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Abstract. The problem of deciding whether two graphs are isomorphic is
fundamental in graph theory. Moreover, the flexibility with which other com-
binatorial objects can be modeled by graphs has meant that efficient programs
for deciding whether graphs are isomorphic have also been used to study a va-
riety of other combinatorial structures. Not only is the graph isomorphism

problem a very practical one, it is also fascinating from a complexity-theoretic
point of view. Graph isomorphism is one of the few problems that are clearly
in NP but not known either to be solvable in polynomial time, or to be NP-
complete.

Various people have worked to create algorithms for graph isomorphism
which are “practical in practice”. One of the most powerful and best known of
these algorithms is due to Brendan McKay. It is known that his algorithm has
exponential running time on some inputs, but it performs exceptionally well
under most circumstances. In this article we aim to provide an introduction
to the essential ideas of McKay’s algorithm.
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1. Introduction

The problem of deciding whether two graphs are isomorphic is fundamental in
graph theory. Moreover, the flexibility with which other combinatorial objects can
be modeled by graphs has meant that efficient programs for deciding whether graphs
are isomorphic have also been used to study and enumerate (see [16]) a variety
of other combinatorial structures, including distance-regular graphs [5], strongly
regular graphs [7], block designs [4], Latin squares [18], partial geometries [24],
and integer programs [21].

Not only is the graph isomorphism problem (which we abbreviate GI hence-
forth) a very practical one, it is also fascinating from a complexity-theoretic point
of view. It is one of the few problems that are clearly in NP but not known either
to be solvable in polynomial time, or to be NP-complete1.

The first author is partially supported by a Maude Hammond Fling Faculty Research Fel-
lowship from the University of Nebraska Research Council.

1GI is in NP since an explicit isomorphism serves as a certificate that two graphs are
isomorphic.
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There is a large amount of heuristic evidence that GI is not NP-complete. For
example GI behaves markedly differently from problems that are known to be NP-
complete, in that seemingly mild constraints on the problem allow polynomial time
algorithms. GI is polynomial time for: graphs of bounded degree [13], graphs of
bounded genus [8, 19], graphs of bounded eigenvalue multiplicity [2], and graphs of
bounded treewidth [3]. Contrast this behavior with that of, say, the graph coloring
problem, which is NP-complete even for the special case of deciding 3-colorability
of planar graphs of maximum degree at most four [10]. Even more strikingly,
the problem of counting the number of isomorphisms between two given graphs is
Turing reducible to GI itself [14].2 Compare this to the problem of determining
whether a bipartite graph has a perfect matching. This is a polynomial time decision
problem, yet the corresponding counting problem is complete for #P (the class of
counting problems corresponding to decision problems in NP) [25].

There is further evidence that the problem of graph isomorphism is not NP-
complete, in that if it were the polynomial hierarchy (of complexity classes “above”
NP and co-NP) would collapse3. For more details about the complexity issues
around GI, see the lovely book by Köbler, Schöning, and Torán [12].

Despite this evidence that GI is in some ways “easy”, there is no known
polynomial time algorithm for it. GI is known to have time complexity at most
exp

(
O(n2/3)

)
for graphs with n vertices [1]. Various people have worked to cre-

ate general algorithms for GI which are “practical in practice”. One of the most
powerful and best known of these algorithms is due to Brendan McKay [15]. It
is known that his algorithm has exponential running time on some inputs [9, 20],
but in general it performs exceptionally well. McKay has implemented his algo-
rithm in the software package nauty (No AUTomorphisms, Yes?), freely available
at his website [17]. R. L. Miller has implemented the algorithm as the NICE (NICE
Isomorphism Check Engine) module of the open-source SAGE mathematics soft-
ware [23].

In this article we aim to provide an introduction to the essential ideas of
McKay’s algorithm. There are three main strands to the nauty algorithm:

• using, iteratively, degree information;
• building a search tree examining choices not determined by degree infor-

mation; and
• using graph automorphisms, as they are found, to prune the search tree.

We introduce all three strands in Section 2 and discuss their connections. Later, in
Sections 4, 5, and 6, we go into more detail about how they are incorporated into
McKay’s algorithm. In Section 7 we discuss additional aspects which, although
useful in certain cases, do not affect the main thrust of the algorithm.

2I.e., if we are allowed to use GI as a constant time subroutine then the number of isomor-
phisms between two given graphs can be determined in polynomial time.

3The polynomial hierarchy consists of two inductively defined sequences of complexity classes
ΣP

k
and ΠP

k
, k ≥ 0. (The superscript P stands for the complexity class P .) The sequences start

with ΣP
0 = ΠP

0 = P. Then we say that a problem is in ΣP
k

if every instance (for which the answer is
“yes”) has some certificate (of length bounded by some polynomial in the length of the instance)
such that the problem of checking the certificate is in ΠP

k−1. Then we let ΠP
k

= co-ΣP
k

. For

instance ΣP
1 = NP , ΠP

1 =co-NP, and a problem is in ΣP
2 if it has a certification scheme for which

the certificate-checking problem is in co-NP. It is widely believed, though not proven, that all
these classes are distinct.
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2. Motivation

We start by noting that we can assume, without loss of generality, that all the
graphs we consider have vertex set [n] = {1, 2, . . . , n}. We will only consider simple
undirected graphs, so we can identify a graph with its edge set, considered as a

subset of
(
[n]
2

)
, the set of all unordered pairs from [n].

One natural approach to the graph isomorphism problem is the use of canon-
ical isomorphs: picking a canonical representative from each isomorphism class of
graphs on [n]. Then testing isomorphism between two graphs reduces to checking
equality of their corresponding canonical isomorphs. Note that equality of graphs
is easy to test; the real work is performed in computing the canonical isomorph.

Definition 1. An isomorph of a graph G is a graph with vertex set [n] that
is isomorphic to G. A canonical isomorph function assigns to every graph G an
isomorph C(G) such that whenever H is isomorphic to G we have C(H) = C(G).
We call C(G) the canonical isomorph of G.

In the rest of the literature, including the title of this article, C(G) is referred
to as a “canonical labeling”. However, we prefer the term “canonical isomorph”
since it emphasizes the fact that C(G) is a graph and not a labeling of G.

One way to define a canonical isomorphism function is to specify a total or-
der ≤ on graphs on [n]. Then we define C≤(G) to be the ≤-largest graph in the
isomorphism class of G. Clearly this satisfies the conditions for a canonical iso-
morph function. One such example is the canonical isomorph function C� defined
by Read [22] and independently by Faradžev [6]. The ordering � they use is a

lexicographic total order induced by a fixed total ordering on
(
[n]
2

)
. Represent a

graph G by the binary sequence i(G) of length
(
n
2

)
in which the j-th entry is 1

exactly if the j-th unordered pair (in our fixed ordering) is an edge in G. Then
G � H if i(G) ≤ i(H) lexicographically.

Unfortunately C� has the drawback of being difficult to compute. Typically
there is no alternative to checking essentially every permutation of the vertices to
see whether it produces the graph that is �-greatest.

One reason for the weakness of this sort of approach is that it does not exploit
any graph theoretical information. How might one use such information to pick
out “landmarks” in the graph? One starting point might be to have vertices in
the canonical isomorph appear in increasing order of degree. Clearly this is not
sufficient to determine the canonical isomorph. However, this local information can
then be propagated around the graph. For instance, if there is a unique vertex v

of some particular degree, then the neighbors of v can be distinguished from the
non-neighbors. Iterating this idea, the second neighborhood of v can then be dis-
tinguished, and so on. The first main strand of McKay’s algorithm is to distinguish
vertices according to degree, and then to propagate this local information using the
process described above. We discuss this propagation scheme in Section 4.

Unfortunately, it is quite possible that the propagation of local information
starting from degrees will stabilize without all of the vertices being distinguished.
For instance, if G is regular, then the process does not even start. Using stronger
local information than degrees might provide more information in certain cases, at
the cost of more computation. However, in many instances no local information is
useful. Indeed, in vertex-transitive graphs, no vertex can be distinguished by any
information, local or global.
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McKay’s algorithm proceeds at this point by introducing artificial asymmetry.
Faced with a set S of (to this point) indistinguishable vertices, we distinguish, in
turn, each vertex of S. This information is then propagated to the rest of the
graph. In this way, we build a search tree (examining all choices) whose leaves are
isomorphs of G. McKay’s canonical isomorph CM is the �-greatest of these iso-
morphs appearing at leaves. Thus, in comparison to C�, the algorithm uses graph
theoretical information to reduce the number of candidate isomorphs from which
the canonical isomorph is chosen. We discuss this aspect of McKay’s algorithm in
Section 5.

The final major aspect of McKay’s algorithm is the use of automorphisms that
are discovered while exploring the search tree to prune later computation. This
allows us to compute CM more efficiently. This topic is covered in Section 6.

Before we discuss the details of McKay’s canonical isomorph function and its
implementation in nauty we introduce the notation we will use for group actions
and isomorphisms.

3. Group Actions and Isomorphism

In order to talk about isomorphism carefully it is helpful to briefly discuss group
actions.

Definition 2. An action4 of a group Γ on a set X is a function from X × Γ
to X , mapping (x, g) to xg, that satisfies the following conditions:

• for all x ∈ X and g, h ∈ Γ we have (xg)h = x(gh); and
• If e is the identity of Γ then xe = x for all x ∈ X .

For us the most important examples are various actions of Σn, the group of all
permutations of [n]. We have chosen to write our group actions on the right; as a
consequence we will also choose to compose our permutations on the right: for σ, γ

elements of Σn the group product σγ is defined to be the permutation obtained
by first applying σ and then γ. With this convention Σn acts on [n], since for
σ, γ ∈ Σn, v ∈ [n], we have (vσ)γ = v(σγ) (where, of course, vσ is the image of v

under σ).
Whenever Γ acts on X it also acts on subsets of X simply by defining

Ag = {xg : x ∈ A} .

Thus the natural action of Σn on [n] induces an action on
(
[n]
2

)
. As we have

identified simple, undirected graphs with their edge sets, this action on pairs induces
in turn an action of Σn on the set of all graphs with vertex set [n]. This action
defines the notion of isomorphism of graphs.

Definition 3. Two graphs G and H with vertex set [n] are isomorphic if there
exists a permutation γ ∈ Σn such that H = Gγ .

Similarly, if Γ acts on X , then it also acts on sequences (xi)
k
i=1 from X by

(
(xi)

k
1

)γ
= (xγ

i )k
1 .

4To be a little more careful, what we define here is called a right action of Γ on X.



MCKAY’S CANONICAL GRAPH LABELING ALGORITHM 5

4. Propagating Degree Information

The first aspect of McKay’s algorithm we will focus on is the propagation
of degree information. We describe a classification of the vertices of G using an
ordered partition. From some such partitions we can deduce further distinctions;
otherwise, we call the ordered partition equitable. We first give the appropriate
definitions and then describe the procedure in McKay’s algorithm which refines an
ordered partition until it becomes equitable.

Definition 4. An ordered partition π of [n] is a sequence (V1, V2, . . . , Vr) of
nonempty subsets of [n] such that {V1, V2, . . . , Vr} is a partition of [n]. The subsets
V1, V2, . . . , Vr are called the parts of π. A trivial part is a part of size 1. A discrete

partition only has trivial parts, while the unit partition µ only has one part, namely
[n]. The length of an ordered partition π is the number of parts in π.

Ordered partitions come equipped with the natural partial order of refinement.
Given two ordered partitions π1 and π2, we say that π1 is finer than π2 if:

• every part Vi of π1 is contained in a part Wk of π2, and
• earlier parts of π1 are contained in earlier parts of π2; i.e., if Vi and Vj are

parts of π1 with i ≤ j, and Wk and Wℓ are parts of π2 such that Vi ⊆ Wk

and Vj ⊆ Wℓ, then k ≤ ℓ.

If π1 is finer than π2, then π2 is coarser than π1. (Note that “finer than” is not
strict: it includes the case of equality.) The set of ordered partitions of [n] with the
relation “finer than” forms a partially ordered set whose unique maximal element is
the unit partition µ and whose minimal elements are the discrete ordered partitions
of [n].

Suppose now that the ordered partition π encodes a classification of the vertices.
Vertices in different parts of π have already been distinguished from each other;
vertices in the same part have not. If two vertices v, w belong to the same part
of π but have different degrees into a part of π then we can distinguish v from w,
refining our classification. Our next definition describes the situation in which no
further propagation of degree information is possible.

Definition 5. An ordered partition π = (V1, V2, . . . , Vr) of [n] is an equitable

ordered partition (with respect to G) if, for all 1 ≤ i, j ≤ r, deg(v, Vj) = deg(w, Vj)
for all v, w ∈ Vi. An equitable ordered partition τ is a coarsest equitable refinement5

of π if τ is finer than π and there is no equitable ordered partition finer than π and
strictly coarser than τ .

Thus, for example, in a regular graph the unit partition is equitable. Similarly,
in a strongly regular graph the ordered partition

(
{v} , N(v), [n] \ ({v} ∪ N(v))

)

(where N(v) is the neighborhood of v) is equitable for any vertex v.
If π is an inequitable ordered partition we would like to extract, iteratively,

all the consequences (and only the consequences) of the distinctions expressed by
π. This amounts to finding a coarsest equitable refinement of π. In the remainder

5Despite the name, coarsest equitable refinements are not necessarily unique. A better name
might be “maximal equitable refinements”, but for reasons both of history and clarity we prefer
McKay’s terminology. However, coarsest equitable refinements are unique up to ordering of the
parts; see Lemma 7.
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Figure 1. Example graph G on 9 vertices.

of this section we present the equitable refinement procedure used in McKay’s
algorithm6. The procedure accepts as input a graph G and an ordered partition π

of [n], and returns a coarsest equitable refinement R(π) of π.

Definition 6. Given an inequitable ordered partition π = (V1, V2, . . . , Vr), we
say that Vj shatters Vi if there exist two vertices v, w ∈ Vi such that deg(v, Vj) 6=
deg(w, Vj). The shattering of Vi by Vj is the ordered partition (X1, X2, . . . , Xt) of
Vi such that if v ∈ Xk and w ∈ Xℓ then k < ℓ if and only if deg(v, Vj) < deg(w, Vj).
Thus, (X1, X2, . . . , Xt) sorts the vertices of Vi by their degree to Vj .

Equitable Refinement Procedure.

Input : An unordered simple graph G with vertex set [n], and an
ordered partition π of [n].

Output : An ordered partition R(π).
Initialize: Let τ be the ordered partition π.
Iterate: If τ = (V1, V2, . . . , Vr), then let B = {(i, j) : Vj shatters Vi}.

If B is empty, then stop, reporting τ as the output R(π).
Otherwise, let (i, j) be the minimum element of B under the
lexicographic order. Let (X1, X2, . . . , Xt) be the shattering of Vi

by Vj . Replace τ by the ordered partition where Vi is replaced
by X1, X2, . . . , Xt; that is, replace τ = (V1, V2, . . . , Vr) with

(V1, V2, . . . , Vi−1, X1, X2, . . . , Xt, Vi+1, . . . , Vr).

Example. Let G be the graph on 9 vertices shown in Figure 1. We show the
execution of the equitable refinement procedure on two ordered partitions of [9],
namely the unit partition µ and another partition.

π B Vi Vj

(1 2 3 4 5 6 7 8 9) {(1, 1)} (123456789) (123456789)
(1 3 7 9 | 2 4 6 8 | 5) ∅

π B Vi Vj

(1 | 3 7 9 | 2 4 6 8 | 5) {(3, 1), (3, 2)} (2468) (1)
(1 | 3 7 9 | 6 8 | 2 4 | 5) {(2, 4)} (379) (24)
(1 | 9 | 3 7 | 6 8 | 2 4 | 5) ∅

6McKay’s actual equitable refinement procedure differs slightly in the order in which parts
are chosen to be shattered. However, only two properties of the procedure are necessary. Firstly,
it must produce a coarsest equitable refinement of π. Secondly, the refinement R(π) must satisfy
R(πγ) = R(π)γ for any γ ∈ Σn.
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We prove, in Proposition 8 below, the correctness of the equitable refinement
procedure. Our proof relies on the following lemma which is just a restatement of
the fact (which is straightforward to prove) that in the lattice of unordered parti-
tions, there is a unique unordered coarsest equitable refinement of any partition.

Lemma 7. Let π be an ordered partition of [n]. Suppose that ζ and ξ are

coarsest equitable refinements of π. Then ζ and ξ have the same parts and differ

only in the order of the parts.

Proposition 8. The partition R(π) returned by the equitable refinement pro-

cedure is a coarsest equitable refinement of π.

Proof. At each iteration of the procedure, some part Vi of τ is shattered,
producing a new ordered partition whose length is greater than that of τ . Since
every discrete partition is equitable, the length of τ is at most n. Hence the number
of iterations is bounded, and the equitable refinement procedure terminates.

The algorithm halts only when an equitable ordered partition R(π) is obtained.
Since τ at each stage is finer than that of the previous iteration, and hence is finer
than π, the partition R(π) is also finer than π. That R(π) is a coarsest equitable
refinement follows by a straightforward argument using Lemma 7. �

5. The Search Tree

McKay’s algorithm starts by forming the equitable refinement of the unit par-
tition, thereby extracting all of the initial degree information. Having reached an
equitable partition, we need to introduce artificial distinctions between vertices.
However, we must be careful to examine all relevant choices. We systematically
explore the space of equitable ordered partitions using a search tree. The next
definition describes the way we make these artificial distinctions, forming children
in the search tree.

Definition 9. Let π be an equitable ordered partition of [n] with a nontrivial
part Vi, and let u ∈ Vi. The splitting of π by u, denoted by π ⊥ u, is the equitable re-
finement R(π′) of the ordered partition π′ = (V1, V2, . . . , {u}, Vi\{u}, Vi+1, . . . , Vr).
(Note that π ⊥ u is strictly finer than π.)

Crucially, the children of an equitable ordered partition in the search tree do
not correspond to all possible splittings of π. When we artificially distinguish a
vertex u, the only alternatives we need to consider are vertices indistinguishable
(so far) from u, i.e., vertices in the same part of π. At each stage we chose to split
the first non-trivial part7 of π.

We record in the search tree not only the current equitable ordered partition,
but also the sequence of vertices used for splittings.

7To reduce the branching factor, McKay actually chooses the first smallest part of π. The
method of choosing the part for splitting π is irrelevant as long as it is an isomorphism invariant
of unordered partitions. That is to say, that if the i-th part of π is chosen, then also the i-th part
of πγ is chosen for any γ ∈ Σn.
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R(µ) = (1379|2468|5)

(1|9|37|68|24|5)

(3|7|19|48|26|5)

(1|9|3|7|8|6|4|2|5)

(3|7|9|1|4|8|2|6|5)(1|9|7|3|6|8|2|4|5)

(3|7|1|9|8|4|6|2|5)

(7|3|19|26|48|5)

(7|3|1|9|6|2|8|4|5)

(7|3|9|1|2|6|4|8|5)

(9|1|37|24|68|5)

(9|1|3|7|4|2|8|6|5)

(9|1|7|3|2|4|6|8|5)

Figure 2. The search tree T (G) for the graph G of Figure 1. Only
the ordered partitions associated with each node of the search tree
are shown.

Definition 10. The search tree T (G) is the rooted tree whose nodes
{
(π; u

˜
) : π is an ordered partition of [n]; u

˜
= (u1, u2, . . . , uk) is a sequence of distinct vertices;

π = (. . . (R(µ) ⊥ u1) ⊥ u2) . . . ) ⊥ uk;

ui is in the first non-trivial part of (. . . (R(µ) ⊥ u1) ⊥ u2) . . . ) ⊥ ui−1 for each i.
}

.

We allow the sequence u
˜

to be empty, in which case π = R(µ). This is in fact the
root node of the tree. There is an arc in T (G) directed from the node (π; u

˜
) to the

node (τ ; v
˜
) if u

˜
is a prefix of v

˜
and length(v

˜
) = length(u

˜
) + 1.

The terminal nodes of the search tree are nodes with no outgoing arcs. These
terminal nodes correspond to discrete ordered partitions of [n]. Given a discrete
ordered partition π = (V1, V2, . . . , Vn), we define σπ ∈ Σn to be the permutation
such that i(σπ) = j if Vj contains i. For example, if π = (1|9|3|7|8|6|4|2|5), then
σπ maps 1 7→ 1, 9 7→ 2, 3 7→ 3, 7 7→ 4, 8 7→ 5, and so on. To each terminal node
p = (π; u

˜
) we associate the isomorph G(σπ) of G.

We can now completely describe McKay’s canonical isomorph function.

Definition 11. McKay’s canonical isomorph function CM (G) is defined to be

CM (G) = max
�

{
G(σπ) : (π, u

˜
) is a leaf of T (G)

}
.

We denote the set of isomorphs of G appearing on the right hand side by L(G).

Example. The search tree T (G) for the graph G of Figure 1 is shown in
Figure 2. For this example, all the isomorphs of G associated to the terminal nodes
are the same; this isomorph is the canonical isomorph CM (G). (So in particular
L(G) has size 1.) Figure 3 shows this graph CM (G). Thinking of the various σπ ’s
as relabelings of G, we see many relabelings but only one isomorph. This is why
we prefer the “canonical isomorph” terminology.
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Figure 3. The canonical isomorph CM (G) for the graph G of Figure 1.

We have an action of Σn on sequences u
˜

of vertices and on ordered partitions

π. Thus we get an action on search trees, where the nodes of T (G)γ have the form
(πγ ; u

˜
γ) for (π; u

˜
) in T (G).

The following lemma contains the essence of the proof that CM (G) is a canonical
isomorph function.

Lemma 12. If H = Gγ for some γ ∈ Σn, then T (H) = T (G)γ .

Proof. Note that the equitable refinement process respects the action of γ;
that is, for an ordered partition π, R(πγ) = R(π)γ . Furthermore, if the first
nontrivial part of π is Vi, then the first nontrivial part of πγ is (Vi)

γ , which is the
i-th part of πγ . Therefore, the children of (π; u

˜
)γ in T (H) are the images under γ

of the children of (π; u
˜
) in T (G). The result follows by induction on length(u

˜
). �

Theorem 13. CM (G) is a canonical isomorph function.

Proof. Note that in T (G), the ordered partition π associated to a node m

is strictly finer than the ordered partition associated to the parent of m. Hence,
T (G) is finite, L(G) is finite, and the algorithm terminates. The output CM (G) is
defined, by the algorithm, to be an isomorph of G.

By Lemma 12, for every terminal node p = (π; u
˜
) in T (G), there exists a

terminal node pγ = (πγ ; u
˜

γ) in T (H). From the action of γ on the partition π, we

have σ(πγ) = γ−1σπ. Hence,

Hσ(πγ ) = Hγ−1σπ = (Gγ)γ−1σπ = G(σπ),

and so the sets L(G) and L(H) of graphs are the same. Thus, the maxima are the
same, and so CM (G) = CM (H). �

6. Pruning the Search Tree through the use of Automorphisms

One reason that the search tree T (G) might be large is if G has a large auto-
morphism group. In that case, the number of terminal nodes is at least the size of
the automorphism group. However, the search tree is generated depth-first, and so
automorphisms that are discovered during the search process can be used to prune

the tree—discarding a section of the search tree not yet examined because it is
known that no terminal node in that section will generate an isomorph of G that
is better than the ones already discovered.

If there exist two terminal nodes p = (π; u
˜
) and t = (τ ; v

˜
) where G(σπ) = G(στ ),

then σπ(στ )−1 is an automorphism of G, since

Gσπ(στ )−1

= (Gστ )(στ )−1

= G.
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R(µ)

(π, u
˜
) = p

b c

a

T (G, c)T (G, b) γ

γ
t = (τ, v

˜
)

Figure 4. When an automorphism γ is discovered, certain sub-
trees of the search tree are known to be isomorphic.

Let a be the node in the search tree that is the deepest common ancestor of p

and t, and let b be the child of a that is an ancestor of p, and c the child of a that is
an ancestor of t. (See Figure 4 for an illustration.) The permutation γ = σπ(στ )−1

sends π to τ , fixes a, and sends b to c. For a node m of the search tree, let T (G, m)
denote the subtree of T (G) rooted at m. Then T (G, c) is isomorphic to T (G, b) via
γ, and so the set of graphs generated from terminal nodes of T (G, c) is the same as
the set of graphs generated from terminal nodes of T (G, b). The search tree T (G)
is examined depth-first so all of T (G, b) is examined before T (G, c), and there is no
reason to examine any more of T (G, c); the search can continue at a.

Automorphisms discovered during the search can also be used to prune the
search tree in another way. Let d be a node being re-visited by the depth-first
search. Let Γ be the group generated by the automorphisms discovered thus far,
and let Φ be the subgroup of Γ that fixes d. Suppose that b and c are children of d

where some element of Φ maps b to c. If T (G, b) has already been examined, then,
as above, there is no need to examine T (G, c). Hence T (G, c) can be pruned from
the tree8.

Example. The search tree T (G) pruned through the use of automorphisms
is shown in Figure 5. The search tree is examined depth-first by examining left
children first. The automorphism γ1 is discovered first, and at the root node, γ1

has three orbits (1), (9), and (37) on the part (1379). Hence the child c of the
root node must still be examined. When the automorphism γ2 is discovered, the
remainder of T (G, c) is immediately discarded. At the root node, the subgroup of
Aut(G) generated by γ1 and γ2 has one orbit in (1379), and hence no more children
of the root need to be examined.

Note that for every automorphism γ ∈ Aut(G), there exist two terminal nodes
with associated discrete ordered partitions π and τ such that γ = σπ(στ )−1. When

8In practice, only the generators of Γ are stored and only those which fix d are used to prune
children of d. Moreover, the determination of which children to examine and which to prune is
simplified by storing the orbits of this subgroup on [n].
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R(µ) = (1379|2468|5)

(1|9|37|68|24|5)

(1|9|3|7|8|6|4|2|5)

(1|9|7|3|6|8|2|4|5)

(3|7|1|9|8|4|6|2|5)

γ2

γ1

c = (3|7|19|48|26|5)

Figure 5. The search tree T (G) pruned through the use of automorphisms.

pruning sections of the search tree, only the images of terminal nodes under the
subgraph of Aut(G) generated thus far are removed. Thus, the canonical isomorph
algorithm will find a complete set of generators for Aut(G).

Example. The automorphism group of G from Figure 1 is the dihedral group
on 8 elements, which is generated by γ1 (a reflection) and γ2 (a rotation).

At this point, we have completed a description of the essential elements of
McKay’s canonical isomorph algorithm.

7. Additional Aspects

In [15], McKay describes several improvements to the basic canonical isomorph
algorithm. Many of these improvements are primarily implementation details and
do not change the fundamental mathematical concepts. For instance, McKay
chooses a different part to shatter in the equitable refinement procedure, and a
different part to split when forming children in the search tree. We have omitted
these details for the sake of clarity. However, we mention here just a few of the
further improvements that are not purely details of a particular implementation.

Improvement 1. Sometimes automorphisms of G can be determined at a non-
terminal node m = (π; u

˜
) of the search tree. When this happens, they can be used

to prune the search tree as before. For instance, this occurs when every nontrivial
part of π has size 2 or when π has exactly one nontrivial part whose size is at most
5.

Improvement 2. The search tree of the canonical isomorph algorithm can
start with any equitable ordered partition, not just R(µ). With this modification,
the canonical isomorph algorithm can be used to test for color-preserving isomor-
phisms of vertex-colored graphs.

Improvement 3. It is possible to further restrict the number of candidates for
the canonical isomorph by using a arbitrary function of pairs (G, π) (where π is an
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ordered partition of [n]) that is constant on isomorphism classes. McKay calls such
isomorphism invariants indicator functions. Thus an indicator function Λ(G, π) is
a real-valued function such that Λ(G, π) = Λ(Gγ , πγ) for any γ ∈ Σn. (Note that Λ
does not have to be different on different isomorphism classes of graphs; if it were,
then it could be used directly for isomorphism testing!) Given a node m = (π; u

˜
)

of the search tree, we define Λ(m) to be the sequence Λ(G, π1), . . . , Λ(G, πk), where
π0 = R(µ) and πi = πi−1 ⊥ ui for 1 ≤ i ≤ k. Let Λmax be the maximum of Λ(p)
for all terminal nodes p in the search tree, under the lexicographic order. We now
set

LΛ(G) =
{

G(σπ) : p = (π; u
˜
) is a terminal node with Λ(p) = Λmax

}
,

and define CΛ(G) to be the �-maximum of LΛ(G).
The advantage of using an indicator function is that it can also be used to prune

the search tree. Suppose that a terminal node p has been found. If subsequently a
node m is being examined where Λ(m) < Λ(p), then no terminal node of T (G, m)
will be in LΛ(G) and hence T (G, m) need not be examined. Note that when a
nontrivial indicator function is used, the set LΛ(G) may be smaller than L(G) and
hence we may have CΛ(G) 6= C(G). However, CΛ(G) is still a canonical isomorph
function, by an argument essentially identical to that of Theorem 13.
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