recursively 

CLtour(T~, Sym(Vl)) = PiHi for i = 1,2 

where T[ is the induced tournament on V[, and I 
let 

CLtour(T',Sym(V')) = CLco r 3.6(T',01HI×O2H2 )" 

The non-regular case leads to a timing 

inequality 

t(n) ~ Zit(ni) + n e where n i = IVil 

and the regular case to 

t(n) ~ n(2t(~) + nO). 

The proposition follows. 
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4.2 Bipartite graphs. We consider the problem of 

finding canonical forms for a bipartite graph with 

respect to a group action on one of the sides. We 

describe an algorithm whose complexity is sensitive 

to the valence on that side and to the composition 

width of the group. The algorithm will serve as a 

subroutin% in the next sections, for extending 

canonical labeling-cosets through a nested sequence 

of subgraphs. Thus, we have a set A = B ~j C, 

a eoset oG acting on B, the symmetric group Sym(C) 

acting on C and a bipartite X = (A,E) graph with 

edge set E~ B x C. Let dou t denote the 

maximum valence of vertices of B and din the 

maximum valence of vertices in C. (We think of 

the edges being oriented from B to C). 

In order to find some CL(X,oG x Sym(C)), 

the first naive approach is to adopt Luks' idea 

[Lul,§3.1] to represent the vertices of C by 

their neighborhoods in B. Let [B] din denote 

the set of subsets of B of size < d.. The 
-- in 

ordering of B induces an ordering of [B] din. 

Let f : [B]din --+ {0,I .... ,dou t} associate with 

each Y ~ [B] din the number f (Y) of those 

vertices in C whose neighborhood is precisely Y. 

Now f is a string which we have to canonically 

place with respect to the induced ~G-action on 
[Bjdin ---- • The subeoset CP(f,oG) = o G then easily 

extends to a subcoset CL(X,oG x Sym(C)) = PH 

where ~H[B = ~G. 

The timing of this procedure depends on that 

for CP. It runs in polynomial time if cw(G) and 

din are bounded. In particular, it suffices for 

polynomial-time canonization of graphs of bounded 

valence (next subsection). An unsatisfying 

feature, however, is the blow-up in the problem 

size, which multiples the exponent in the running 

time by a factor of d. . in 

We are aware, at present, of at least four 

tricks which avoid this blow-up. Each was 

originally designed to improve the running time of 

Luks' isomorphism test from essentially n cd2 to 
cd n where d is the valence• Each is suffidient 

to improve the Zemlyachenko-Luks bound, exp(n2/3), 

for general graph isomorphism [ZKT],[Ba3] to 
½ 

exp(n ). We give a brief account here of these 

ideas, leaving the details for the full paper. 

I• The first trick involves a modification of 

the string placement algorithm to capitalize on 

the spareeness of the strings arising in the above 

construction (one letter predominates). It is an 

analogue of the Schnorr-Weber [SW ] (see also 

[GHLSW ]) speedup of the string isomorphism 

(~ color isomorphism) algorithm. First one 

expands the terminating case (i) to 

(I') If x ~ is constant on B, CP~(oG) = oG. 

Secondly, in the transitive case, one first places 

the blocks themselves according to the vectors 

which indicate the number of occurences of each 

in Z. Thus one only comes to the original case 

(3) when these numbers are the same for each B.. l 
The timing can be expressed as m~(d) IAlC where 

m is the number of oceurences in x of the 

second most frequent letter. 

2. The second trick, due to Luks, does not reduce 

the problem to string placement immediately but 

adapts the ideas therein to split the set B 

directly. The base case (IBI = i) is then a 

placement problem for a subset of size dout, 

which has a naive solution in n d°ut+c steps 

(this can be improved to 4 d°ut nC). Thus one 

only requires an additive dout term in the 
running time. Details will appear in [Lu2]. We 

remark that this algorithm finds, more generally, 

CL(X,aH), for X as above and H c G x Sym(C). The 

timing involves only cw(G) and dou t. 

3. A third trick removes the dependence on d 
out 

in computing CL(X,~G × Sym(C)). In [Mi4], 

G. Miller succeeded in determining (in our 

notation) Aut(X) ~ (oG x Sym(C)) in polynomial 

time for G of bounded composition width, 

irrespective of the valences in X. His method is 

adaptable to produce a suitable CL and his results 

suggest broader applications• 

4. We have chosen, for its simplicity, to describe 

the details of a fourth trick. Due to Bahai, it 

retains the dependence on dout (it enters in our 

applications anyway since it affects the composi- 

tion width of the output)• 
We may assume X has no isolated vertices 

in C. First we consider the string 
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x : B--+ {0,I .... ,dou t} where x(v) is the valence 

of v. Compute CP(x,qG) = pH and let 

CL(X,oG x Sym(C)) = CL(X,pH × Sym(C)). Note that 

H preserves valences of X p in B so we can 

extend the action of pH to E allowing arbitrary 

permutations of edges with common orgin. The co- 
^^ 

set obtained, pH, is the largest subcoset of 

Sym(B × C) which maps E to E p, respects the 

blocks of edges having common origin and restricts 

to pH on these origins. The kernel of the 

epimorphism H--+H (projection) is the direct 

product of groups Sx(b) for b e B. Hence 

cw(H) ~ max (dout, cw(G)). 

Our next step is to consider the string 

y:E p× EP--+{0,1} where Y(el,e 2) = 1 iff e l 

and e 2 terminate at the same vertex in C. We 

order EP~ B x C lexicographically, and obtain 

CP(y,H) = TK with respect to the lexicographic 

order of E p x E p and the induced H action. 

Now TK is a subcoset of H. Let @:C + C 

denote the permutation defined by u ~ < v ~ iff 

F(u) < F(v) where F(u) = min {eleeE pT, e is 

incident with u}. Let ~ denote the permutation 

induced by T on B; let ~ = (P@,~) act on 

B[)C. The group K can be viewed as acting on 

B l) C; clearly K = AutO) N (G x Sym(C)). Setting 

CL(X,~G x Sym(C)) = wK we obtain the desired 

canonical labeling. 

Since the composition widths of G and 

are bounded by d = max(dout, cw(G)), the total 

running time is O(nW(d)+c), n = IAI. 

4.3 Graphs of valence < d. We show 

Theorem 4.2. Canonical forms for graphs, X, can 
be computed in O(n~(d-l)+C)step8 where 

n = Iv(x)l, d = valence (X). 

It suffices to canonize connected graphs, 

for CF(X) can be the canonized components 

taken in lexicographic order of adjacency 

matrices and CL(X) is easily constructible 

from the canonical labeling-cosets of the 

components. We observe, next, that it suffices 
to canonize connected graphs, X, with an edge 

e individualized, denoted X(e). The motivation 
for edge individualization is the significant 

effect it has on the automorphism group. The 

complete group~ even in the trlvalent case, is 

unrestricted. On the other hand, the following 

was proved in [Lull. 

Lemma 4.3. Let X be a connected graph of 
valence ~ d and let e be an edge in X. 
~en the composition factors of Aut(X(e)) are 

subgroups of Sd_ I. In particular, 
cw(Aut(X(e))) ~ d-1. 

The proof of Lemma 4.3 depended upon the obser- 

Vation that the kernels of the homomorphisms 

~r :Aut (Xr+ 1 (e)) --+ Aut (X r (e)) 

are direct products of syranetric groups, S t for 

t < d-l; herein X is the subgraph consisting of 
-- r 

all vertices and edges lying on paths of length 

< r through e and ~ is induced by restriction. 
-- r 

We note that this property of kernel (n) is a 
r 

consequence of the boundedness of the outvalence 

in the induced bipartite graph on Vr ~( Vr+l where 

V r = ~/(Xr) ~(X r_l); neither the invalence nor 

the valences within the induced graph on V are r 
involved. With this in mind, we define the 

outvalence of X(e) to be the maximum over r of the 

induced outvalences on V r x Vr+ 1 and note 

Lemma 4.4 The conclusion of Lemma 4.3 holds under 
the assumption of outvalenoe (X(e)) ~ d-l. 

Henceforth, we weaken the valence assumption 

on the connected graph X to: there exists at 

least one edge e such that outvalence (X(e)) 

< d-l. 

In the canonization of X(e) we may cut 

immediately from the group Sym~(X)) to Kn_ I 

where K r = Sym(Vl) x Sym(V2) x...x Sym(Vr). 

We proceed, inductively, through the X . Assume 
r 

we have defined CF(Xr,K r) and determined the 

corresponding CL(Xr,K r) = oG. Then CL(Xr+I,Kr+ I) 
is determined in two steps. First, let Y be r 
the induced subgraph of X on ~/(Xr) ( = X r 

together with the edges between vertices in Vr). 

We canonize Y w.r.t, oG by taking r 

CLcor 3.6(Yr '°G) = pH. 

Next, let Z denote the bipartite graph induced 
r 

between ~/(X r) and Vr+ 1. Using the 'bipartite I 

algorithm of subsection 4.2, we let 

CL(Xr+I,Kr+ 1) = C~ip(Zr, pH x Sym(Vr+l) ) . 
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The resulting coset may be viewed as a subcoset 

of Sym(V(Xr+l)). 

Since G, and therefore H, has composition 

width < d-l, the total time to compute 

CL(Xn_I, Kn_l) is O(n~(d-l)+c). 

We remark that the above can be 

improved to o(nCd/log d) using other techniques 

introduced in [Lu2]. 

4.4. General graphs. Zemlxachenko's trick. 

We obtain 

Theorem 4.3 Canonical forms for graphs, X, can 
be computed in exp(n ½+°(I)) time, where n = l'~(X) l. 

The link to general graph isomorphism is the 

remarkable Valence Reduction Lemma of Zemlyachenko. 

To set the stage, let X = (V,E) be a vertex 

colored graph, that is, there is a coloring 

function f from V into an initial segment of 

{1,2,3,...}. We denote the color class f-l(i) 

by C.. We say that X has color valence < d 
w.r.t, f if, for every v and i, either the 

the number of neighbors or the number of non- 

neighbors of v in C i is ~ d. For the purposes 

of isomorphism-testing or canonization of vertex- 

colored graphs, it is often useful to reeolor the 

vertices according to the familiar naive refinement 

procedure ([ CG ], [Ba3]), so that the number of 

neighbors in C i of a vertex in C. is a function 
3 

of i and j alone. The Valence Reduction Lemma 

states 

Proposition 4.4 (Zemlyachenko [ZKT], [Ba3]) 

Let X be a vertex colored graph with I~(X) I = n. 

and suppose d ~n. Then there is a sequence of 
k < 4n/d vertices such that the assignment of k 
new colors to these (individualization) followed 
by naive refinement results in a graph with color- 

valence < d. 

To this we add an extension of Theorem 4.2 

Proposition 4.5 Canonical form8 for vertex-colored 
graphs, X, can be computed in O(n ~(d)+c) steps 

where n = I~/(x)I if color-valence (x) ~ d. 

Given these results, canonical forms for 

general graphs can be obtained by individualizing 

all sequences of 4n/d vertices, canonizing the 

resulting graphs with color-valence ~ d, then 

taking those with lexicographically least adjacency 

matrix, So, if d = /nn, we perform an 

exp(n ½+°(11 step procedure, exp(n ~+°(I)1 times. 

We comment briefly on the proof of Proposition 

4.5. It would be a straightforward extension of 

the results of subsection 4.3 if the bound actually 

involved valences, not valence-or-covalence; if so, 

one forms the nested sequence {Xr} of subgraphs in 

which each successive level adds accessible vertices 

from just one color class. The final trick, then, 

involves reduction to this situation. For this, one 

simply switches edges and non-edges between C i and 

C. if it was the covalence which was small. This 
3 

brings the valences down and may have the (harmless) 

side effect of disconnecting the graph. A CL for 

the modified graph, X', will be a CL for X. Note 

that non-isomorphic X may yield isomorphic 

modified graphs, ~ , at this stage which would 

have the same CL(X'). However, the corresponding 

canonical forms, X CL(X') , would not be identical. 

4.5 Designs. 

We first consider balanced incomplete 51oek designs 

[Ry ] with parameters (v,k,l): v is the number of 

vertices, k the size of each block and % the 

number of blocks common to each pair of vertices. 

(The other commonly used parameters, b and r, 

are functions of these). We assume 3 < k < v 

and % > I, thereby excluding the trivial cases. 

We show 

Theorem 4.6 Canonical fo~n8 for block-design8 
with pare~eters (v,k,~) can be computed in 
vf(k,~) + log v time. 

Our estimate for f(k,%) is e + ~(max(k-2,%)). 

It is known that the isomorphism problem for 

block designs is isomorphism complete, even for 

triple systems (k = 3) [CC ]. On the other hand, 

Miller [Mi2] has shown that isomorphism testing, 

in fact canonical labeling, can 5e done in n l°g n 

for Steiner triple systems (k = 3, ~ = i). The 

reason is that a Steiner triple system can be 

viewed as a quasigroup and therefore has a set of 

1 + log n generators. Having individualized 

these, one can canonically order the remaining 

vertices in polynomial time. The choice of 

generators has to he repeated at most n l°g n times 

and the lexicographieally least of the resulting 

multiplication tables is selected to be canonical. 
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We combine this idea with information about 

the automorphism groups. To establish the 

existence of a 'small' generating set one shows 

that any subdesign Y = (W,~) of X = (V,~) (i.e. 

W~__ V, C ~ and Y is a block design with 

parameters (IwI, k, x)) satisfies IwI~ (v-l)/(k-l). 

Since the set of subdesigns is closed under inter- 

section~ any subset 'generates' a subdesign. So 

Lemma 4.7 X has a generating set of size 
I + log v/log(k-l). 

Unfortunately, unlike the Steiner triple system 

case, the stabilizer of a set S of generators of 

X in Aut(X) is not necessarily the identity. 

However, one shows 

Lemma 4.8 The composition factors of AUts(X) are 
subgroups of S d where d = max(h,k-2). 

We employ this in an extension process analogous 

to the one in §4.3. (The log v term in the 

exponent is due to the number of choices of S). 

For a sequence S = (Ul,...,Us) we build a chain 

{W i} of subsets of V by: W 1 = {u I} and while 

W i ~ V, if W i induces a subdesign then 

Wi+ 1 = W i ~j{first u. not in W.} else 
3 i 

= W i U {B e ~ I IB~Wil Z 2}. Then the Wi+ 1 
nested graphs {X.} are taken to be bipartite, 

3 
X2i_l and X2i both have the set W i on one 
side, the vertices on the other side represent 

those blocks entirely in W i (for X2i_l ) or 

those in Wi+ 1 (for X2i). Edges correspond to 

incidence. The extension of CL(Xj) to CL(Xj+ I) 

works as in §4.3 for j even. For j odd we 

do not have a bound on dout (this wouldn't 

bother us if we had developed Miller's trick 

in §4.2) but we get around this by considering 

another bipartite graph Yj~ having the set of 

unordered pairs of elements of ~(Xj) on the 

left and ~(Xj+I) "~a~(Xj) on the right. A 

pair {x,x'} will be adjacent to a block B on 

the right if x,x' e B. Now the vertices on the 

left side of Y. have degree < k - 2, justifying 
3 

the timing. 

We turn next to symmetric designs, i.e. we 

suppose the number of points equals the number of 

blocks. If X : i, these are the projective planes. 
Miller ~Mi2] showed that canonical forms for 
projective planes can be computed in n l°g log n 

time, Using ideas somewhat similar to the above 

~altkough note that subdesign8 now refer to 

subplane8 (w, ~w ) ~ (V,~) where 

we establish 

Theorem 4.9 Canonical forms for symmetric (v,k,X)- 
design8 can be found in v~(X)+log log v + c 

time. 

Remark. As far as we know, no infinite family of 

such designs is known for any ~ > 2. 

We remark finally that similar ideas can be 

used t'o find canonical forms for strongly regular 

graphs (cf [Call) with parameters (v,k,%,~) in 
v c log v+~(max(~,V)) time. Again, the 

applicability may be limited because it appears to 

be an open question whether there exist an infinite 

number of connected strongly regular graphs with 

bounded X,~. It is conceivable, however, that 

for small k it might improve Babel's bound 

exp(cv log2v/k) for k ~ n/2 [Ba2] (Note: k ~ ~v). 

5. An alternative moderately exponential graph 

canonization. 

There is now an exp(n 2/3+°(I)) graph 

canonization algorithm available which does not 

use any group theory except for the "tower of 

groups" algorithm [Bal],[FHL ]. The method starts 

with a Zemlyachenko valence reduction to valence 

n I/3 at the cost of individualizing ~ 4n 2/3 

vertices. 

The next step uses the following result: 

Theorem 5.1 Let X be a connected graph on n 
vertices of valence < cn 2/3." Then there exists 
a set S of O(n2/31og n) vertices such that by 
individualizing the vertices in S and applying 
the Weisfeiler-Lehman edge-refinement [we ] the 
vertex set breaks into color-classes of size 
O(n2/3). 

The proof rests on estimates for distinguish- 

ing sets in coherent configurations in the spirit 

of [Ba4]. 

The concluding step is the [KL ] version of 

[Bal]: canonical forms for graphs with bounded 

color-classes. The cost of this third step can 

actually be reduced to expOl I/3 + o[I~),- " using 

[Ba6], leaving the entire algorithm with only 
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two exp (n 2"3) / bottlenecks. 

This result appears to indicate that coherent 

configurations and other combinatorial techniques 

might be relevant in the search for improved 

complexity estimates. 

6. Problems and Comments 

I. Can hypergraph isomorphism (respectively, 

canonization) be determined in simply exponential, 
n e , time where n is the size of the vertex set? 

Note that the input itself can be exponential in n, 

so we can not expect any better. If the hypergraphs 

have bounded rank (= the maximum cardinality of an 

edge) then isomorphism is decidable in c n time 

([Lu2]) and the teehnique extends to canonization. 

(The result makes essential use of the simple 

groups classification). Are there moderately 

exponential methods for this class? We observe 

that it is possible to reduce 3-hypergraph, and 

even 4-hypergraph, isomorphism (respectively, 

canonization) to graph isomorphism (respectively, 

canonization) on an n 2 element set. Hence, a 

moderately exponential algorithm for 4-hypergraph 

isomorphism is a necessary condition for the 
½-c 

reduction of graph isomorphism to exp(n ) for 

some ~ > 0. 

2. Subset stabilizers for arbitrary permutation 

groups can be computed in exp(n ½ + o(i)) time [Ba6]. 

They can also be computed in 4dn c time, where d 

is the size of the subset, c an absolute constant 

[Lu2]. Both of these results have canonical 

placement analogues with the same time bounds (for 

the latter, see [BKL ]). Is there a common 

generalization? 

3. We indicated that, with respect to a certain 

natural ordering of the indices, the problem of 

finding the lexieographic leader among the 

possible adjacency matrices of a graph is NP-hard. 

Is this the case with respect to the usual 

lexicographic ordering of the indices? We con- 

Jecture that the problem is NP-hard with respect 

to any predetermined ordering of the indices. 

(In this regard, however, compare Proposition 3.7). 

We further conjecture that the problem remains 

NP-hard even for special classes of graphs, e.g. 

trivalent graphs, trees. We are split over a 

prediction for binary trees. 

4. Blass and Gurevich [BG ] constructed a poly- 

nomial-time recognizable equivalence over strings 

for which determining the kth digit of the lexico- 

leader of a class is A~-complete. Recall, graphic 

(A~ is the class of languages recognizable in 

polynomial time using an oracle for an NP-set). 

Is this still the case for the equivalence defined 

by a permutation group action? By a 2-group action? 

5. We point out a situation where a significant 

complexity gap between isomorphism testing and 

canonization remains. Consider a class ~ of 

'good' graphs on a vertex set V, e.g. graphs 

of bounded valence, tournaments, graphs of bounded 

eigenvalue multiplicity, etc. and an arbitrary 

group G ~Sym(V). The group intersection 

algorithm of [Lul,§4] shows that the isomorphisms 

from X to X' s ~ lying in G can be computed 

in essentially the time currently required for 

testing isomorphism (i.e. in Sym(V)). However, 

the methods do not yet seem to extend to finding 

canonical forms for 'good' graphs, CF(X,G), with 

respect to arbitrary groups, G. We do not know 

such a CF even for the class of binary trees. 

(Cf Corollary 3.6 where we show an answer for good 

groups in arbitrary graphs). 

6. The significance of a canonical form in 

mathematics is, very often, its simplicity and 

transparent structure. Although that is not the 

motivation for studies in the computational 

complexity of graph canonization, the question 

remains whether the canonized graphs constructed 

herein have any noteworthy combinatorial structure. 

One of us thinks it would be worthwhile to 

investigate the matter. 

[Bal] 

[Ba2] 

[Ba3] 

[Ba4] 
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