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Abstract

This chapter surveys automorphisms of finite graphs, concentrat-
ing on the asymmetry of typical graphs, prescribing automorphism
groups (as either permutation groups or abstract groups), and special
properties of vertex-transitive graphs and related classes. There are
short digressions on infinite graphs and graph homomorphisms.

1 Graph automorphisms

An automorphism of a graph G is a permutation g of the vertex set of G
with the property that, for any vertices u and v, we have ug ∼ vg if and only
if u ∼ v. (As usual, we use vg to denote the image of the vertex v under the
permutation g. See [13] for the terminology and main results of permutation
group theory.)

This simple definition does not suffice for multigraphs; we need to specify
a permutation of the edges as well as a permutation of the vertices, to ensure
that the multiplicity of edges between two vertices is preserved. (Alterna-
tively, a multigraph can be regarded as a weighted graph, where the weight
au,v is the number of edges from u to v; an automorphism is required to
satisfy aug,vg = au,v. This gives a slightly different description of automor-
phisms, but the action on the set of vertices is the same.) We will consider
only simple graphs here.
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The set of all automorphisms of a graph G, with the operation of com-
position of permutations, is a permutation group on V G (a subgroup of the
symmetric group on V G). This is the automorphism group of G, denoted
Aut(G). We describe any subgroupH of Aut(G) as a group of automorphisms
of G, and refer to Aut(G) as the full automorphism group.

More generally, an isomorphism from a graphG to a graphH is a bijection
f from the vertex set of G to that of H such that uf ∼ wf (in H) if and
only if u ∼ v (in G). We say that G and H are isomorphic (written G ∼= H)
if there is an isomorphism between them.

Among its other jobs, the automorphism group arises in the enumeration
of graphs, specifically in the relation between counting labelled and unla-
belled graphs. A labelled graph on n vertices is a graph whose vertex set is
{1, . . . , n}, while an unlabelled graph is simply an isomorphism class of n-
element graphs. Now the number of labellings of a given unlabelled graph G
on n vertices is n!/|Aut(G)|. For a labelling is given by a bijective function
F from {1, . . . , n} to V G; there are n! such functions, and two of them (say
F1 and F2) define the same labelled graph if and only if there is an automor-
phism g such that F2(i) = F1(i)g for all i ∈ {1, . . . , n}. Figure 1 shows the
three labellings of the path of length 2 (a graph whose automorphism group
has order 2).

u u u u u u u u u1 2 3 1 3 2 2 1 3

Figure 1: Labellings

The automorphism group is an algebraic invariant of a graph. Here are
some simple properties. First, some notation:

• The direct product G1×G2 of two permutation groups G1 and G2 (acting
on sets Ω1 and Ω2) is the permutation group on the disjoint union
Ω1∪Ω2 whose elements are ordered pairs (g1, g2) for gi ∈ Gi; the action
is given by

v(g1, g2) =

{
vg1 if v ∈ Ω1,
vg2 if v ∈ Ω2.

This notion extends to the direct product of any number of permutation
groups.
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• If G2 is a permutation group on {1, . . . , n}, then the wreath product
G1 o G2 is generated by the direct product of n copies of G1, together
with the elements of G2 acting on these n copies of G1.

• Finally, Sn is the symmetric group on {1, . . . , n}.

Theorem 1.1 (a) A graph and its complement have the same automor-
phism group.

(b) Let the connected components of G consist of n1 copies of G1, . . . , nr
copies of Gr, where G1, . . . , Gr are pairwise non-isomorphic. Then

Aut(G) = (Aut(G1) o Sn1)× · · · × (Aut(Gr) o Snr).

(c) Aut(Kn) = Sn.

In view of these results, we can reduce questions about automorphism
groups to the case when the graphs are connected.

A recent survey with somewhat different emphasis is that of Babai and
Goodman [5]. In addition, no serious student should be without the book [28],
which contains surveys of a number of aspects of graph symmetry.

2 Algorithmic aspects

Two algorithmic questions arising from the above definitions are graph iso-
morphism and finding the automorphism group. The first is a decision prob-
lem:

Graph Isomorphism

Instance: Graphs G and H.

Question: Is G ∼= H?

The second problem requires output. Note that a subgroup of Sn may be
superexponentially large in terms of n; but any subgroup has a generating
set of size O(n), which specifies it in polynomial space.
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Automorphism group

Instance: A graph G.

Output: Generating permutations for Aut(G).

The two problems are closely related. Indeed, the first has a polynomial
reduction to the second. For suppose that we are given two graphs G and
H. By complementing if necessary, we may assume that both G and H
are connected. Now suppose that we can find generating permutations for
Aut(K), where K is the disjoint union of G and H. Then G and H are
isomorphic if and only if some generator interchanges the two connected
components.

Conversely, if we can solve the graph isomorphism problem, we can at
least check whether a graph has a non-trivial automorphism, by attaching
distinctive “gadgets” at each of its vertices and checking whether any pair
of the resulting graphs are isomorphic. (Finding generators for the automor-
phism group may be harder.)

The exact status of these two problems is unresolved. They belong to a
select group of problems which belong to NP but are not known either to
belong to P nor to be NP-complete. For some particular classes of graphs,
notably graphs of bounded valency [43] and graphs with bounded eigenvalue
multiplicity [7], the isomorphism problem is known to be polynomial. See [23]
for the fundamentals of computational complexity.)

In practice, these questions can be resolved for graphs with thousands
of vertices. Chapter ?? gives an account of the algorithms used and their
implementation.

It turns out that, for almost all graphs, the algorithmic questions can
be answered very quickly. However, “almost all” does not include some of
the most interesting graphs, including strongly regular graphs (discussed in
Chapter ??).

3 Automorphisms of typical graphs

The smallest graph (apart from the one-vertex graph) whose automorphism
group is trivial is shown in Figure 2.

However, small graphs are (as usual) not a reliable guide here. Erdős and
Rényi [16] showed:
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Figure 2: An asymmetric graph

Theorem 3.1 Almost all graphs have no non-trivial automorphisms.

That is, the proportion of graphs on n vertices which have a non-trivial
automorphism tends to zero as n→∞. This is true whether we take labelled
or unlabelled graphs. As noted in the introduction, the theorem implies that
almost all graphs can be labelled in n! different ways, so that the number
of unlabelled graphs on n vertices is asymptotically 2n(n−1)/2/n!. (There are
clearly 2n(n−1)/2 labelled graphs on the vertex set {1, . . . , n}, since we can
choose whether or not to join each pair of vertices by an edge.) There are
now good estimates for the error term in the asymptotic expansion; it arises
from graphs with non-trivial symmetry, and so these estimates quantify the
theorem.

In fact, more is true. There are various methods for canonical labelling
of a graph (for example, choosing the lexicographically least labelled graph
in the isomorphism class). For almost all graphs, the canonical labelling is
unique, and can be found in polynomial time; for such graphs, we can verify
efficiently that their automorphism groups are trivial. Typically, graphs with
regularity properties, such as strongly regular graphs (Chapter ??), are hard
for canonical labelling algorithms, even when their automorphism groups are
trivial.

The theorem remains true for various special classes of graphs including
regular graphs of fixed valency k > 2 (we can even allow the valency to grow,
not too rapidly, with n: see [59]), or the prolific strongly regular graphs
of Latin square or Steiner triple system type discussed in Chapter ?? (this
uses the fact that almost all Latin squares or Steiner triple systems have no
non-trivial automorphisms).

Other methods of quantifying the theorem can be found. For example,
given any graph, we can alter it so that some two vertices have the same
neighbour sets by altering at most n/2 adjacencies. The resulting graph
has an automorphism interchanging the two vertices and fixing all others.
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Erdős and Rényi [16] showed that, for almost all graphs, this is the “shortest
distance to symmetry”.

4 Permutation groups

The question, “Which permutation groups are the full automorphism groups
of graphs?”, has no easy answer. Given a permutation group G on a set
Ω, we can describe all the graphs on which G acts as follows. There is a
coordinatewise action of G on Ω × Ω, given by (u, v)g = (ug, vg). Let U be
the set of all orbits of G on Ω×Ω which consist of pairs of distinct elements.
There is a natural pairing of orbits in U , where the orbit paired with O is
O∗ = {(v, u) : (u, v) ∈ O}. Now let S be any subset of U which contains the
orbit paired with each of its members, and define a graph G(S) on the vertex
set Ω by the rule that u ∼ v in G(S) if and only if (u, v) ∈ O for some O ∈ S.
Then G(S) is a simple graph admitting G as a group of automorphisms; and
every such graph arises by this construction.

The construction easily adapts to other classes of graphs. For directed
graphs, drop the requirement that S is closed under pairing; for graphs with
loops, include all orbits on Ω × Ω, not just those consisting of pairs of dis-
tinct elements; and for multigraphs, allow multisets of orbits. It is also very
practical: instead of having to list all the edges in order to specify a graph,
we need only give a set of orbit representatives. Chapter ?? describes how
to exploit this observation.

A permutation group G on Ω is said to be 2-closed if every permutation of
Ω which preserves all the G-orbits in Ω×Ω belongs to G. More generally, the
2-closure of G is the group of permutations which preserve all the G-orbits.
These concepts was introduced by Wielandt [56].

Now, for any graph G, the group Aut(G) is 2-closed; for the edge set of
G is a union of orbits of Aut(G), and so is preserved by its 2-closure. The
converse fails, but not too badly: in fact, a permutation group G is 2-closed
if and only if it is the full automorphism group of an edge-coloured directed
graph. (We associate a colour with each G-orbit on pairs.)

However, it is not easy to decide if a permutation group is 2-closed.
The construction of a graph from a permutation group has been reversed;

many of the sporadic simple groups discovered in the mid-twentieth century
were constructed as groups of automorphisms of particular graphs. The
simplest such construction is that of Higman and Sims [36]: the vertex set
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consists of a special symbol ∞ together with the 22 points and 77 blocks of
the so-called Witt design W22. We join ∞ to all the points; we join a point
and a block if and only if they are incident; and we join two blocks if and only
if they are disjoint. It is clear that the automorphism group ofW22 acts as a
group of automorphisms of the graph, fixing ∞. It is not too hard to show
that the full automorphism group is transitive; it contains the Higman–Sims
simple group as a subgroup of index 2.

In the case of the Fischer groups [18], the group and the graph are even
more closely related. The vertices of the graph are the elements of a particular
conjugacy class of involutions in the group, two vertices being joined if and
only if the involutions don’t commute.

5 Abstract groups

If we consider groups as abstract algebraic objects rather than as concrete
permutation groups, a clear-cut result is possible. Frucht [20] proved:

Theorem 5.1 Every group is the automorphism group of a graph. If the
group is finite, the graph can be taken to be finite.

Subsequently, Frucht [21] showed that every group is the automorphism
group of a trivalent graph. This has inspired a large number of similar re-
sults. We call a class C of structures universal if every finite group is the
automorphism group of a structure in C. The combined results of Frucht,
Sabidussi, Mendelsohn, Babai, Kantor, and others show that the following
types of graph or other structures are universal: graphs of valency k for any
fixed k > 2; bipartite graphs; strongly regular graphs; Hamiltonian graphs;
k-connected graphs, for k > 0; k-chromatic graphs, for k > 1; switching
classes of graphs; lattices; projective planes (possibly infinite); Steiner triple
systems; symmetric designs (BIBDs).

Here, for example, the universality of Steiner triple systems is shown
by using a graph to construct an STS with the same symmetry; then the
universality of strongly regular graphs is shown by taking the line graphs of
Steiner triple systems (see Chapter ??). The structures are finite in all cases
except projective planes. (Whether every finite group is even a subgroup of
the automorphism group of a finite projective plane is an open problem.)

Another class of results involves structures for which there is some obvious
restriction on the automorphism group. For example, a tournament cannot
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admit an automorphism of order 2 (such an automorphism would necessarily
interchange the ends of some arc) and so the automorphism group has odd
order. This is the only restriction; Moon [46] showed that every group of odd
order is the automorphism group of a tournament.

Pólya observed that not every group is the automorphism group of a tree:
More precisely, the class of automorphism groups of trees is the smallest
class containing the trivial group and closed under direct product and the
operations ‘wreath product with the symmetric group Sn of degree n’ for
each n > 1.

Automorphism groups of trees are of further importance in group theory.
Any finite tree has either a vertex or an edge which is fixed by all automor-
phisms, according as it is central or bicentral. Things are very different for
infinite trees. We say that a group G acts freely on a tree T if no non-identity
element of G fixes any vertex or edge of T . Now Serre [49] showed:

Theorem 5.2 A group is free if and only if it acts freely on a tree.

This simple observation has led to the so-called Bass–Serre theory in
combinatorial group theory, describing certain group constructions (amalga-
mated free products and HNN-extensions) in terms of their actions on a tree.
See Dicks and Dunwoody [15] for an account of this.

Usually such a precise description does not exist. For example, every
composition factor of the automorphism group of a planar graph is either a
cyclic group or an alternating group. More generally, Babai showed:

Theorem 5.3 If G is the automorphism group of a graph embeddable in the
orientable surface of genus k, then there is a number f(k) such that any
composition factor of G is cyclic, alternating, or of order at most f(k).

Still more generally Babai [2] showed that no class of finite graphs which
is closed under subgraphs and contractions can be universal, except for the
class of all graphs.

We could quantify Frucht’s Theorem by asking: given a group G, what is
the smallest number of vertices of a graph G with Aut(G) = G? This function
will behave in a very erratic fashion. For example, the symmetric group Sn
is the automorphism group of the null graph on n vertices, but the smallest
graph whose automorphism group is the alternating group An has about
2n vertices (the exact number was calculated by Liebeck [41]). Clearly this
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number is not smaller than the degree of the smallest faithful permutation
representation of G; this has been investigated in detail by Babai et al. [6].

Other measures of the “size” of the graph could be used; for example, the
number of edges, or the number of orbits of G on vertices or edges. See [5]
for a survey of results on these questions.

Given that almost all graphs admit only the trivial group, we might won-
der if perhaps Frucht’s Theorem can be strengthened to state that almost
all graphs which admit a given group G in fact have G as their full automor-
phism group. This holds for some but not all groups. Cameron [9] proved
the following theorem:

Theorem 5.4 Given a group G, consider those n-vertex graphs whose auto-
morphism group contains G. The proportion of such graphs whose automor-
phism group is precisely G tends to a limit a(G) as n→∞.

The limit a(G) is a rational number, but unlike the case where G is the
trivial group, it is not necessarily 1. For example, if G is the dihedral group of
order 10, then the limit is 1/3. This is because, of those graphs which admit
G, almost all have G acting on a set of five vertices and fixing the rest of the
graph. (A random graph admitting G consists of a random graph on n − 5
vertices, and five ‘special’ vertices on which G acts as the symmetry group of
a pentagon, all joined to the same random subset of the other n−5 vertices.)
The induced subgraph on the five special vertices may be a complete graph,
a null graph, or a 5-cycle; only in the third case is G the full group (almost
surely).

In fact, a(G) = 1 if and only if G is a direct product of symmetric groups.
For abelian groups G, a(G) = 1 if G is an elementary abelian 2-group (possibly
trivial), and a(G) = 0 otherwise; but the values of a(G) for metabelian groups
are dense in the unit interval.

It would be interesting to know whether similar results hold under hy-
potheses tending to work against such very local symmetries. For example,
does a similar result hold for regular graphs?

6 Cayley graphs

A permutation group G is regular if it is transitive and only the identity
stabilises a point. Any regular action can be identified with the action of the
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group on itself by right multiplication, where the group element g induces
the permutation x 7→ xg of G. This is the action used by Cayley to show
that every group is isomorphic to a permutation group.

The orbits on pairs of this group are parametrised by group elements:
they have the form Og = {(x, gx) : x ∈ G} for g ∈ G. The orbit paired
with Og is Og−1 . So our description of a G-invariant graph specialises in the
following way.

Let S be a subset of G, closed under taking inverses, and not
containing the identity. The Cayley graph Cay(G, S) has vertex
set G, and edges {x, sx} for all s ∈ S, x ∈ G.

Since G is a subgroup of Aut(Cay(G, S)), this Cayley graph is necessarily
vertex-transitive (see the next section). It is connected if and only if the
set S generates G. Readers are warned that many authors use a different
convention: the action of the group is by left multiplication, and the edges
have the form {x, xs} for s ∈ S, x ∈ G. (The difference is immaterial.)

A graphical regular representation or GRR of a group G is defined to be
a graph for which the regular action of G is the full automorphism group,
that is, a Cayley graph Cay(G, S) with Aut(Cay(G, S)) = G. A considerable
amount of effort went into the determination of groups which have GRRs.
The problem was finally solved by Hetzel [35] in the soluble case and God-
sil [25] in general. First note that abelian groups of exponent greater than 2
never have GRRs, since any Cayley graph for the abelian group G also ad-
mits the automorphism g 7→ g−1. A generalised dicyclic group G is a group
having a cyclic subgroup H of index 2 and an element g of order 4 such that
g−1hg = h−1 for all h ∈ H. (The quaternion group of order 8 is an example.)
The theorem is as follows:

Theorem 6.1 Let G be a finite group. Then G has a GRR if and only if G
is not an abelian group of exponent greater than 2 or a generalised dicyclic
group and is not one of thirteen exceptional groups (with orders at most 32).

What about random Cayley graphs for G, obtained by including inverse
pairs of non-identity elements in S with probability 1

2
? Babai and Godsil [4]

conjectured that, except for the two infinite classes in the theorem, almost
all Cayley graphs for G are GRRs (that is, the probability that a random
Cayley graph is a GRR tends to 1 as |G| → ∞). They proved that this is
true in some cases (for example, non-abelian nilpotent groups of odd order).
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Random Cayley graphs have other useful properties; for example, they
are often expanders (Alon and Roichman [1]).

7 Vertex-transitive graphs

A graph G is vertex-transitive if the automorphism group of G acts transi-
tively on the vertex set of G.

Any vertex-transitive graph has a description as a Schreier coset graph,
generalising the representation of a Cayley graph above: we replace group
elements by cosets of a subgroup H of G as vertices of the graph, and for
adjacency, in place of an inverse-closed set of elements we use an inverse-
closed set of double cosets ofH in G. Sabidussi [47] used this representation to
show that any vertex-transitive graph has a multiple which is a Cayley graph.
(Here, a multiple of G is obtained by replacing each vertex by a coclique
of size k, and each edge by all possible edges between the corresponding
cocliques, for some k.)

Not every vertex-transitive graph is a Cayley graph.The smallest coun-
terexample is, not surprisingly, the Petersen graph: it has no automorphism
of order 2 which fixes no vertex. McKay and Praeger [44] have considered
the class of non-Cayley vertex-transitive graphs.

Marušič and Jordan independently made the conjecture that any vertex-
transitive graph has a group of automorphisms which acts semiregularly on
vertices (that is, the stabiliser of any vertex is the identity, but the subgroup
is not required to be transitive). This conjecture was extended by Klin,
who conjectured that any 2-closed permutation group contains such a sub-
group. The conjecture is still open, though Giudici [24] has made substantial
progress on it recently.

Obviously, vertex-transitive graphs are regular. However, they have some
special properties which are not shared by all regular graphs. From the work
of Mader, Watkins, Little, Grant, Holton, Babai, and others, we take the
following list. A graph is vertex-primitive if there is no equivalence relation
on the vertex set preserved by all automorphisms, apart from the trivial
relations (equality and the ‘universal’ equivalence).

Theorem 7.1 Let G be a k-regular, connected, vertex-transitive graph of
order n. Then
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(a) G is b2
3
(k+ 1)c-connected (even k-connected if it is vertex-primitive),

and is k-edge-connected;
(b) G has a 1-factor if n is even;
(c) G has a cycle of length at least

√
6n;

(d) the product of the clique number and the independence number of G
is at most n.

It has been conjectured that, with finitely many exceptions, a connected
vertex-transitive graph is Hamiltonian. The Petersen graph, of course, is
one of these exceptions: it has a Hamiltonian path but no Hamiltonian cir-
cuit. Only four exceptional graphs are currently known; all have Hamiltonian
paths.

The Hadwiger number of a graph is the smallest k for which some com-
ponent of the graph can be contracted to the complete graph Kk. Recently,
Babai [3] and Thomassen [50] have obtained structure theorems for con-
nected vertex-transitive graphs with prescribed Hadwiger number. A graph
is toroidal if it is embeddable in the torus It is ring-like if the vertices can be
partitioned into sets S0, . . . , Sn−1, such that all edges join vertices in the same
set or in consecutive sets (mod n), and the automorphism group induces a
cyclic or dihedral group on this family of sets.

Theorem 7.2 A sufficiently large connected vertex-transitive graph with Had-
wiger number k is either toroidal or ring-like (with the cardinalities of the
sets Si bounded by a function of the Hadwiger number in the ring-like case).

Clearly, arbitrarily large toroidal vertex-transitive graphs can be obtained
as quotients of plane lattices (for example, rectangular grids with opposite
sides identified). The proof of this substantial result involves many geomet-
rical ideas, including isoperimetric inequalities for the hyperbolic plane.

A related result of Thomassen [51] shows that there are only finitely many
vertex-transitive graphs of given genus g ≥ 3.

Two properties weaker than vertex-transitivity but stronger than regu-
larity are walk-regularity and neighbourhood-regularity. The first of these is
touched on in Chapter ??; here we consider the second.

Let a graph H be given. A graph G is locally H if, for any vertex v ∈ V G,
the induced subgraph on the set if neighbours of v is isomorphic to H. A
graph is neighbourhood-regular if it is locally H for some H.
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The problem of deciding whether, for given H, there is a graph which is
locally H, is recursively unsolvable [8, 57]. Nevertheless, there are a number
of positive results. For example:

• For various graphs H, all graphs which are locally H have been deter-
mined. See Hall [32] for locally Petersen graphs, for example.

• If H is regular and connected with girth at least 6, then there are
infinite graphs which are locally H (Weetman [54]).

• If H is regular with diameter 2 and satifies some extra conditions, then
every graph which is locally H is finite (Weetman [55]).

A property of graphs which does not obviously relate to symmetry but
turns out to imply vertex-transitivity is compactness. The basic results
on this concept are due to Tinhofer [52]. To define it, we note that any
permutation g of {1, . . . , n} can be represented by a permutation matrix
P (g), and that g ∈ Aut(G) if and only if P (g) commutes with A, that is,
AP (g) = P (g)A, where A is the adjacency matrix of G.

A matrix M is doubly stochastic if its entries are non-negative and all
its row and column sums are equal to 1. By Birkhoff’s Theorem (see Chap-
ter ??, Theorem 4.2), any doubly stochastic matrix is a convex combination
of permutation matrices.

The graph G, with adjacency matrix A, is said to be compact if every
doubly stochastic matrix M which commutes with A is a convex combination
of permutation matrices which commute with A, that is, automorphisms of A.

The set of doubly stochastic matrices which commute with A is a poly-
tope. So, if G is compact, its automorphisms are precisely the extreme points
of this polytope, and so they can be found efficiently by linear programming.
Birkhoff’s Theorem shows that the complete graph is compact.

The meaning of compactness for arbitrary graphs is somewhat mysterious.
But for regular graphs, we have the following. Note that if a graph is compact
then so is its complement.

Theorem 7.3 Let G be a compact connected regular graph. Then any two
vertices of G can be interchanged by an automorphism of G. In particular,
G is vertex-transitive.

The converse of this theorem is false. If G is compact and regular with
valency k, then (1/k)A is a doubly stochastic matrix commuting with A, and
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so is a convex combination of automorphisms. Each such automorphism g
has the property that vg ∼ v for all vertices v. However, many vertex-
transitive graphs (for example, the Petersen graph) have no non-identity
automorphisms with this property.

For more on compact graphs, see Godsil [14]. A more general concept
called weak compactness is considered by Evdokimov et al. [17].

8 Higher symmetry

Symmetry conditions related to (and mostly stronger than) vertex-transitivity
have had a lot of attention, often using group-theoretic techniques. One of
the simplest is edge-transitivity, which usually implies vertex-transitivity; in-
deed, an edge-transitive graph which is not vertex-transitive is bipartite, and
the bipartite blocks are the orbits of the automorphism group. (The com-
plete bipartite graph Km,n) with m 6= n is a simple example.) There are also
graphs which are vertex-transitive and edge-transitive but not arc-transitive,
where an arc is a directed edge (or ordered pair of adjacent vertices).

For arc-transitive graphs, the connection between graph and group be-
comes particularly strong. We refer to Chapter ?? for a survey.

A strengthening of arc-transitivity is distance-transitivity, where we re-
quire the automorphism group to act transitively on pairs of vertices at dis-
tance i for i = 0, 1, . . . , d, where d is the diameter of the graph. A major
research effort directed at the determination of all such graphs is discussed
in Chapter ??.

An even stronger symmetry condition is homogeneity: a graph G is ho-
mogeneous if any isomorphism between (finite) induced subgraphs extends
to an automorphism of G. The finite homogeneous graphs were determined
by Sheehan and Gardiner (see [22]):

Theorem 8.1 A finite homogeneous graph is one of the following:

• a disjoint union of complete graphs of the same size;

• a regular complete multipartite graph;

• the 5-cycle C5;

• the line graph of K3,3.
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More generally, we say that a graph G is t-homogeneous if any isomor-
phism between induced subgraphs of size at most t extends to an automor-
phism of G. Now t-homogeneity obviously implies the combinatorial property
C(t) defined in Chapter ??. The list of graphs which satisfy C(5) is the same
as the list of homogeneous graphs in the preceding theorem, so the hypothesis
may be weakened to 5-homogeneity.

9 Infinite graphs

We turn now to infinite graphs. Here, there are two very different areas
of research, the first for locally finite graphs (those in which every vertex
has finite valency), and the second for general graphs (but usually requiring
homogeneity or some model-theoretic notions).

For a locally finite graph, the notion of an end (introduced by Halin [30]
in graph theory, though used earlier by group theorists) is crucial. A ray is
a one-way-infinite path in a graph. König’s Infinity Lemma [39] shows that
any infinite, locally finite, connected graph contains a ray. Let R(G) be the
set of rays in G. We define an equivalence relation ≡ on R(G) by the rule
that R1 ≡ R2 if there is a ray R3 intersecting both R1 and R2 in infinitely
many vertices. The equivalence classes of ≡ are the ends of G. We denote
the set of ends by E(G).

It can be shown that the number of ends of the locally finite graph G is
the supremum of the number of infinite components of G− S, over all finite
subsets S of V G. (This result does not distinguish among infinite cardinals:
we just say that the supremum of an unbounded set of natural numbers is
∞.)

For example, the integer lattice graph Zk has just one end for k > 1, and
two ends for k = 1; an infinite tree with valency greater than 2 has infinitely
many (indeed, uncountably many) ends.

The main results connecting ends and automorphisms are the following
theorems due to Halin [31] and Jung [38] respectively:

Theorem 9.1 Any automorphism of a connected infinite locally finite graph
fixes either an end or a finite subgraph.

Theorem 9.2 Let G be infinite, locally finite, and connected, and suppose
that Aut(G) has only finitely many orbits on V G. Then the number of ends
of G is 1, 2 or 2ℵ0.
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For a locally finite graph, we can also consider the rate of growth of the
number an of vertices at distance at most n from a fixed vertex v. Of course,
this number depends on the chosen vertex v; but, if the distance from u to v
is d, then

an−d(v) ≤ an(u) ≤ an+d(v),

so the asymptotics of the rate of growth (for example, polynomial of degree k,
exponential with constant c) do not depend on the chosen vertex, and we can
talk of the growth of G. If G = Cay(G, S), then the choice of finite generating
set S for G also does not affect the asymptotics of growth, and we can talk
of the growth of G. (Note, however, that a group can act vertex-transitively
on each of two graphs with different growth.)

The growth is polynomial of degree k for the integer lattice Zk, and
exponential with constant k − 1 for the k-valent tree.

This different behaviour is not unconnected with the number of ends:

Theorem 9.3 Let G be an infinite, locally finite, connected graph whose
automorphism group has only finitely many orbits.

(a) If the growth of G is bounded by a polynomial, then it satisfies

c1n
k ≤ an ≤ c2n

k

where k is a positive integer and c1, c2 > 0.

(b) G has linear growth if and only if it has two ends.

(c) If G is a Cayley graph of G, then the growth is polynomial if and only
if G is nilpotent-by-finite.

(d) There exist groups whose growth is faster than polynomial but slower
than exponential.

(e) If G has infinitely many ends, then it has exponential growth.

Here part (c) is the celebrated theorem of Wolf [58] and Gromov [27] on
groups of polynomial growth; see Trofimov [53] for an extension to vertex-
transitive graphs. Part (b) follows from Gromov and from Seifter and Trofi-
mov [48]; and an example for part (d) is the Grigorchuk group [26]. For a
survey of vertex-transitive graphs with polynomial growth, see [37]
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There are connections between growth of a graph and harmonic analysis.
Lubotzky [42] gives an account of this material.

Macpherson [45] determined the infinite locally finite distance-transitive
graphs. For any integers s, t > 1, there is an infinite tree which is semiregular,
with valencies s and t in the two bipartite blocks. Now the graph M(s, t) has
as its vertex set the bipartite block of valency s; two vertices are adjacent if
they lie at distance 2 in the tree.

Theorem 9.4 A locally finite infinite distance-transitive graph is isomorphic
to M(s, t) for some s, t > 1.

No such result holds without local finiteness. Some examples are given
in Cameron [12].

Turning to arbitrary infinite graphs, we describe first the paradoxical re-
sult of Erdős and Rényi [16]: there is (up to isomorphism) a unique countable
random graph; that is, there is a graph R such that a countable random graph
R is isomorphic to R with probability 1. Moreover, R is highly symmetric:
indeed, it is homogeneous (as defined in the preceding section). So the typ-
ical asymmetry of finite graphs does not hold in the countably infinite! A
survey of the remarkable graph R appears in [11].

Other aspects of the theory are also very different in the countably infinite
case, largely as a result of the random graph R. For example, in a group G,
a square-root set is a set

√
g = {x ∈ G : x2 = g}; it is non-principal if g 6= 1.

The hypotheses of the following theorem of Cameron and Johnson are very
mild.

Theorem 9.5 Let G be a countable group which is not the union of a fi-
nite number of translates of non-principal square root sets. Then almost all
random Cayley graphs for G are isomorphic to R.

The classification of homogeneous graphs was extended to the infinite
by Lachlan and Woodrow [40]. A graph is universal Kn-free if it contains
no complete graph of size n but embeds every Kn-free graph as an induced
subgraph. There is a unique countable homogeneous universal Kn-free graph
for all n ≥ 2: these graphs were first constructed by Henson [34] but their
existence and uniqueness follows from a general construction method due to
Fräıssé [19]. We denote this unique graph by Hn.

Theorem 9.6 A countable homogeneous graph is one of the following:
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• A disjoint union of complete graphs of the same size, or its complement
(a complete multipartite graph);

• Henson’s graph Hn (for n ≥ 3) or its complement;

• the random graph R.

10 Graph homomorphisms

In the final sections we turn to graph homomorphisms. The endomorphisms
of a graph G (or homomorphisms from G to G) form a semigroup; the theory
of semigroups is much less well-developed algebraically than that of groups.
Nevertheless, homomorphisms in general are more revealing of the graph
structure than automorphisms, and the theory has developed in surprising
directions. The material here is based on [29], for which we refer for more
details and references.

We will consider only finite simple graphs in this section.
A homomorphism from a graph G to a graph H is a function f from V G

to V H such that, if u ∼ v in G, then uf ∼ vf in H. Thus, an isomorphism
is a bijective homomorphism whose inverse is also a homomorphism. An
endomorphism of G is a homomorphism from G to G.

A proper vertex-colouring of G with r colours is a map from V G to
{1, . . . , r} such that adjacent vertices have distinct images. In other words,
it is a homomorphism from G to the complete graph Kr. (For example, ev-
ery bipartite graph has a homomorphism onto K2.) Thus, the existence and
enumeration questions for homomorphisms from G to H generalise the chro-
matic number and chromatic polynomial of G. So we expect these questions
to be hard! We write G→ H if there is a homomorphism from G to H, and
think of this as saying that “G has a H-colouring”.

If G→ H and H → G, then we say that G and H are homomorphically
equivalent, and write G ↔ H. We write the homomorphic equivalence class
of G as [G]. The set of such equivalence classes is partially ordered by the
rule that [G] � [H] if G→ H. Quite a lot is known about this partial order:
it is a lattice order, and it is dense (that is, if [G] ≺ [H], then there exists K
with [G] ≺ [K] ≺ [H]).

The independence ratio i(G) of a graph G is the ratio of the size of the
largest independent set in G to the number of vertices of G. The odd girth
of G is the size of the shortest odd cycle in G. As usual, ω and χ denote
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clique number and chromatic number. The following result gives a sufficient
condition for the existence of homomorphisms from G to H:

Theorem 10.1 Suppose that G→ H. Then

• ω(G) ≥ ω(H) and χ(G) ≤ χ(H);

• the odd girth of G is at least as great of that of H;

• if H is vertex-transitive then i(G) ≥ i(H).

A retraction of G is a homomorphism f from G onto an induced subgraph
H ofG such that the restriction of f to V H is the identity map. The subgraph
H is called a retract of G. it is easy to see that, given any endomorphism of
G, some power of it is a retraction. Any retraction of a connected graph can
be expressed as the composition of a sequence of foldings, where a folding is
a homomorphism which identifies a unique pair of vertices.

The result of Sabidussi [47] mentioned at the start of Section 7 shows
that every vertex-transitive graph is a retract of a Cayley graph.

Retracts play an important role in topology, based in part on the fact
that a retract H of G is an isometric subgraph (that is, the distance between
two vertices of H is the same if calculated in H or in G).

A graph is a core if it has no non-trivial retraction; equivalently, if every
endomorphism is an automorphism. If H is a retract of G and is itself a core,
then we say that H is a core of G. Now the following holds:

Theorem 10.2 (a) If G ↔ H, then any core of G is isomorphic to any
core of H. In particular, all cores of G are isomorphic (and we can
speak of the core of G).

(b) The core of G is (up to isomorphism) the smallest graph in [G].

(c) The core of a vertex-transitive graph is vertex-transitive.

Many cores are known, for example all circulants of prime order, and
the Kneser graph K(r, s) whose vertices are the s-subsets of {1, . . . , r} with
r > 2s, two vertices adjacent if they are disjoint (so that the Petersen graph
is K(5, 2)). For a survey of cores and their properties, see [33].
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[16] P. Erdős and A. Rényi, Asymmetric graphs, Acta Math. Acad. Sci. Hun-
gar. 14 (1963), 295–315.

[17] S. Evdokimov, M. Karpinski and I. Ponomarenko. Compact cellular alge-
bras and permutation groups, Discrete Math. 197/198 (1999), 247–267.

[18] B. Fischer, Finite groups generated by 3-transpositions, I, Invent. Math.
13 (1971), 232–246.
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