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Introduction

We consider in this paper only non-directed graphs without multiple edges
and without loops . The number of vertices of a graph G will be called its order,
and will be denoted by N(G) . We shall call such a graph symmetric, if there exists
a non-identical permutation of its vertices, which leaves the graph invariant. By
other words a graph is called symmetric if the group of its automorphisms has degree
greater than 1 . A graph which is not symmetric will be called asymmetric . The
degree of symmetry of a symmetric graph is evidently measured by the degree of
its group of automorphisms . The question which led us to the results contained
in the present paper is the following : how can we measure the degree of asymmetry
of an asymmetric graph?

Evidently any asymmetric graph can be made symmetric by deleting certain
of its edges and by adding certain new edges connecting its vertices . We shall call
such a transformation of the graph its symmetrization. For each symmetrization
of the graph let us take the sum of the number of deleted edges - say r - and the
number of new edges - say s ; it is reasonable to define the degree of asymmetry
A [G] of a graph G, as the minimum of r+s where the minimum is taken over all
possible symmetrizations of the graph G. (In what follows if in order to make a
graph symmetric we delete r of its edges and add s new edges, we shall say that
we changed r + s edges.) Clearly the asymmetry of a symmetric graph is according
to this definition equal to 0, while the asymmetry of any asymmetric graph is a
positive integer .

The question arises : how large can be the degree of asymmetry of a graph
of order n (i . e. a graph which has n vertices)? We shall denote by A (n) the maximum
of A [G] for all graphs G of order n (n = 2, 3, . . .) . We put further A (1) = + -. It
is evident that A (2) =A (3) =0 .

Now let G denote the complementary graph of G, that is the graph which
consists of the same vertices as G and of those and only those edges which do not
belong to G then we have evidently

LEMMA 1 .
(1)

	

A[G] =A[G] .

As a matter of fact the complementary graph of a symmetric graph is evidently
also symmetric (i . e. (1) holds if A [G] = 0) and if a transformation T, consisting
in deleting r edges and adding s new edges, makes G symmetric, then the transfor-
mation T, consisting in adding those s edges which are deleted by T and deleting
those r edges which are added by T, is clearly a symmetrization of G, and thus
Lemma I follows .
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We shall need also the following evident fact

LEMMA 2 . If a graph G is not connected and its components are G, , G2, . . ., G,
then we have
(2)

	

A [G] - min A [G,] .
t=i- c

Let us mention further that a graph containing more than one isolated point
is symmetric.

V
Now we can prove that A (4) = 0 and A (5) = 0 . Let us first consider A (4) .

Clearly any not connected graph of order 4 is symmetric by Lemma 2, further by
Lemma t we may restrict ourselves to graphs

fo order 4 having not more than-2 (2) = 3 ed-
0	0	0	0

ges, because if the graph has more than 3
edges, the complementary graph has less
than 3 edges . But the only connected graphs

Fig . I

	

of order 4 with not more than 3 edges are
the path and the star shown on Fig . I

which are clearly symmetric . Thus A(4)=O. Now we show A(5)=O . Again we
can restrict ourselves to graphs of order 5 which are connected and which contain

not more than 2 (2) = 5 edges . These belong however all to one of the 8 types

shown on Fig . 2 which are evidently all symmetric .

00 0 0 0 0

0

0

0

	

0

Fig. 2

(We have drawn the graphs so that each is symmetric with respect to its ver-
tical axis .)

Now we shall show that A (6) =1 . Here again we may restrict ourselves to

consider connected graphs having not more than (~ (Z} =7 edges .' Among

these we find four asymmetric types, shown by Fig . 3 .
All have their degree of

asymmetry equal to 1 . As a
matter of fact, each can be

	

°
made symmetric by deleting
the edge which is indicated
by a thick line. It is easy to

	

°

	

o

see that any of these graphs
can also be made symmetric Fig . 3

Here and in what follows [x] denotes the integral part of the real number .v .



by adding a suitably chosen edge, as shown on Fig . 4, where the edge to be
added is indicated by a dotted line.

However it is not true in general that if a graph can be made symmetric by
omitting one edge, it can also be made symmetric by adding one edge . For instance
Fig. 5 shows a graph of order 10 which can be made symmetric by omitting one
edge (that which is drawn by
a thick line) but can not be
made symmetric by adding one
new edge . (Of course if by omit-
ting an edge an involutory sym-
metry is produced, then the
same symmetry can be produ-
ced by adding (instead of omit-
ting) a suitably chosen edge .)

In § I we shall show (Theorem 1) by a simple argument that the asymmetry of

a graph of order n can not exceed n2I
if n is odd, while if n is even the asymmetry

can not exceed 2 -1 ; in § 2 we prove (Theorem 2) that this estimate is asympto-

tically best possible, that is for any E>0 there can be found an integer no (s) such

that for any n > n o (s) there exists a graph G„ of order n for which A [G„] - 2 (1 - s) .

* 1ANIPOPPp"
)Por'*

(4)

(5)

Fig . 5

(3)
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0 0'a 0

In other words we have

0 :a[G] : I .

Fig . 4

lim A (n) - 1
,_+_ n

	

2

We can prove still more, namely that there
exists a positive constant C such that

A(n)y 2 -CYnlogn .
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However we do not know whether there exist
graphs Gn of even resp. odd order n for which

A [G„] = n -1 resp .
A,,,,

= n2I ; we can prove

that this is impossible if n -3 mod 4 and we guess that this is impossible for all n .
In view of (3) it is reasonable to introduce the quantity

a [G]	 A[G]

[N(G)_l ]2

for any graph G with N(G)--3, and call it the relative asymmetry of G . It follows
from our results that for any graph G with N(G) _- 3 one has
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The proof of Theorem 2 is not constructive, only a proof of existence . It uses
probabilistic considerations . This method gives however more than stated above :
it shows that for large values of n most graphs of order n are asymmetric, the degree

of asymmetry of most of them being near to n2
An other interesting question is to investigate the asymmetry or symmetry

of a graph for which not only the number of vertices but also the number N of
edges is fixed, and to ask that if we choose one of these graphs at random, what
is the probability of its being asymmetric . We have solved this question too, and

have shown that if N =
2

log n + co (n)n where w (n) tends arbitrarily slowly to

+ - for n - + -, then the probability that a graph with n vertices and N edges
n

	

1
chosen at random (so that any such graph has the same probability ~ (2))

	

to
NN

be chosen) should be asymmetric, tends to 1 for n --- + oo . This and some further
related results will be published in an other forthcoming paper .

In § 3 we deal with (denumerably) infinite graphs, more exactly with random
infinite graphs F defined as follows . Let P 1 , P z , . . ., P, . . . be an infinite sequence
of vertices. Let us suppose that for each j and k (j FfE k) if Elk denotes the event that
P; and Pk are connected by an edge, then the events Elk are independent and each
has the probability i . We prove the simple but surprising fact that I' is symmetric
with probability 1 (Theorem 3) .

Thus there is a striking contrast between finite and infinite graphs : while ,,al-
most all" finite graphs are asymmetric . „almost all" infinite graphs are symmetric .

In § 4 we deal with the asymmetry of graphs of order n in which the total num-
ber N of edges is fixed .

In § 5 we deal with some related unsolved problems .
Our thanks are due to T. GALLAI for his valuable remarks .

§ 1 . Proof of the theorem that the asymmetry of a graph

of order n can not exceed Ill - 11
2

In this § we prove

THEOREM 1 .

A (ii) ~	2

REMARK . Of course Theorem 1 implies that if n is odd, then A(n)	 2

itand if ii is even, we have A(n) u - 1 .

PROOF . Let G be an arbitrary graph of order n . We may suppose n _- 6. Let
P1 , P,, . . ., P„ be the vertices of G and let us denote by v,, the valency of Pk in G
(i . e . t?k is the number of edges having Pk as one of their endpoints .)
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Let further v Jk (j 7~ k) denote the number of vertices P,, of G (h 7j, h ~= k) which

are connected in G both with P1 and with Pk . Let us put further v J1 =0. Clearly
vk+ =Vjk and

(1 . 1)

	

N' VI;k =

	

v,,(v,,-1) .
/ _. 1 k7'1

	

h=1

As a matter of fact, both the left hand side and the right hand side of (1 . ])are equal
to the number of (ordered) pairs of edges of G which have one common endpoint .
Let us choose now two distinct vertices P1 and P k of G (j -z~ k) and let us put

(1 . 2)

	

= Vi + 1'k - 2VJk - 2djk

where b ; k = 1 or 0 according to whether P1 and Pk are connected by an edge in
G or not. Let us put further 4j1=0 . Evidently dJk is the number of vertices of G
which are in different relation with P1 and Pk (i" e. which are either connected with
P1 and not connected with P k or connected with Pk and not connected with P1) .
Clearly by omitting all edges connecting P1 (resp . Pk) with some point of G which
is not connected with Pk (resp . P1) we obtain a graph G' in which PJ and Pk are
connected with the same points . Thus G' has the symmetry consisting in the inter-
change of P1 and Pk and leaving all other points unchanged . But G' is obtained
from G by deleting d Jk edges. Thus G can be made symmetric by deleting d Jk edges .
It follows that

AJk

(1 . 3)

	

A [G] - min /J,,, -; '=1 k=1

.1#/'

	

n(n-1)

On the other hand we have

299

(1 .4)
j=I k=I

jk = 2 Lr v, (n - 1 - v,) .
1=1

As a matter of fact, the left hand side of (1 . 4) is equal to the number of ordered
triplets (P i , Pk , P,) of vertices such that G contains exactly one of the two possible
edges P1P, and PkP, ; if we fix P, then that among P1 and P k which is connected
with P, can be chosen in v, ways and the other in n -1 -v, ways ; this proves (1 . 4) .
((1 .4) could also be deduced from (1 . 1) and (1 . 2)) .

As clearly

(1 . 5)

	

v,(n- I-v,)
n-

we obtain

n-I l
J7

n(n-1)z
~	 if n is odd

(l .b)

	

~v,(11-1-v,)<-.
-1

	

[(n-1) -1]
n-2	 if n is even .
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(1 . 11)

	

min Ajk
j :4 k

it follows that (1 . 10) can hold only

(1 . 5) that in this case we have also v,

P. ERDÖS AND A . RÉNYI

It follows from (1 . 3), (1 . 4) and (1 . 6)

n-1
2

	

if n is odd
(1 .7)

	

A(G)

	

n(/z-2)
2(n- l)

	

if

Now we have evidently

2(n-1) ` 2 if n l .

Thus it follows from (1 . 7) that

n- I
2

(1 . 8)

	

A [G]
- n

2 -1

and thus for every n

(1 .9)

	

A[G]=C n-1
2

As (1 . 9) holds for every graph G of order n, Theorem I is proved .
The problem arises, for which odd values of n does there exist a graph G of

order n such that
-1

(1 . 10)

	

min AA = n 2
j#k

n is even .

if n is odd

if n is even

As by (1 . 3) and (1 . 6) we have for odd n

S~ Ajk
j#k

n(n--- I)

if A jk =
n2

I for all j ~ k . It follows from

=
n
2I for / = 1, 2, . . ., n. Now if n - 3 mod 4

-1- is
then -

n
2

s odd, and as in any graph the number of vertices having an odd valency

is even we obtain a contradiction . Thus (1 . 10) can hold for an odd n only if
n -1 mod 4 .

We shall call a graph G of order n = 1 mod 4 for which (1 . 10) holds a A-graph .
For n = 5 the cycle of order 5 is a A-graph . For n = 9 a A-graph is shown by

Fig. 6 .
A simple way to describe the A-graph shown by Fig . 6 is as follows : let the 9

vertices be labelled by ordered pairs of numbers (a, b) where a and b may take
on independently the values 0, 1, 2 . Let us connect the vertices labelled by (a, b)
and (a', b') if and only if either a = a' or b = b' .

/1 - I
2
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We can construct a d-graph of order p, if p is an arbitrary prime for which
p-I mod 4, as follows : Let P I , P2, . . ., P, be the vertices of G and let us connect
the vertices Pj and P, if and only if k -j is a quadratic residue mod p . In this case

clearly each vertex Pj has valency p2
I .

We show that for each j # k we have 4jk _

= P - I
2
	. This follows immediately from the following well-known property of

quadratic residues observed first by Lagrange (see [1] and [2]) : If r I , r 2 , . . ., rp _ I

are all quadratic residues among the numbers 1, 2, . . ., p -1, then among the num-

Fig . 6

bers r, + d ~l = 1, 2, . . ., p2
I where d is any of the numbers 1, 2, . . ., p - l , there

are exactly p	
4	I which are congruent to a quadratic non-residue mod p . As a mat-

ter of fact d ;, is equal to the number of those integers h (h =1, 2, . . ., p) for which
h -j is a quadratic residue and h - k a non-residue, or h -, j a quadratic nonresidue
and h-k a residue. Putting d=k-j this means that 4 is equal to to sum of

the number of non-residues among the numbers r, + d (1= 1, 2	P	 2
1)

and

the number of non-residues among the numbers r, - d (1= 1, 2, . . ., p 2
1 ) and

l _
thus A = 2r -4

1
1 p

	

I
2

Thus there exists a d-graph of every order n which is a prime of the form 4k + 1 .
Clearly the A-graph of order 5 mentioned above is the same as that obtained by
the above general construction for p = 5 . For p = 13 the A-graph obtained by our
construction is shown by Fig . 7 .

We, can construct also a d-graph of order n=p2 if p is a prime of the form
p = 4k + 3. The construction is as follows : let us label the vertices by the pairs
of numbers (a, b) where 0-_a--p-'1, 0 -_ b -_ p - 1 . Let us connect the vertices

Fig. 7
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labelled with (a, b) and (a', b') if either a = a , or (a-a')(b-b') is a quadratic re-

sidue mod p. In this case each vertex (a, h) has the valency . 2 1
, because it is

connected with the p -1 vertices (a, h') where b' ~- h and with the I
p 2

11,
vertices

(a', b') such that a - a' and h-h' are both quadratic residues mod p and the
(p 2

1)

vertices (a', h') such that a - a' and h-b' are both quadratic non-residues mod p
-

	

2 - 1
and 2I p

1
- +p - 1 =p Further denoting by P the number of vertices

which are connected with one of the vertices (a, h) and (a' . b') but not with the

other, we always have v = p 2 1- . This follows from the theorem (due to Lagrange)

according to which if r, , r, . . ., r„_, is a complete set of quadratic residues mod p

then exactly p 3 -- among the numbers r1 + d (j =1, 2	P2 are congruent

to a quadratic residue mod p (see [3]) . Mr. A . HEPPES (oral communication) has
constructed by a similar but different method a d-graph of order p2 for every odd
prime p .

We can construct a A-graph of order p' where p is an odd prime, and r an
arbitrary positive integer such that p' -1 mod 4 (that is, if p -1 mod 4 then r is
arbitrary, while if p - 3 mod 4 then r has to be an even number), as follows . Let us label
the p' vertices of the graph by the elements of a Galois-field GF(pr) . Let us connect
two vertices labelled by U and V(UE GF(p'), V E GF(p')) if and only if U- V = C
where C is some element of GF(p', . Now J . B . KELLY [2] has proved that for any
GF(p') with p•- 1 mod 4 by denoting by A the subset of those non-zero elements
which are squares, and by B the subset of those elements which are not squares,

it follows that any non-zero element d can be represented in exactly
pr

	 2
1

ways

in the form d = a - h where a E A and h E B . Thus it follows (exactly as in the case
r = 1) that our graph G is a A- graph . Thus there exists a A-graph of order n if
n =p' -1 mod 4 where p is a prime. We do not know whether there exists a d-graph
of order n if n ___ 1 mod 4 and n is not a prime-power .

Let us mention that all A-graphs which we have constructed are symmetric,
for instance the A-graph of order 9 shown by Fig . 6. has the automorphism which
carries over the vertex labelled with (a, b) into the vertex labelled with (a' . b') where
a' - a + 1 (mod 3) and h' - h - I (nod 3) . The A-graph of order p where p is a
prime of the form 4k + 1 constructed above has the symmetry which carries p,
into p I - where 1' = /-L I mod p .

Thus while there exist at least for certain odd values of n graphs for which

It is possible that the following stronger conjecture holds also : all d graphs
are symmetric .

jI -1
nun d;, = we do not know any graph of (odd) order n for which A[G]
n-1

2
We guess that this is impossible .2
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Finally we should add the following remark : Let C3 (G) denote the number
of triangles contained in a graph G . A . GOODMAN [4] (see also [5] and [6]) has
determined the minimum of C3 (G) ± C 3 (G„) for all graphs of order n . For n - 1
mod 4 his result is as follows

(1 . 12)

	

min (C3 (G) - C 3 (G)) = n In -- 1) (n -
24

Let us call a graph of order it for which the minimum in (1 . 12) is attained, a Good-
man-graph. Now it is easy to see that any A-graph is at the same time a Goodman-
graph (but not conversely) . This can be proved as follows : If G„ is a A-graph of
order n, then the number of triangles contained in G„ and containing the edge PQ
is equal to the number of vertices connected with both P and _O, and thus is equal
n-I n-1

	

n-5

	

n(n-I)to		4 - 1 =	
4

	 - . As the total number of edges of G,, is	
4

	 and

- -each triangle is counted in this way three times, ('3(,G,)

	

n(n 1)(n 5)
_	 48	. Cle-

arly if G„ is a A-graph then G„ is a A-graph too -, thus it follows that C 3 (G„) - C3 (G„) =
n(n-1)(n-5)

24

	

, i . e. that (1 .12) holds for G„ .

§ 2. The asymmetry of a random graph of order n

In this § we prove the following

THEOREM 2. Let us choose at random a graph F having n given vertices so that

all possible 2 2) graphs should have the same probability to be chosen . Let a ::- 0 be

arbitrary . Let Pn (a) denote the probability that by changing not more than
n(I -s)

edges of F it can he transformed into a symmetric graph . Then we have

(2.2)

	

lim P, (a) = 0 .

COROLLARY . For any a with 0 < e --1 there exists an integer n o (a) depending
only on a, such that for n>n o (a) there exist graphs G of order n with A[G]

n(1 -a)

REMARK . Clearly it follows from Theorem I and the corollary of Theorem 2 that

(2 .3)

	

lim A	 (n) - 1
„_ + . n

	

2

The same method yields also
2
-A (n) = 0(l"n iog n) but we shall not prove this

in detail .
PROOF of Theorem 2 . As the proof is not simple. we first give a sketch of the

proof .

303
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Let us denote by P„ (e, q) (q = 2 . 3 . . . .) the probability that a random graph

of order n can be transformed by changing m < 2 (1 -e) of its edges into a graph

admitting a permutation II as an automorphism, where H is a permutation which
leaves exactly I = n - q of the n vertices of the graph unchanged, but which can
not be transformed into a symmetric graph by changing less than m of its edges .
Then we have

(2 .4)

	

P" (S)

	

P„(e, q) .
„-2

We shall estimate P„(e, q) as follows

(2 . 5)

	

P,, (E, q ) ` An,e'Bn,e' Cn ,q

2(2)

where A, q is the number of ways a permutation 11 q , leaving exactly I = n - q
of the n vertices of the graph invariant, can be chosen ; B,,, 9 is an upper bound
for the number of graphs which are invariant under such a permutation 17q and
C,,, 9 is an upper bound for the number of graphs which can be transformed into

a graph admitting a given permutation II q by changing m~
2

(1 - e) of its edges,

and can not be transformed into a symmetric graph by changing less than m of
its edges .

We shall deal first with the terms for which q lies in the range
{

(2.6)

	

}/n~q=n

then with the terms for which q lies in the range

(2.7)

	

52q<Vn

and finally with the terms corresponding to q=2, 3 and 4 separately . We shall
show that the sum figuring on the right hand side of (2 . 4) tends to 0 for n-- + = ;
this clearly implies the assertion of Theorem 2 .

Let us go now into the details .
Let 17 be an arbitrary permutation of order n having the cycle-representation

(2 . 7) 17-(a1 .I, . . . , a, .,,)(a2,1- . . ., a2 .c?) . . .(ar 1, . . ., ar")

where a,. ; (1 :j : c i ; 1 ~_i ~_r) are the numbers 1, 2, . . ., n in some order. Thus
c 1 , c2 , . . ., c, are the cycle-lengths of 17 . The permutation H can also be inter-
preted as a one-to-one mapping of the set {1, 2, . . ., n} onto itself. Let 17, interpreted
this way, map k into Ilk (k = 1, 2, . . ., n) . We shall denote by 175 the mapping obtai-
ned by applying the mapping 17 s times. Clearly 17a ;, ; = a,, ; + 1 for j =1, 2, . . ., c,
where a i, C(+I stands for a ; , I . Let us calculate first the probability that a graph
r of order n chosen at random should admit 17 as its automorphism . By choosing
a graph r at random we mean that n vertices P I , . . ., P„ are prescribed and we choose



some set of edges connecting these vertices at random, so that each of the 2( 2) pos-

sible choices has the same probability 2 -02) .
Thus the random choice of F is equivalent with a sequence of 12) independent

random decisions concerning all possible ( 2 ) edges, so that with respect to any

possible edge the probability of including it into F is equal to I . An equivalent
way of characterizing the random choice of F is as follows : let us put e j,A=1 if
the edge PAP,; is contained in F and e,, k = 0 if not (1 --j < k -- n) . Then the random
choice of Imeans that the E; . k with j < k are independent random variables each
taking on the values I and 0 with probability I . Let us put Ek =Ej k for j < k .
Now F admits the automorphism 17 if and only if for any pair j, k (j # k) one has
Enl,nr;=Ej. k . Let us calculate now how many of the values a, k can still be chosen
arbitrarily . An easy argument shows that if j belongs to the a-th cycle of 17 (of
length c a) and k to the b-th cycle of 17 (of length c,,) (where a -- b) then the sequence
of equations

E ; .r = Eni.ilk=En-,_11_,
_ . . . = sns1 .r1 .s k _ . . .

contains [ca , c b ] different terms where [A, B] denotes the least common multiple
of A and B. Thus among the c•a •c,, values E, . k Where j belongs to the a-th cycle

and k to the b-th cycle of n we can choose only
[
Cacb

]
)= (c a . c b values inde-

Ca , Cb
pendently, where (A, B) stands for the greatest common divisor of A and B ; all
other such Ef . k are then determined (a ~ b : 1 < a -- r : 1 -- b -- r) .

By a similar argument we get that among the E, x with both j and k belonging

to the a-th cycle of II we can choose 1
2
c° independently, where [x] denotes the

integral part of v. Thus there are exactly
r [' ]

(2 O)

	

I a<h - r

	

a=I

different graphs of order n which admit the automorphism 11, having the cycle
representation (2 . 7), and the probability of Fadmitting the automorphism 11,
i . e . of III'=1' is

(2.9)

(2 .10)
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P(I11,=l-)=21---a<b=r

	

a=1

((2

	

C '
n

21 {u<6-

	

a=I
[ 2

l71
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Now let us fix a graph G for which HG = G and count the number of such graphs
which can be transformed into G by changing m of its edges .

nI
Clearly the m edges to be changed can be chosen in

l
(21 I ways . Thus the
M

number of graphs which can be transformed into one admitting the automorphism
11 by changing m edges can not exceed
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Now let us suppose that among the cycle-lengths c„ of H there are exactly I = n-q
which are equal to 1 ; we may suppose c I = c 2 = . . . = c 7= I and c1_,_-2 for
i=1 .2, . . . r-1. Then we have

r-1
q =

	

c 111 -2(r - 1)
f=1

and thus

(2 . 11)

	

(r-1)- 2 - n2
	 1 and r- n2 1

+As (c„ c b)- min (c a . c b)-	C',	 Cb , it follows
L

r 2

	

2 +(T

	

n21
1-=rz<b<r

	

a-

r
+

	

2]

()±
	 l,

	

n	z

1ta<b-r

	

a=1

	

4

-

(2 .12)

Thus

(2.13)
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Thus the probability of choosing at random such a graph which can be transfor-

med by less than (1 -e) 2
changes into one admitting 17 as an automorphism does

not exceed
1=- n2

Op . 10<_"„
(2 .14)

	

2

As the number of permutations 17 with a fixed / is less than ~1)(n-1)! _
ZO(RIog~1) we have

(2.15)

	

P„

	

2 2

~'n=q<n

+ O4" log a 1

Now we consider the permutations with 5 -- q V_n. Concerning these we have
to use much careful estimations .

Let us fix first the value of q (5 q < vn). The number of permutations which

leave n - q = 1 elements unchanged is clearly less than (q11) q! -nl ` . In estimating

the number of ways in which the m edges to be changed can be chosen, we may
restrict ourselves to those edges, which connect either the q points which do not
remain unchanged by H among themselves, or edges connecting such points with
the invariant ones . Thus an upper bound for the number of choices of the



rn 2 (1-a) edges is given by

(2.16)

and thus

(2.18)

(2.19)
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(q)
+q(n - q)

	

nq2

	

=n
n r

rn<2 (1-r.l 1

	

Ill

	

-2 (1 - )

where x = 1~
E

and H(a) = x log e ± +( 1 -x) log21 xq
blow if q ~ 5 then a 7_!E~ 1 10

e

1 and thus (as H(x) is increasing for 0 < x <0

	

2,

(2.17)

	

H(a)-_H(1 / 0,47 .
a

It follows that for 51- q V'n

~nlognl--	4	 +(

	

)-( )

	

7gn
Ply (£, q) = 2" 1

	

+		2

	

0.4

a
Vn

	

/

P (a q)~2 O '03gn+O(j'n)
g=$

Thus it remains only to consider permutations fi for which q=2, 3 or 4, i . e,
which interchange not more than 4 points and leave all others untouched . Let us

start with the case q=2 . The number of such permutations is clearly (2) . The

number of graphs of order n admitting such a permutation as an automorphism is

(as in this case c I =c2 = . . . =c„_ 2 = 1, c 1 =2) 2~n21 ~

	

and thus the proba-
bility that a random graph admits an automorphism interchanging two points is

2-n+0(1ogn/ . Now, if a graph G* can be transformed by changing in of its edges
into a graph G admitting the permutation n interchanging P7 and Pk and leaving
all other points invariant, we may suppose that all edges changed have either PP

or Pk (but not both) as one of their endpoints .
It is clear that we may restrict ourselves to count those graphs, which can be

transformed into G by deleting edges, because any graph G* which can be trans-
formed in a graph, which is invariant with respect to the permutation interchanging
P; and Pk , by changing (1 . e. deleting or adding) n2 edges, can also be transformed
in such a graph by deleting m edges . Thus the number of such graphs G* belonging
to a fixed G does not exceed

/

	

1 e(r} -2 =2 ( 2 )
rr-O(l0L"r )

.in
nr<2

n (1-e)

As however H(x) < 1 for x 7 > it follows that

Pn (s, 2)~_ 2 - 1'"n

?11 (,r )ag - 0(log n )
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where c(e) is a positive constant depending only on E . Let us consider now the
case q=3 . In this case clearly c r = c2 = . . . = c„_ 3 = I and c„_, = 3 and
therefore the number of graphs admitting such an automorphism is

R-2

As further we can select the 3 points which are moved by the permutation in l3
ways, and the permutation itself in two ways, the probability that a graph admits
as an automorphism a permutation cyclically interchanging 3 points and leaving
all others unmoved, does not exceed

"2

	

/( li }
l
(n )2( -/

	

A21=~ - 2R+olIoLRIr 3

Now if such a graph G is fixed, all graphs which can be transformed into G

by changing in - n (1 -e) edges (and can not be transformed into any other graph

admitting the same automorphism by changing a smaller number of edges) are
obtained if we choose m among the n - 3 points left unchanged by the permutation,
and select one of the three edges connecting this point with the 3 points moved
by the permutation and delete or add this edge according to whether it is or is not
contained in G. Thus the number of graphs which can in this way be transformed

into G is

	

5

	

in
3 )3'R = 012n3 2 ~ I Q) ) . Besides this, we may change some

of the 3 edges between the 3 points moved by the permutation . As the number
of ways doing this is 8 we obtain that

(2 .20)

	

PR (e, 3)=0I ( 13
)

	

.

Let us consider finally the case q=4 . Here two cases have to be distinguished :
either c, = c, _ . . . =c,,-,=l and Cn-3=4 or
and c r _ 3 = c,, ._, = 2 . For the first case we obtain

[]=( 3)~2
n2

for the second
5'

	

(ca .
1=a<b-r

(ca ,
I a<b-r

P. ERDÖS AND A . RÉNYI

+ ~ rca1=
ln ~ 2/

+3"
a=I

	

2

Thus the probabilities of a graph admitting such an automorphism are
11

	

ee-3

	

+7

	

/

	

rr-2)+

	

n
C

	

I
( 2 )+2-(2)-

	

3R+O(logn)

	

~ ~ .) 2( 2

	

3-(2) _

	

2R+ o(Io R
- 6(n4 2

	

- 2 -

	

and _ 6 Y1

	

2

	

g I . res-

pectively . As regards the number of graphs which can be transformed into a given
graph G invariant with respect to a fixed permutation of the mentioned types by

11changing not more than 1-(1 -e) edges, we obtain in the first case an upper bound



of order

and in the second case

it follows that

(2 .21)
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1I rr

	

n-4-1.

	

T

	

b14m-2Ic21 .S?n+6(logn)

n(I-E) ` m

	

1

	

nt-21

an upper bound of order

l _ E ;

(n-4)(n_4'
1

	

rn -1
11

	

-
7

P (c, 4) -7-0-.t ',+00og„) .

2 'I - 21 .32n . o0og,ll-
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Collecting the estimates (2 . 15) . (2 . 18), (2. 19), (2. 20) and (2 . 21) in view of
t2.4) Theorem 2 follows .

§ 3. Symmetries of infinite graphs

Let F . denote a random infinite graph which has the vertices P„ (n=l, 2, . . .)
and which is such that denoting by E ; , 1 the event that P, and Pk are connected
by an edge (j T k) the events E; .k k =1 . 2, . . . , j < k) are independent and
P(E i, k)=-z . We shall prove that with probability one F . admits non-trivial auto-
morphisms . We can construct such an automorphism as follows .

Let us denote b_v .4(k) the index of the vertex into which the automorphism
carries over the vertex P,. . We put A(l) - 2 and A (2) = 1 .

Now let us consider P ; . This vertex can be in 4 possible relations with P, and
P. (connected with both ; connected with P 1 but not with P, : connected with P,
but not with. P I ; connected neither with P, nor with P2 ) . Let A (3) be the least
integer (if there exists any) for which P.4(3) is in the same relation with P, and P 1
as P3 with P t and P, and put A(A(3))=3 . If A(n) is already defined for any finite
number of values of n, for instance if A(n 1 ) = n and A (n;) = A (ni) (j = (, 2, . . ., s)
where n,, n,	77 ., ni, na, . . ., n, are different integers, let in denote the least
integer for which A (m) is not yet defined . Let us define A (nr) as the least integer
different from m and from all values n for which A (n) is already defined, for which
PA( is in the same relation with Pr, as P,,, with P,, ., and in the same relation with
P„ i as P,,, with P (j =1, 2, . ., s), and put A(A(rn))=nr .

In this way a non-trivial automorphism of r a_ is constructed step-by-step,
provided that the construction can always be continued . But it is easy to see that
with probability I the construction can always be continued . This follows from the
following

LEMMA 3 . Let i i , i,,	ik, jl , j2 , . . ., j I be arbitrary different natural numbers .
Then with probability 1 the number of vertices P„ which are connected in F with
each of P ;,, Pit , . . ., Pi, and not connected with P;,, Paz , . . ., Ph is infinite for every
choice of the indices iI , '2, . . ., ik , j, J21 . . ., j, (k, 1=1, 2 . . .) .
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PROOF of Lemma 3. The probability of the event E„ that P„ is in the required

relation with all vertices P i ,, . . ., P jk , Pj , , . . ., Pj , is clearly equal to 2k + i , further

these events E,1 are independent . Thus by the Borel-Cantelli lemma E„ takes place
for an infinity of values of n with probability 1 . As the union of a denumerable set
of sets of probability 0 has probability 0 too, with probability 1 in r there are infi-
nitely many vertices connected with the vertices P„ , . . . . P. k and not connected
with the vertices Pj ,, . . ., Pj , simultaneously for all choices of the indices i 1 , i2 , . . ., ik ,
j l , . . ., j, . This proves Lemma 3 .

Thus we have proved that with probability 1 T m admits a non-trivial auto-
morphism, which moreover is involutory (i . e. A(A(n)) =n for every n) .

This is what we wanted to prove . It can be seen from the proof that T_ admits
with probability 1 an infinity of nontrivial automorphisms . As a matter of fact,
instead of putting A(1)=2, we could have prescribed A (1) = k with an arbitrary k .

It is easy to see, that our result remains also valid if instead of supposing that
the edge PJPk is contained in Tm with probability 2, we suppose only that this
probability p,, k is contained between the limits 5 and 1 - S where 0 < S < 1, ad-
mitting that this probability should depend on j and k . The result holds also if
pj . k is not bounded away from 0 and 1 but is such that the series

n=I

is divergent for every choice of the integers 1I . . ., ik, jI,	11-

§ 4. Asymmetry of graphs of order n
with a fixed number N of edges

hi this § we consider only such graphs of order n which contain exactly N, d-
ges. If the valencies of the vertices P I , . . ., P„ are denoted by v 1 , . . ., v„ then we ha
by supposition

(4. 1)

(4.2)

(4.3)

n
v t =2N.

f=1

For such a graph we have by Cauchy's inequality

2
1

	

4N2v 2 _ Z v =
j=I I

	

n r=1 i

	

n

Thus it follows from (1 . 3) and (1 . 4) that for such a graph

4N 8N2
A[G]c n - n2 (n-1)
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Thus we have proved the following

THEOREM 3 . Ij a graph G of order n has N=A.n edges (0 - A -n21 ) then

(4.4)

	

A[G]~_-- 4A.(I-
2A

/

1
) .

(The maximum of the right hand side of (4.4) is clearly attained if A = n4 1 ,

in which case it is equal to n -
2

1 '

We can prove with the same probabilistic method as applied in § 2 combined
with methods of our paper [7] that the estimate (4 . 4) is asymptotically best possible
if together with n - + - we have A - + - in such a way that lim A, = + ~ ;

n++-log n

moreover A[G] 'is --near to 441- n 27 1 ) for most graphs of order n having N=A.n
edges .

The meaning of the condition lim	 + - is that as we have shown inn-+-log n
[7] in a random graph of order n and having N= An edges the valencies of all ver-
tices are asymptotically equal with probability tending to 1 for n -• if

d
-- + =.log n

§ 5 . Further remarks and unsolved problems

The following problems, closely connected with that considered in § 4 can be
raised : for a fixed positive integer k, and n .2k+ 1 determine the least value F(n, k)
such that there exists a graph G of order n, having N= F(n, k) edges and asymmetry
A[G] =k ; further the least value C(n, k) such that there exists a connected graph
G of order n, having N=C(n, k) edges, and asymmetry A[G] = k. We can not give
a full answer to these questions, only some partial results . We prove first

THEOREM 4 . We have C(6, 1) = 6 and C(n, 1)_ ='n -1 for n -7 .
REMARK . As shown in the introduction each graph of order ---:55 is symmetric,

thus C(n, 1) is defined only for n -_ 6 .

PROOF of Theorem 4. For n = 6 there are, as we have seen, in the introduction,
four types of asymmetric graphs, each having the asymmetry 1 ; as shown by Fig. 3
among these there is one having 6 edges, the others have 7 edges or more . Thus
C(6, 1)=6 . As any connected graph G of order n has at least n-1 edges, clearly
C(n, 1) n -1 for n ~_- 7 with equality only
if there exists an asymmetric tree of order n .

	

0

Now it is easy to see that for any n ;-t-- 7 there
exists an asymmetric tree of order n ; such a o	0	0	6	0	tree for n = 7 is shown by Fig. 8 ; for any
nz 7, such a tree T„ can be obtained as fol-

	

Fig. 8



3 1 2 P . ERDÖS AND A. RÉNYI

lows : Let T„ consist of the vertices P I , . . . P„ and the edges P,-P,+ I (i= 1, 2, . . .,
n - 2) and of the edge P„ - 3P„ .

Thus Theorem 4 is proved . Let us add that the asymmetry of a tree can not exceed 1 .
As a matter of fact, let T be an arbitrary tree ; we may suppose that T has at least 3
vertices, as a tree of order 2 is evidently symmetric . Let us consider a longest path
with any fixed starting point P 1 in T and let P2 be the endpoint of this path . Let
P3 be the (unique) vertex which is connected with P2 in T. Then two cases are possible .
Either P3 =PI , in this case Tis a star with center PI , and thus is evidently symmetric ;
or P3 API . then again two cases are possible . Either P ., has valency 2 ; in this case
let P 4 be the unique vertex connected with P3 besides P2 ; by omitting from T the
edge P3P4 we obtain a graph which has the symmetry interchanging P 2 and P3 .
If P3 has valency larger than 2, then any vertex P, connected with P3 which is not
on the path PIP2 has valency I because otherwise the path P1P2 would not be the
longest. In this case the tree itself is symmetric as it is invariant under the permutation
interchanging P 2 and P, . As P I has been chosen arbitrarily, we have incidentally
proved the following

THEOREM 5 . Let T be a tree of order n=3 ; let us select one of the vertices of T,
say PI . Then either there exists a nontrivial permutation 17 of the vertices of T which
does not move P r and under which T is invariant, or one can transform T into a graph
having such an automorphism by omitting one of its edges .

We do riot know the exact value of F(n, 1) . It is an interesting question also
what is the total number of nor.-isomorphic asymmetric trees of order n? We can
not answer this question ; we can prove however that in a certain sense „almost
all" trees of order n are symmetric, if n is large . This is a consequence of Theorem 6
below. Before formulating this theorem we introduce the following definition . If a
graph G contains two vertices Pin P2 of valency I which are connected with the
same vertex P3 , we shall say that G contains the cherry P 1 P 3P2 .

A graph containing a cherry is evidently symmetric, as it is invariant under the
permutation which interchanges the two vertices of order 1 . Thus our assertion that
almost all trees of order n are symmetric if n is large. is contained in the following

THEOREM 6. Let us choose at random a tree from the set of all possible trees
which can be formed front a given set of n labelled vertices, so that each of these trees
should have the same probability to be chosen. Let y„ denote the probability that the
random tree contains at least one cherry. Then we have

lim

	

1 .
13->+>

PROOF of Theorem 6. Let PI, . . ., P„ denote the vertices of our random tree
TT . Let us put s(i 1 , i2 , f)=1 (i i , i2 ii are different natural numbers not exceeding
n) if P,1P;P,, is a cherry in the random tree, i . e . if P, 1 and P, 2 have the valency 1
in T„ and if both are connected in T„ with P; : let us put c (i I , i 2 , j) = 0 otherwise .
Taking into account that according to a well-known theorem of A . CAYLEY [8]
the total number of trees which can be formed from ii given labelled vertices is equal



to n1- , we obtain that

(5.1)

	

M(c

	

)

	

(n n„2)2
and

(5.2)

(5.3)
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(n-6 -v if i s , izi i3l i4 , Jl , lz
n"

	

are all different,
M(E(i1, 12,11) 8 (1 3 . 14,12))

(n-5)''- " if .11=J2=.1 and i 1 ,
n ) -2

	

are different,

(n-3)n -4 if i1=i3, i 2 =i4

M(E(11, i2,J1)c(i3, 14,12))
_

	

nn- 2

	

or 11 =i4, i2=i3

0

	

otherwise .

and
and

2i 13, 1 4

J1 =J2

JI =J2
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Let T„ denote the number of cherries in T,, . Then by (5 . 1), (5 . 2) and (5. 3)
we obtain

M(T,)
= 2e3 +

O(1)

and

M(h.)
4e6

+0(n)

and thus
D2(Tn) = O(n) .

It follows by the inequality of Chebyshev that for n znc,

1I - yn = O
t1 ~ .

Thus Theorem 6 is proved .
Now we prove the following

THEOREM 7 . Any connected graph of order n hazing n edges is either symmetric,
or its asymmetry is equal to 1 .

REMARK . By other words we have C(n, 2) ~- 1a for n ~-= 7 (As we have seen any
graph of order ~ 6 is either symmetric or has the asymmetry 1 .)

PROOF of Theorem 7 . Any connected graph of order n having n edges has as
well known the following structure : it contains exactly one cycle, and any vertex
of this cycle may be the root of one or more trees . Now suppose that contrary to
the assertion of Theorem 7 there exists a graph G of order n having 1 edges, for
which A[G] ~ 2 . In such a graph any tree attached to a vertex of the single cycle
of the graph consists of a single edge only, because otherwise by Theorem 5 we
would have A[G] =1 . Let us call such an edge a „thorn" . We can exclude the
case when to a vertex two or more thorns are attached, because two thorns make
a cherry which admits a symmetry . Now if to a vertex P of the cycle a thorn PQ
is attached, then necessarily a thorn has to be attached to both neighbouring verti-
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ces of the cycle too, because if P' would be a neighbour of P which is not the start-
ing point of a thorn, then if P" is the other neighbour of P' in the cycle by omitting
the edge P'P" we would obtain a graph containing a cherry QPP' . Thus either a
thorn is attached to all vertices of the cycle or to none of them. As in both cases
the graph has a cyclic symmetry, we obtained a contradiction, which proves
Theorem 7 .

It can be shown by a similar argument that C(n, 2) ::-n + 1 .
Our last result is a lower estimate for F(n, 3) . We prove

THEOREM 8 . We have F(n, 3) ~-
4n 33-2 .

PROOF. Let G be a graph of order n having N edges for which A[G] = 3 . Clearly
G can contain only a single vertex having the valency 1 . Let n 2 be the number of
vertices of G of valency 2 and n3 the number of vertices of G of valency --3 .
Clearly two vertices P1 , P, of valency 2 can not be connected by an edge, because
if P 1 and P2 were connected by an edge, and P1 would be connected besides P 2
with Pi and P, besides P 1 with P2, then omitting the edges P1P1 and P2P2 the
resulting graph would admit the symmetry consisting in interchanging P, and P 2 .

Further no vertex with valency -_3 can be connected with more than one vertex
with valency 2 ; as a matter of fact if P1 and P2 were vertices with valency 2 connected
with a vertex P 3 with valency 3, then omitting the two edges connecting the vertices
P1 and P, with vertices different from P 3 the resulting graph would contain the

n
cherry P1P3P2.

It follows that n3

	

1 . As on the other hand n2 ;-n3 --n --1, we obtain
311 3 --2n-3 . Now we have

871-92N~_ 2n2+3n3=2n-2 '1-713

	

3

and therefore N= 8n-9 - 4n - 3
6

	

3

	

2
Finally we mention a further unsolved problem : is it true that C(n, k) =F(n, k)

for k ~_:2 ?

Remarks, added on November 8 . 1963. Prof. R. C. BOSE kindly informed us
that in a forthcoming paper he introduced a class of graphs, called by him
strongly regular graphs, which contains the class of d-graphs discussed in
the present paper, as a subclass . A graph of order n is called strongly regular
with parameters n1, pl, p2 if each vertex of G„ is joined with a 1 other vertices,
further any two joined vertices are both joined to exactly p, vertices and any
two unjoined vertices are both joined to exactly p 2 other vertices. Clearly a z1-
graph of order n- 1 mod 4 is a strongly regular graph with parameters n 1 =

n-1
=P1 =P2= 2

The notion of strongly regular graphs is closely connected with the conc-
ept of an association scheme with two associate classes introduced by R . C . BOSE
and T. SHIMAMOTO in their paper: Classification and analysis of partially balanced
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incomplete block designs with two associate classes (Journal of the American
Statistical Association, 47 (1952), pp . 151-184) .

We should like to add further that the A-graph of order p constructed on
p. 301 is identical with the graph constructed by H . SACHS on p. 282 of his
paper : Über selbstkomplementäre Graphen (Publicationes Mathematicae, 9 (1962) .
pp. 270-288). This paper was not known to us at the time when our paper was
written . As shovn by H . SACHS, this graph is isomorphic with its complementary
graph .

MATHEMATICAL INSTITUTE,
EÖTVÖS LORÁND UNIVERSITY,BUDAPEST

(Received 19 July 1962)
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