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Abstract

We propose a new block-packer BloBB based on multi-level branch-and-bound. It is
competitive with annealers in terms of runtime and solution quality. We empirically quantify
the gap between optimal slicing and non-slicing floorplans by comparing optimal packings
and best seen results. Most ongoing work deals with non-slicing packings, and implicitly
assumes that best slicing packings are highly sub-optimal. Contrary to common belief, we
show that the gap in optimal slicing and non-slicing packings is very small. Optimal slicing
and non-slicing packings for apte, xerox and hp are reported.

We extend BloBB to the block-packer CompaSS, that handles soft blocks. Optimal slicing
packings for soft versions of apte, xerox and hp are reported. We discover that the soft versions
of all MCNC benchmarks, except for apte, and all GSRC benchmarks can be packed with zero
dead-space. Moreover, the aspect ratio bound [0.5,2] turns out to be not very restrictive, when
area is concerned. Our heuristic slicing block-packer is able to pack with zero dead-space
in most cases when we restrict the aspect ratio bound to [0.57,1.70]. CompaSS improves the
best published results for the ami49 X benchmarks suite, outperforming the leading multilevel
annealer in runtime, solution quality and scalability.

Additionally, realistic floorplans often have blocks with similar dimensions, if design
blocks, such as memories, are reused. We show that this greatly reduces the complexity
of black-packing.
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1 Introduction

Floorplanning is increasingly important to VLSI layout as a means to manage circuit complexity
and deep-submicron effects. It is also used to pack dice on a wafer for low-volume and test-chip
manufacturing, where all objectives and constraints are in terms of block area and shapes [10].
Abstract formulations involve blocks of arbitrary dimensions and are commonly NP-hard, but in
practice many blocks have identical or similar dimensions, and designers easily find good floor-
plans by aligning those blocks. Annealing-based algorithms that currently dominate the field tend
to ignore such shortcuts. Moreover, research is currently focused on floorplan representations
rather than optimization algorithms. Slicing floorplans, represented by Polish expressions and
slicing trees [15], are convenient, but may not capture best solutions. Non-slicing representations
include sequence-pair [11] and bounded slicing grid [12], O-Tree [5], B*-Tree [3], and TCG-S
[9]. Corner block list [6] and twin binary tree [17] are proposed to represent mosaic floorplans.
Interestingly, many VLSI designers and EDA tools still rely on slicing representations which lead
to faster algorithms and produce floorplans with hierarchical structure, more amenable to incre-
mental changes and ECOs.

Reported optimal branch-and-bound algorithms for floorplanning [13] run out of steam at
around 6 blocks, and those for placement at 8-11 blocks [2]. Their scalability can be improved
through clustering at the cost of losing optimality. However, a known algorithm that minimizes
area bottom-up, by iteratively refining clusters appears very slow [16]. A top-down hierarchical
framework based on annealing reported in [1] is facilitated by fixed-outline floorplanning. Their
implementation is faster than a flat annealer and finds better floorplans with hundreds and thou-
sands of blocks. It is also shown that conventional annealers fail to satisfy the fixed-outline context,
and new techniques are required.

We propose a deterministic bottom-up block-packer BloBB based on branch-and-bound. It is
faster and more scalable than flat annealers, but produces comparable results. Unlike annealers,
it takes advantage of blocks with similar dimensions and can optimally pack the three smallest
MCNC benchmarks. BloBB can optimize additional objectives that can be computed incremen-
tally, such as wirelength. Unlike annealers, it runs faster with additional constraints, e.g., the
fixed-outline constraint.

Since BloBB can produce optimal packings, we can empirically quantify the gap between op-
timal slicing and non-slicing floorplans. To this end, [4] evaluates the sub-optimality of existing
floorplanners by constructing benchmarks with zero dead-space. However, most realistic exam-
ples with hard blocks cannot be packed without dead-space, so an optimal block-packer allows
one to use more realistic benchmarks for evaluating sub-optimality. BloBB is extended to a soft
block-packer, CompaSS. Similar to BloBB, it handles large instances hierarchically and produces
near-optimal packings. Despite its sub-optimality, it is able to pack the soft versions of all MCNC
benchmarks, except for apte, and all GSRC benchmarks with zero dead-space. Hence, the bench-
marks in [4] appear less attractive. Moreover, we empirically show that the aspect ratio bound
[0.5,2.0] is not very restrictive by producing zero-dead-space packings under tighter aspect ra-
tio constraints. We also outline how one can apply our techniques to handle multi-project reticle
floorplanning [10].

We make the following conventions in the rest of the paper. The term non-slicing means “not
necessarily slicing”. All sets are ordered. A permutation of order n is just an ordered n-element set,
typically of blocks {B1, . . . ,Bn}. This defines a precedence relation ≺ on blocks, which are often
referred to by indices, e.g., 2 may denote block B2. To know the width wB and height hB of block
B, one needs to know its orientation. Location of B means location of its bottom-left corner. Given
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a set of rigid rectangular blocks M = {B1, . . . ,Bm}, a packing of M defines, for every block Bi,
its orientation θi and planar location (xi,yi). No two blocks may overlap. The rectangle packing
problem is to minimize the area of the bounding box of the floorplan. In alternative formulations
[1], all blocks need to fit into a given bounding box, after which other design objectives, such as
wirelength, can be minimized. As we will see, although we design block-packers for the former
formulation, the algorithms can be extended to address the latter easily.

The rest of the paper is organized as follows. Sections 2, 3, 4 and 5 describe our optimal non-
slicing, optimal slicing, hierarchical and soft-block packers respectively. We discuss empirical
results in Section 6 and conclude in Section 7. The appendix provides proofs and more details
about slicing floorplans.

2 Optimal Non-slicing Packing

In this section, we build a block-packer that explores the space of partial packings by adding and
removing blocks one by one. It maintains a partial packing at a given point of time, and returns
the one with the smallest bounding box as the result.

2.1 The O-tree Representation

A rooted ordered tree with n + 1 nodes can be represented by a bit-vector of length 2n, which
records a DFS traversal of the tree. 0 and 1 record downward and upward traversals respectively
(Fig.1a). An O-Tree for n blocks is a triplet (T,π,θ) where T is a bit-vector of length 2n specifying
the tree structure, π is a permutation of order n listing the blocks as they are visited in DFS, θ is
a bit-vector of length n with block orientations (0 for “not rotated” and 1 for “rotated by π/2”).
(T,π,θ) represents a packing by sequencing its blocks according to π. The x-coordinate xB of a
newly-added block B is 0 if its parent P is the root of T, or else xP + wP, the sum of the width of
P (implied by θ) and its x-coordinate. The y-coordinate yB is the smallest non-negative value that
prevents overlaps between B and blocks appearing before B in π (Fig.1b).

A packing is L-compact (B-compact) iff no block can be moved left (down) while other blocks
are fixed. A packing is LB-compact iff it is both L-compact and B-compact. The packing in Fig.1b
is LB-compact. Every LB-compact packing can be represented by an O-Tree, and all packings
specified by an O-Tree are obviously B-compact.

The contour data structure is central to O-Tree related representations since it allows O(n)
time for packing realization. A contour of a packing is simply a contiguous sequence of line
segments that describes the shape of the upper edge of the packing. Such line segments are called
contour line segments. Fig.1c is an example. Using this data structure while realizing an O-tree,
one can find the y-coordinate for each block in amortized O(1) time, facilitating the realization of
an O-Tree with n blocks in O(n) time [5].

We choose the O-Tree representation because no known representation achieves a smaller
amount of redundancy. A partial O-Tree defines a partial packing that can be extended to complete
packings, and this property facilitates effective pruning. While B*-trees are equivalent to O-Trees
in some sense, we prefer O-trees because of their convenient bit-vector representation. According
to [3], the two potential disadvantages of O-Trees are (i) the varying numbers of children per node,
and (ii) the use of constraint graphs to compact non-L-compact packings. However, in our work
we do not explicitly track children through parents and do not use compaction.
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Figure 1: The O-Tree Representation.
(a) The tree represented by T = 0010001111001101; (b) the packing
(T,π,θ) where π = {B5,B3,B8,B2,B4,B6,B7,B1}; (c) the contour of U :
{(0,0),(0,3),(3,7),(7,11), (11,12), (12,15),(15,∞)}

2.2 Branching

We adopt a branching schedule in Table 1 such that at each layer of the search tree, we define 2
bits of T , 1 block of π, or 1 bit of θ. Our basic framework is a depth-first search.

Table 1: Branching Schedule
Tree T: 1 4 7 · · · · · · 2 bits each time

Permutation π: 2 5 8 · · · · · · 1 block each time
Orientation θ: 3 6 9 · · · · · · 1 bit each time

A bit-vector identifies a rooted ordered tree iff it has equal numbers of 0’s and 1’s and every
prefix has at least as many 0’s as 1’s. Hence, a partial bit-vector t with i 0’s and j 1’s can be
extended to one representing a rooted ordered tree with n nodes iff (1) i ≥ j and (2) i ≤ n. These
feasibility conditions can be easily checked in O(1) time upon every incremental change to the
bit-vector. Infeasible bit-vectors are pruned, and we may get a new feasible bit-vector t at every
search node of depth 4i.

Suppose (T,π,θ) is extended from (t,σ,δ). Since t has at least i 0’s, the positions of all
blocks in σ in T are set. Furthermore, since δ is as long as σ, the orientations of all blocks in
σ are determined. The position of a block in (T,π,θ) depends only on itself and its preceding
blocks in π [5]. We can then determine the locations of all blocks in σ before we explore deeper
and (t,σ,δ) determines a partial packing (Fig.2a). By keeping a reversible contour structure that
supports incremental addition and deletion, the addition and deletion of a block take amortized
O(1) time [5]. We say (T,π,θ) to be extended from (t,σ,δ) iff t, σ, and δ are prefixes of T , π, and
θ respectively. It is an extended packing of (t,σ,δ).

2.3 Lower Bounds and Pruning

In subsequent discussions, we consider a partial packing U = (t,σ,δ) of i blocks and an extended
packing (T,π,θ) of n blocks. Let mk be the length of the shorter edge (min-edge) of block k for
k = 1 . . .n. We do not distinguish between T and the tree presented by T . Similarly for t. For each
partial packing, we apply the following dead-space estimations.

Minimum Bounding Rectangle. As the positions of the first i blocks are fixed, the bounding
rectangle of U is fully contained in any extended packing. Thus, the bounding rectangle
offers a lower bound for area.
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Figure 2: Minimum and Extended Dead-Space.
(a) A partial packing (t,σ,δ) with t = 0010001111 and σ = {B5,B3,B8,B2,B4}. Fig.1b shows a
compatible complete packing; (b) Every block whose x-span intersects with that of B8 lies above
B8, hence the shown dead-space is permanent; (c) the dead-space shown is permanent since unused
blocks cannot rest on B2.

B5 B3

B8

B2
B4

B7  (Lstart, Lend)

(a)

B5 B3

B8

B2
B4

B7

(b)

B2B3

B4B5

B8

x5 x8 x2 x4 xright

(c)

Figure 3: Maximum Min-edge Estimation.
(a) Lstart ≤ x7 < Lend , (b) enforcing x7 = Lstart does not increase coordinates of B7, (c) a lower
bound can be computed from x-coordinates shown; x8 can be ignored because the upper edge of
B5 is lower than that of B8, and so can be x4.

Minimum Dead-Space. Once the position of a block B in σ is set, no block appearing after B in
π whose x-span overlaps with that of B would lie below B. Therefore, all dead-space below
every block in the partial packing is permanent. This is illustrated in Fig.2b.

Extended Dead-Space. Suppose the contour line segment above block B is shorter than mink/∈σ mk
and has upper edge lower than its neighbors (e.g. B2 in Fig.2c), then no unused block can
rest on it, and the dead-space above B is permanent.

Maximum Min-Edge Estimation. Consider a block A /∈σ. In all extended packings, A is located
above the contour of U . A lower bound for area can be produced by considering several
alternative locations for A above the contour. Indeed, let A have orientation 0 in (T,π,θ) and
x-coordinate xA, such that xA is between end-points of some contour line segment L. If A is
moved left such that xA is the beginning of L, its x and y coordinates do not increase. Hence
the bounding rectangle of (t,σ,δ) with A in that location is not greater than that of (T,π,θ)
(Fig.3). Therefore, we only have to consider the cases for each contour line segment (even
fewer cases need to be considered as shown in Fig.3c). The minimum of areas of all such
rectangles, a0, is a lower bound for area of complete packings with A having orientation 0. A
similar lower bound a1 corresponds to orientation 1, and leads to a lower bound min (a0,a1).
As a trade-off between the pruning ratio and immediate computational overhead, we only
consider the block whose shorter edge is maxk/∈σ {mk}.

Minimum Min-Edge Estimation. If t has j 0’s and σ has i blocks, then j ≥ i. If j > i, then we
can locate the next ( j − i) unused blocks in T . We define the minimum square of σ as a
square with side mink/∈σ {mk}. A lower bound for area can be computed by placing ( j− i)
minimum squares onto the partial packing according the locations specified by t (Fig.4).
This method is justified in Appendix A.
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d1 d2
d3

d4 D1 D2

D3

D4

Figure 4: Minimum Min-edge Estimation.
If the locations of next 4 blocks in t are known, we place minimum squares d i according to t; di
occupies the same position in t as Di.

Symmetry-breaking dramatically shrinks the size of the solution space. While symmetry-
breaking is often not suitable for local search algorithms [14], it provides stronger bounding crite-
ria for our branch-and-bound algorithm.

LB-Compactness and O-Tree Redundancy. Some packings represented by O-Trees are not L-
compact, and some of them can be specified by multiple O-Trees. To prune such O-trees we
require that the y-span of each block overlap with that of its parent. The soundness of this
pruning criterion is proved in Appendix A.

Moreover, if B has overlapping y-span with multiple adjacent blocks in the left, then we
require the parent of B to be the lowest of these. For example in Fig.1b, we require B7 to
have parent B6 instead of B1.

Dominance. The bounding rectangle of a packing can be in one of eight orientations. It suffices
to analyze only one of those orientations. We formalize the notions of corner as follows. In
the packing U , a block is lower-left iff (i) no blocks lying below have an overlapping x-span,
and (ii) no blocks lying on the left have an overlapping y-span. Similarly for lower-right,
upper-left and upper-right. A block is a corner block if it is one of the above. In Fig.1b, B5
is lower-left, B1 is upper-left, B4 is lower-right, B4 and B7 are upper-right.

To facilitate pruning, observe that an LB-compact packing always contains unique lower-
left, lower-right and upper-left blocks, and at least one upper-right block. We declare the
rightmost upper-right block to be the upper-right block. In Fig.1b, B4 is the upper-right
block. To avoid dominated packings, we impose dominance-breaking constraints:

(1) the lower-left block Blower−le f t has orientation 0,
(2) Blower−le f t � R for every corner block R.

Appendix A proves that one can transform any packing to one satisfying (1-2) without
increasing area. Fig.5a-d show an example. Let Mσ = maxk/∈σ {k} and Ilr be the index of the
current lower-right block. The index of the lower-right block is at most I = max (Ilr,Mσ).
Since lower-left block in the partial packing must remain the lower-left block in any of its
extended packings, we require Bbottom−le f t � BI . Similarly for upper-left and upper-right
blocks. We can impose even stronger criteria in the following special cases.

• When there are more than one block, the upper-left and lower-right blocks are distinct.
Hence, we can require Blower−le f t � S where S has the second largest index among the
unpacked blocks.

•• When the current contour is a straight line, we can flip/rotate the partial packing.
Therefore, we can require Blower−le f t to have index not greater than all corner blocks
of this partial packing.
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Figure 5: Dominance-Breaking.
The packing P satisfies (2.2) but not (2.1). When we apply an α-transformation to get P ′, P′ does
not satisfy (2.2) anymore. Thus we apply a β-transformation to get P′′′ by flipping P′ to P′′ and
then compacting to P′′′. Precise definitions for α and β-transformations are given in Appendix A.

• When there is only one block in the contour, we can flip/rotate the partial packing
under that block. Similarly to the above, we require Blower−le f t to proceed all corner
block of that partial packing. Moreover, we require Blower−le f t to have index smaller
than the top-most block.

Blocks with Same Height or Width. If two adjacent blocks B and B′ have the same height and
y-coordinate, the cluster formed by B and B′ can be flipped. We break this symmetry by
requiring B ≺ B′ if B is to the left of B′, and similarly, for adjacent blocks with same width
and x-coordinate, e.g., B1 and B6 in Fig.1b. If two blocks Bi and B j in π have the same width
and height (i < j), they are interchangeable and we require Bi to appear first in σ. These
constraints are compatible with constraints (1-2). since the index of lower-left block does
not grow while those of other corner blocks do not decrease after flips introduced above.

3 Optimal Slicing Packing

In this section, we build an optimal block-packer that contains slicing packings only. Unlike the
non-slicing packer, it maintains a series of slicing sub-floorplans, and consistently merging or
dissembling them.

3.1 Normalized Polish Expressions (NPEs)

A slicing floorplan is a rectangle area recursively sliced by horizontal and/or vertical cuts into
rectangular rooms [7]. A packing is slicing if its bounding rectangle is a slicing floorplan and each
rectangular room contains exactly a block. Slicing packings can be represented by slicing trees.
Each leaf node of a slicing tree represents a block and each internal node represents a horizontal
or vertical cut (Fig.6). We can also consider each internal node to be a supermodule, consisting
of the two blocks or supermodules represented by its children and merged in the way specified
by itself. Given a slicing tree T , its Polish expression is the sequence of nodes visited in a post-
order traversal of T . It is normalized if it does not contain consecutive +’s or ∗’s. For example,
the expression in Fig.6c is normalized, but that in Fig.6b is not. The set of normalized Polish
expressions of length 2n− 1 is in a 1-1 correspondence with the set of slicing floorplans with n
blocks and hence it is non-redundant [15].

Given a slicing tree T and the orientations of the blocks, the slicing packing of T is a packing
specified by T such that no vertical (horizontal) cuts can be moved to the left (down), and each
block is placed at the bottom-left corner of the room (Fig.6a). Operators + and ∗ act on the
set of blocks {1, . . . ,n} and supermodules such that A + B (A ∗B) is the supermodule obtained
by placing B on top of (to the right of) A. Polish expressions use the postfix notation for such
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Figure 6: Slicing Floorplan, Slicing Packing, Slicing Trees and Polish Expressions.
(a) A slicing floorplan and a slicing packing; (b) a slicing tree representing (a), its Polish expression
is 123∗∗456+∗+; (c) an equivalent slicing tree whose Polish expression is 12∗3∗456+∗+.

operators. To evaluate a floorplan, we can simply compute the supermodule that contains all
blocks by recursively merging blocks and supermodules. This procedure can be implemented in
O(n) time and will be explained later on. Note that we do not keep track of the locations of the
blocks throughout the search, but realize the packing after it. The realization procedure for n
blocks can be implemented in O(n) time (Appendix B). We compute the locations of the blocks
once after the branch-and-bound process and the computation takes negligible time in practice.

3.2 Branching

A slicing packing of n blocks can be specified by (P,θ) where P is a Polish expression of length
2n−1 and θ is a bit-vector of length n, storing the orientations of the blocks as described in Section
2.1. We maintain a growing Polish expression p and bit-vector δ.

Table 2: Branching schedule towards (124∗5+,0111)
expression p: 1 3 5 7 8 10
orientation δ: 2 4 6 9

We explore symbols of p one by one. If a given symbol is an operand, we explore a bit of
δ, otherwise another symbol of p is explored (Table 2). We use the following characterization of
Polish expression [15]. A sequence p over {1, . . . ,n,+,∗} of length m ≤ 2n− 1 can be extended
to a normalized Polish expression iff (1) for every i = 1, . . . ,n, i appears at most once in p, (2) p
has more operands than operators and (3) there are no consecutive +’s and ∗’s in p. The above
sequences are called partial Polish expressions, and can be tested for in O(1) time per incremental
change.

We maintain a series of blocks and supermodules using two stacks: the bundle and the storage.
When we push an operand and its orientation to p and δ respectively, we push the respective block
(with width and height specified) into the bundle stack. When we push an operator α to p, we are
guaranteed to have at least two blocks or supermodules in the bundle. We pop the two top-most
blocks in the bundle, A and B, and push them in this order into the storage. We compute the
supermodule formed by merging A and B in the way specified by α. When we pop an operand
b and its orientation from p and θ respectively, we pop the top element of the bundle, which is
necessarily b. When we pop an operator α from p, we pop the top element of the bundle, and push
the two top-most blocks or supermodules from the storage to the bundle (Fig.7).
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During incremental changes to p and δ, stack updates take O(1) time. When we reach a leaf
of the search tree, the supermodule in the bundle is the bounding rectangle specified by a complete
solution (P,θ).

3.3 Lower Bounds and Pruning

For two supermodules (or blocks) M and N, we define M ≺N if BM ≺BN where BM and BN are the
bottom-left blocks of M and N respectively. For two supermodules (or blocks) A and B, we define
A+B as the supermodule formed by placing B on top of A, and A∗B as that formed by placing B
in the right of A. When we consider two partial Polish expressions, we implicitly assume that they
are associated with the same bit-vector δ and hence represent two packings.

Minimum Dead-Space. The rectangles A + B and A ∗ B cannot be changed after A and B are
merged. Therefore, the dead-space inside A + B and A ∗B is permanent. This is illustrated
in Fig.8a.

Extended Dead-Space. Let R1, . . . ,Rm be in the bundle where R1 is at the bottom, and Rm is at the
top and m ≥ 2. The next block or supermodule Mm−1 that Rm−1 merges with must contain
Rm. Hence the width and height of Mm−1 are not greater than those of Rm respectively.

Similarly, ∀ i = 1 . . .m−1, the next block Mi that Ri merges with must contain Ri+1 . . .Rm.
Hence the width of Mi is not smaller than the maximum of widths of R j for j = i+1 . . .m.
Similarly for its height. In cases when both the width and height of Ri are smaller than those
of Mi, we can lower-bound the dead-space when Ri merges with Mi (Fig.8b).

Commutativity. A + M is equivalent to M + A, and A ∗M to M ∗ A. To break this symmetry
when merging supermodules A and M, one can require A ≺ M. We propose a better pruning
mechanism below.

expression: 1 2
bundle: B1 B2
storage:

(a)

1 2 4
B1 B2 B4

(b)

1 2 4 *
B1 M24∗
B4 B2

(c)

Figure 7: Incremental Changes with Bundle and Storage.
(a) The original configuration; (b) adding 4 to (a); (c) adding ∗ to (b); removing ∗ from (c) yields
(b); removing 4 from (b) yields (a).

1 4 2 3

5

6
7

8

M1 4 * B2 M3 5 + 6 * M7 8 +
(R1) (R2) (R3) (R4)

a1

a2

a3

a4

(a)

N2
R2

R2

a*

a+

(b)

Figure 8: Minimum and Extended Dead-Space.
(a) The bundle for 14∗235+6∗78+ with regions of permanent dead-space a1, a2, a3 and a4; (b)
when R2 is merged with M2, M2 must contain R3 and R4 and hence N2; a+ (a∗) is a lower bound
for dead-space in R2 +M2 (R2 ∗M2) and hence min(a+,a∗) is a lower bound for dead-space.

10



Suppose we are pushing the block B to the bundle, which is not empty, with the top element
A. Then B must be the bottom-left block of the next supermodule M to merge with A. Hence
we require A ≺ B, implying an ascending order of blocks and supermodules in the bundle.

Abutment. Consider blocks R1, R2 and R3, where R1 ≺ R2 ≺ R3. If they abut horizontally
or vertically, their order does not matter. For example, (R1 +R3)+R2 is equivalent to
(R1 +R2)+R3. However both arrangements pass the commutativity constraint.

For chained operators of the same kind, e.g., (R1 + R2)+ R3 or (R1 ∗R2) ∗R3, we require
both R1 ≺ R3 and R2 ≺ R3. By the commutativity constraint R1 ≺ R2. Therefore we only
have to check if R2 ≺ R3. Since an abutment of three or more blocks must be of the form
E1E2 +E3 + . . .+Ei+, the abutment constraint breaks all symmetries of this kind.

Global Bottom-left Block and Its Orientation. We require B1 to be the bottom-left block of all
packings. This constraint is redundant because the commutativity constraint does not allow
pushing B1 to a non-empty bundle. However we can now prune hopeless partial Polish
expressions much sooner. Similar to the non-slicing case, we require the orientation of B1
to be 0.

Identical Blocks. If blocks A and B have the same dimensions, then they are interchangeable.
Since the above constraints do not break all symmetries due to identical blocks, we require
in that case that A appear before B in p if A ≺ B. Note that commutativity and abutment
constraints do not break all symmetries by identical blocks. Fig.9 is an example

1
5

6

2
3

4

(a) 15∗6∗23+4∗+

1
4

6

2
3

5

(b) 14∗6∗23∗5∗+

Figure 9: Symmetry with Identical Blocks.
Two normalized Polish expressions that satisfy the commutativity and abutment constraints, but
that in (a) does not satisfy the symmetry-breaking constraint for identical blocks.

4 Hierarchical Slicing Packing

In this section our optimal slicing block-packer is extended to a scalable hierarchical slicing block-
packer BloBB which does not necessarily produce optimal solutions. The tree-structure of slicing
floorplans facilitates a divide-and-conquer approach — we group blocks into clusters and pack
each cluster into a supermodule. We then pack supermodules into higher-level supermodules.

4.1 Conquer Operations

If we flip the packing (P,θ) across a diagonal preserving the bottom-left block, the resulting pack-
ing is represented by (P̄, θ̄) where θ̄ is the complement of θ and P̄ is equal to P with all pluses
changed to asterisks and vice versa. This is illustrated in Fig.10. In the rest of the paper (P̄, θ̄)
denotes the flipped packing of (P,θ). We identify a supermodule by its bottom-left block, e.g., if
B2 is the bottom-left block of M, then 2 identifies B2 and M.
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(a) P = 12+345∗+∗, θ = 01100
1

5

2

43

(b) P̄ = 12∗345+∗+, θ̄ = 10011

Figure 10: Effect of Flipping a Slicing Packing.
When the packing in (a) is flipped to (b), all operators in the Polish expression change.

1

2 5 6
4 (a)

P = 124+5∗6∗+
θ = 01000

1 14

10
13

12

2
3 7 5 8

6
4

9 11 (b)
Pexpanded = P1P̄2P4 +P5 ∗P6
θexpanded = θ1θ̄2θ4θ5θ6

Figure 11: Merging Clusters into a Higher-level Cluster.
Concatenation of sub-packings into a complete packing. Pexpanded = P1P̄2P4 + P5 ∗ P6 and
θexpanded = θ1θ̄2θ4θ5θ6 where (Pi,θi) or (P̄i, θ̄i) describe the packing of Mi in (a).

Suppose we pack {B1, . . . ,Bn} to r supermodules {Mi} with bottom-left blocks Bki specified
by (Pi,θi) for i = 1 . . . r. We pack the r supermodules into a supermodule specified by (P,θ) (note
that Mi is identified by ki in P). Let li be the bit in θ that specifies the orientation of Mi. To
completely specify a packing of all blocks, we substitute ki by Pi and li by θi if li = 0, or P̄i and
θ̄i respectively if li = 1 (Fig.10). Note that the expanded Polish expression may not be normalized
and may not satisfy all constraints in Section 3.3. Fig.11 shows an example.

For each cluster, we find an optimal packing by branch-and-bound, subject to constraints from
Section 3.3. We also limit the width and height of clusters by Lmax =

√
AbestR, which in practice

prevents supermodules with extreme aspect ratios that may not pack well at the next level. In
this formula Abest is the area of the best packing found so far, and the constant R is termed the
aspect ratio increment. Note that constraining aspect ratio may increase dead-space. We regulate
the tradeoff between dead-space and aspect ratio by means of the dead-space increment constant
χ. Abest is initialized to Aχ before the first search, where A is the sum of areas of all blocks or
supermodules in the cluster. If no solution is found, we increase Abest from Aχ to Aχ2 and Lmax
from

√
AbestR to

√

Abest R2. Such increases continue until a solution is found. We do not limit
height and width at the top level of the hierarchy.

4.2 Divide Operations

While our conquer operations ensure small runtime, divide operations are responsible for solution
quality. We use a greedy clustering framework from [13]. For every pair of blocks/clusters we
calculate a quality metric (details below) and prioritize all pairs. The best pair is clustered if its
elements have not been clustered before.

For blocks/supermodules Ri and R j we compute the quality metric by

Wi j =

(

min (mi,m j)

max (mi,m j)

)10

+

(

min(Mi,M j)

max (Mi,M j)

)10

(1)

where mi and m j are the shorter edges (min-edges) for Ri and R j respectively, Mi and M j are the
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longer edges (max-edges) respectively. Equation (1) helps to select pairs of blocks with similar
edges. Power 10 in each term emphasizes our preference for blocks with extremely similar edges,
particularly useful in slicing packings. Alternatively, clustering can be based on connectivity when
wirelength is minimized [13].

Similarly to Equation (1), we define the similarity Si j of Ri and R j by

Si j =

(

min(mi,m j)

max (mi,m j)

)2

+

(

min (Mi,M j)

max(Mi,M j)

)2

(2)

Clearly 0 < Si j ≤ 2, and Si j = 2 corresponds to identical blocks. We introduce the side resolu-
tion parameter Smin such that if Si j ≥ Smin, Ri and R j are considered identical during branch-and-
bound for symmetry-breaking purposes. In optimal packers we set Smin = 2, and smaller values
trade off solution quality for better runtime.

Suppose blocks {R1, . . . ,Rr} are partitioned into s clusters Ck1 , . . . ,Cks . When merging clusters
Ci and C j to form a new cluster, we impose the following constraints.
(1) t ≥ κblogκ (r−1)c where κ is the cluster base constant and t is the number of clusters after the

merger;
(2) 1 ≤ |Ci|+

∣

∣C j
∣

∣ ≤ ρ where ρ is the cluster size bound;
(3) Ai + A j ≤

(A
r

)

ξ where Ai = |Ci|Ai,bottom−le f t , and Ai,bottom−le f t is the area of the bottom-left
block in Ci. Similarly for A j. ξ is the cluster area deviation, and A is the total area of all
blocks involved.
Constraint (1) ensures that there are enough clusters for another round of clustering. Constraint

(2) limits the number of elements per cluster to guarantee that branch-and-bound finishes quickly.
Constraint (3) ensures that the areas of the resulting supermodules do not differ too much. A i is
a reasonably accurate area estimate of Ci since blocks often pack into a grid-like structure. The
bounds imposed in the above constraints allow our hierarchical block-packer to adapt to problem
instances.1

5 Packing Soft Blocks

Slicing packing can handle soft blocks very easily. We extend BloBB to a block-packer Com-
paSS, that handles soft blocks. In the optimal mode, CompaSS explores the space of slicing
sub-floorplans, similar to BloBB, except that it uses a curve to denote a sub-floorplan, instead of
its dimensions. As we will see, using a curve allows us to consider soft blocks, and improves the
quality of packing hard blocks, since each sub-floorplan can take many shapes when it merges
with another.

5.1 The Shape-Curve Representation

Consider a soft block B, whose width and height can vary. The shapes that B can take are character-
ized by a shape-curve. Given a block/supermodule B, its shape-curve records the set of dimensions
the bounding box of B can take. A rectangle can contain B iff its upper right corner lies above the
shape-curve of B (Fig.12a). Exact shape-curves are hard to deal with, so we use piecewise linear
curves to approximate them. The approximation can be made arbitrarily precise, by using more
line segments, at the cost of efficiency. Given a shape-curve for block B, we can determine the

1In rare cases no clusters can be formed even when ξ > 1. In such circumstances we recommend further
increasing ξ.
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Figure 12: The Shape-Curve Representation for Soft Blocks/Supermodules.
The shape-curves of (a) a soft block A, hard block B, (b) supermodules A∗B and A+B and (c) the
supermodule AtB. As an example, a rectangle can contain A iff its upper right corner lies above
the shape-curve of A.

dimensions of its smallest bounding rectangle (min-box) by examining the curve point by point.
For blocks A and B, we add the shape-curves of A and B horizontally to get the shape-curve of
A∗B, and vertically for A+B (Fig.12b). This simple curve-arithmetic, whose soundness is proved
in Appendix A, allows efficient computation for the shape-curves of supermodules. Note that hard
blocks are just a special types of soft blocks that can take 1 or 2 orientations (aspect ratios), and
hence all our algorithms below can handle hard blocks, or a mix of soft and hard blocks directly.

5.2 Optimal Slicing Soft Block Packing

Given a set of blocks, specified by shape-curves, all resultant Polish expressions correspond to a
unique shape-curve. We adopt the branching schedule in Section 3.2, to search for a normalized
Polish expressions, whose min-box is smallest. Instead of keeping a series of rectangles, CompaSS
maintains a series of shape-curves. Note that we do not need the orientation bit-vector, since the
orientation information is captured in the shape-curve. We use the same data structure (buffer
and storage) to keep track of the merging and dissembling information. It supports O(d) time
merging and O(1) time dissembling of shape-curves, where d is the number of line segments in
the shape-curve of the merged supermodule. For a block or supermodule M, the min-box of its
shape-curve gives a lower bound in area. Similar to packing hard blocks, the shape-curves of A+B
and B + A are the same. Therefore, we can apply the commutativity and abutment constraints to
break symmetries.

5.3 Hierarchical Soft Block Packing

Similarly to BloBB, CompaSS groups blocks into clusters and pack each cluster into a supermod-
ule. The supermodules are packed into higher-level supermodules, until a single supermodule
is formed. While BloBB records the dimensions of the clusters, CompaSS records their shape-
curves. It allows CompaSS to have many alternatives to fit that cluster into higher-level packings.
We employ the techniques in Section 4.2 to group blocks/supermodules into clusters. For each
cluster, we look for an optimal packing, subject to adjustable constraints. The details about the
parameters can be found CompaSS’ manual, available at [20].

5.4 Post-processing

Given a Polish expression, it turns out that we can reassign the operators to minimize the area of
the min-box very efficiently. For example for the Polish expression AB+C∗, we first identify the
operator slots, and get ABtCt. We can determine whether we should assign + or ∗ to each of the
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t slots to get a possibly smaller packing. The effect of this technique is more pronounced when
there are more blocks.

Consider blocks/supermodules A and B, with shape-curves CA and CB, we define A∨B to be the
supermodule that has shape-curve CA∨B, where the region above CA∨B is the union of the regions
above CA and CB (Fig.12c). A∨B is the supermodule that can either take some shape of A, or some
shape of B. We define AtB to be (A + B)∨ (A ∗B), or in postfix notation, ABt = AB + AB ∗∨.
Given a Polish expression P, we can substitute all the operators with t. The min-box of the
resultant curve gives the smallest area, among all Polish expressions with operators in the same
positions as P. To determine the locations of the blocks, we reassign + and ∗’s to each t slots.
Appendix B provides more details in the realization algorithm.

6 Experimental Results

Our algorithms are implemented in C++ and are open-sourced under the names BloBB (Block-
packing with Branch-and-Bound) and CompaSS (Compacting Soft and Slicing Packings). BloBB
is available at [19] and CompaSS at [20]. All programs are compiled with g++ 3.2.2 -O3 and
evaluated on a 1.2GHz Linux Athlon workstation. All parameters and runtime summaries about
BloBB can be found at [19], while those about CompaSS at [20]. Dead-space % refers to the ratio
of amount of dead-space to the total area of the blocks.

6.1 Optimal Block-Packing

We evaluate BloBB on a suite of randomly-generated test cases. In the randomly-generated test
cases, the blocks have integer dimensions distributed uniformly in the range 1..200. All blocks
are distinct to eliminate the effect of instance-specific symmetries. We use these cases to simulate
the worse-case that BloBB is responsible for, since in realistic instances, the blocks tend to have
similar dimensions and not have extreme aspect ratios (especially in small instances with less than
20 blocks). On the other hand, we construct highly symmetrical instances in which there are only 2
or 3 types of blocks. We empirical show that the existence of identical blocks improve the quality
of the optimal slicing or non-slicing packing. Table 3 shows the average dead-space % in optimal
slicing and non-slicing packings and BloBB’s runtime. From Table 3, we observe that:
• Presence of identical blocks significantly improves the quality of the optimal slicing and non-

slicing packings.
• In each test cases suite (random, 3-type and 2-type), the deadspace % decreases with block

counts. It occurs in both optimal slicing and non-slicing packings, and their gap is small. In
all cases, the average differences in dead-space % of optimal slicing and non-slicing packings
are no more than 1.5%. It contradicts with common belief that slicing packings are highly
suboptimal for packing hard blocks.

• In test cases of the same number of blocks, the gap between optimal slicing and non-slicing
packings decreases when there are more identical blocks. For example, in the 9-block random
instances, the average gap between slicing and non-slicing packings is 1.33%, that in 9-block
3-type instances is 0.26% and that in 9-block 2-type instances is 0.23%.

BloBB packs the three smallest MCNC benchmarks optimally (Table 5 and Fig.13). Such
results have never been claimed before, even though solutions reported in some papers appear to
be optimal. Observe that apte and hp have blocks with identical dimensions and are solved much
faster than random instances of the same size. The gaps between optimal slicing and non-slicing
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packings are less than 1.2% in all cases.
We also run CompaSS of the soft versions of the MCNC benchmarks (Table 6), where all the

blocks have aspect ratio within [0.5,2]. We find the optimal slicing solutions for apte, xerox and
hp. Interestingly, CompaSS is able to find solutions with zero dead-space for ami33 and ami49
respectively. Therefore, we optimally pack xerox, hp, ami33 and ami49 subject to the aspect ratio
constraint.

6.2 Hierarchical Block-Packing

BloBB and CompaSS are evaluated on MCNC and larger GSRC benchmarks (Table 7). The pa-
rameters for CompaSS depend on the number of blocks, and since CompaSS is designed to handle
a large variety of instances, with block counts ranging from 10 to 100K, it is difficult and im-
practical to set certain parameters of CompaSS as default. The parameters for CompaSS in each
cases are available at [20]. We, however, run BloBB with the same (default) parameters for all test
cases. BloBB and CompaSS achieve comparable results to those of Parquet [1], the TCG-S floor-
planner and B*-Tree v1.0 from [18]. Parquet is a fast floorplanner based on sequence-pair, while
the TCG-S floorplanner contributes many best published results for the MCNC benchmarks [9].
B*-Tree v1.0 searches in a much smaller solution space than that of our hierarchical block-packer
[17]. Based on performance results in Table 7, it is difficult to claim that one floorplanner outper-
forms others — each floorplanner has many parameters that can be tuned further. For the MCNC
and GSRC benchmarks BloBB is competitive with the TCG-S floorplanner and B*-Tree v1.0 by
area, while being much faster. Notably, all competing tools produce non-slicing floorplans, while
in these experiments BloBB always produces slicing floorplans, which inherits many desirable
properties of slicing packings, such as simpler representation and easier incremental changes.

The adaptive nature of BloBB and CompaSS is illustrated in Table 7, where their runtimes
are impacted by repeated block dimensions and do not necessarily increase with block counts.
To demonstrate the scalability of our block-packers, we create the test case n600 by merging all
blocks in n100, n200 and n300. BloBB runs faster than Parquet and B*-Tree v1.0, it also finds
packings with smaller area. On the other hand, CompaSS produces better packings than BloBB,
at the cost of runtime. In packings produced by BloBB, most dead-space can be traced to high-
level floorplans where clustering is harder (Fig.14). This suggests that BloBB’s divide operations
pack blocks into tight clusters. On the other hand, there are less dead-space is resulted from high-
level floorplans by CompaSS, since for each cluster, BloBB keeps track of its width and height
while CompaSS keeps track of its shape-curve, that records many possible packing for the cluster.
Therefore when CompaSS perform higher level packing, it has a lot of alternatives to choose from
for each cluster. It explains why CompaSS appears more competent than BloBB when dead-space
is concerned.

For large scale block-packing (up to 40K blocks), we compare BloBB and CompaSS with
MB*-Tree [8], since other block-packers above are designed to handle smaller instances (up to
500 blocks). We evaluate BloBB and CompaSS on the ami49 X benchmarks proposed in [8].
Each instances consists of copies of ami49, for example ami49 40 consists of 40 copies of ami49.
Table 8 shows our results for BloBB and CompaSS with those reported in [8]. CompaSS finds
solutions with smaller area more quickly than MB*-Tree. It confirms that the slicing packings are
competitive with non-slicing packings when the number of blocks is large. Typical multi-level
block-packers lose either solution quality (e.g. BloBB) or speed (e.g. MB*-Tree) when the num-
ber of blocks increases. Interestingly, CompaSS is robust in both solution quality and runtime with
respect to the number of blocks. It is because CompaSS takes advantage of the size of the prob-
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lem. When there are more blocks, CompaSS produces better low-level floorplans since the blocks
within each cluster tend to be very similar, and produces better high-level floorplans since it keeps
track of many alternatives for each cluster. The runtime does not exhibit dramatic increase with
block count since we can achieve good dead-space ratio with fewer blocks (lower-level clusters)
in each cluster. It simplifies the packing problem at each level considerably, and offsets the effect
that the shape-curves have more points. Moreover, the post-processing of optimizing the operator
is more effective and there are more blocks. Fig.14 shows some of the results by CompaSS.

CompaSS’ is also evaluated on soft version of the MCNC and GSRC benchmarks. Table 9
shows that CompaSS is able to produce zero-dead-space packings in most cases, where the blocks
have aspect ratio within [0.5,2]. Therefore, the dead-space produced by any floorplanner in these
cases reveal its sub-optimality in area. Moreover, we show that this constraint in aspect ratio is not
restrictive by providing zero-dead-space packings subject to stricter aspect ratio constraints. Most
cases can be packed with zero dead-space if we restrict the aspect ratio to lie within [0.63,1.60].
It suggests that the problem of packing soft blocks is easier than that of packing hard blocks.

7 Conclusions and Ongoing Work

We propose new optimal slicing and non-slicing block-packers, as well as a scalable deterministic
bottom-up slicing block-packer, and extend it to one that handles soft blocks. Our implementations
BloBB and CompaSS are competitive with best non-slicing annealers. For small floorplans, em-
pirical results for optimal block-packers (Table 3) confirm the perceived advantages of non-slicing
floorplans. For large floorplans, data in Table 7 suggest that state-of-the-art annealers may fail to
find best non-slicing floorplans reasonably quickly. Thus, slicing and hierarchical representations
are competitive when runtime is limited.

Our block-packer handles additional constraints as stronger bounding criteria which often im-
proves runtime. Fixed-outline floorplanning is an important example because annealers typically
fail in this context [1]. Interestingly, our area-optimal algorithms tend to achieve aspect ratios
close to 1.0 even when no fixed-outline constraints are imposed (Fig.14). In general, new features
and constraints may increase or decrease the efficiency of symmetry-breaking.

Since wirelength (HPWL) can be calculated incrementally, it can be efficiently maintained
during branch-and-bound [2]. Therefore, our block-packer can be easily extended to optimize a
linear combination of wirelength and area. Alternatively, we can minimize wirelength among all
min-area solutions. Another optimization strategy is to limit the wirelength by adding a constraint.
We can also put highly connected blocks together during clustering.

Intriguing questions for future work include characterizing easy and difficult black-packing
instances, based on block similarities. In this context our hierarchical block-packers may be able
to generate easier instances during the partitioning step. Performance may also be improved by
the following.
• Key parameters can be tuned statically and/or dynamically. Before packing, the block-packers

can set the global parameters after considering the information of the input, such as number of
blocks, and dimensions of the blocks. For example, a smaller cluster-base κ can be used if there
are many blocks (such as more than 1000), since each high-level cluster can take many possible
shapes. Parameters can also change dynamically at runtime. For example, a large cluster-base
κ can be used in lower-level packings to ensure quality, and a small cluster-base can be used in
higher-level packings for efficiency.

• CompaSS uses shape-curves to represent a cluster. The sizes of the shape-curves grow as more
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Table 3: BloBB runtimes.
optimal non-slicing optimal slicing hierarchical

random 3 block-types 2 block-types random 3 block-types 2 block-types random
# blks dead space % / runtime (s)

6 4.12% / 0.24s 2.72% / 0.043s 1.88% / 0.014s 5.51% / 0.015s 3.63% / 0.009s 2.48% / 0.002s 5.51% / 0.013s
7 3.52% / 2.25s 2.16% / 0.19s 1.20% / 0.030s 4.85% / 0.057s 2.55% / 0.014s 1.32% / 0.009s 4.85% / 0.059s
8 3.07% / 38.4s 3.02% / 1.35s 1.10% / 0.20s 4.49% / 0.29s 3.30% / 0.068s 1.30% / 0.026s 4.49% / 0.29s
9 2.48% / 664s 1.89% / 8.06s 1.68% / 1.19s 3.81% / 1.54s 2.05% / 0.16s 1.91% / 0.15s 3.85% / 0.24s
10 — 1.96% / 46.9s 1.74% / 4.20s 3.90% / 28.0s 2.20% / 0.88s 1.99% / 0.45s 5.04% / 0.46s
11 — — 0.91% / 19.3s 3.52% / 96.2s 1.68% / 6.49s 1.08% / 1.09s 5.35% / 0.44s
12 — — 0.96% / 83.7s 3.16% / 545s 2.22% / 12.9s 1.08% / 2.85s
13 — — — — 2.13% / 30.9s 1.52% / 17.9s
14 — — — — 1.94% / 131s 2.39% / 46.4s
15 — — — — 1.87% / 617s 0.94% / 63.0s
16 — — — — — 1.29% / 309s
50 — — — — — — 10.21% / 13.2s

100 — — — — — — 9.41% / 44.2s
300 — — — — — — 10.72% / 38.0s
500 — — — — — — 11.80% / 211.3s

Average performance of BloBB on 10 randomly-generated test cases. The dimensions are distributed uniformly in the range 1..200.
All blocks in random test cases are distinct and the number of blocks in k-block-type test cases are as close to each other as possible.
The hierarchical packer is configured with κ = 8, ρ = 9, ξ = 2.00, R = 1.5, χ = 1.5 and Smin = 1.9.

Table 4: Gap in Optimal Slicing and Non-slicing Packings.
(a) Random test cases.
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(b) 3-type test cases.
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(c) 2-type test cases.
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Table 5: Results for MCNC benchmarks by BloBB.
Test Block Optimal non-slicing Optimal slicing
case area area / dead-space / runtime area / dead-space / runtime
apte 46.56 46.93 0.78% 2.38s 46.93 0.78% 0.23s
xerox 19.35 19.80 2.30% 9812s 20.02 3.45% 12.8s

hp 8.831 8.947 1.32% 891s 9.032 2.28% 0.74s

Table 6: Results for soft version of the MCNC benchmarks by CompaSS.
Test # of Optimal slicing Hierarchical slicing
case blocks area / dead-space / runtime area / dead-space / runtime
apte 9 46.91 0.75% 0.96s 46.91 0.75% 11.79s
xerox 10 19.35 0.00% 13.79s 19.35 0.00% 1.47s

hp 11 8.831 0.00% 6.94s 8.831 0.00% 3.58s
ami33 33 — — — 1.156 0.00% 2.76s
ami49 49 — — — 35.45 0.00% 4.49s

All soft blocks have aspect ratio within [0.5, 2.0]. Boldfaced results have never been claimed before. The dead-space
% are accurate up to 0.01%. Parameters in each case can be found in [20].

18



Table 7: CompaSS and BloBB versus Parquet, TCG-S and B*-Tree v1.0.
Test CompaSS BloBB Parquet TCG-S B*-Tree
case area (mm2) / area (mm2) / area (mm2) / area (mm2) / area (mm2) /

runtime (s) runtime (s) runtime (s) runtime (s) runtime (s)
apte 46.92 0.020 47.30 0.035 51.81 0.016 49.74 0.25 48.06 8.26
xerox 20.11 0.41 20.31 0.078 22.09 0.020 20.31 0.24 20.46 0.037

hp 9.03 1.27 9.26 0.027 9.59 0.022 9.38 0.34 11.60 25.7
ami33 1.21 9.74 1.25 1.73 1.25 0.16 1.22 4.48 1.21 14.2
ami49 37.17 9.96 38.18 3.01 38.89 0.34 38.17 18.3 36.96 15.1
n100 192647 6.61 192234 5.62 200328 1.49 199290 143 186686 125

n100b 171633 7.19 175263 34.7 178880 1.49 175497 144 166110 126
n200 187074 17.39 191040 7.09 197769 6.81 198739 1286 185931 522

n200b 186570 21.87 187824 13.34 197904 6.79 249473 847 186313 494
n300 291796 11.63 297018 11.04 310213 16.8 324996 4889 300132 1007
n600 671818 151 713775 22.3 732567 81.8 — — 721905 3122

BloBB and Parquet are evaluated on a 1.2GHz Linux Athlon workstation, while TCG-S and B*-Tree v1.0 are run on 1.0GHz SUN
Sparc workstation. Parameters of BloBB are set as in Table 3, and parameters of CompaSS in each test case can be found in [20].
Default parameters are used in Parquet, TCG-S and B*-Tree v1.0. We run each of them 10 times, except that TCG-S is run once on
each of GSRC benchmarks, CompaSS and BloBB once on all benchmarks. For the annealers, minimum areas and average runtimes
are reported.

Table 8: CompaSS, BloBB versus MB*-Tree.
Test # of CompaSS BloBB MB*-Tree
case blocks area (mm2) / dead-space % / runtime (s)

ami49 40 1960 1464 / 3.25% / 185s 1551 / 9.38% / 22s 1473 / 3.87% / 1488s
ami49 100 4900 3652 / 3.04% / 110s 3844 / 8.45% / 9.70s 3671 / 3.57% / 3096s
ami49 200 9800 7298 / 2.95% / 128s 7628 / 7.60% / 10.3s 7341 / 3.56% / 15372s
ami49 400 19600 14578 / 2.54% / 414s 15633 / 10.26% / 29.1s —
ami49 800 39200 29251 / 3.15% / 216s 32256 / 13.75% / 42.8s —

ami49 1600 78400 58678 / 3.47% / 330s 64712 / 14.11% / 108s —
ami49 3200 156800 113429 / 3.34% / 682s 128930 / 13.64% / 371s —

In test case ami49 X, there are 49X blocks. For example, ami49 800 consists of 39200 blocks. CompaSS and BloBB are evaluated on
a 1.2GHz Linux Athlon workstation while results of MB*-Tree are taken from [8], where it is evaluated on a 450MHz SUN Ultra 60
workstation.

Table 9: CompaSS on soft versions of the MCNC and large GSRC benchmarks.
Aspect ratio [0.5,2.0] [0.55, 1.8] [0.59, 1.7] [0.63, 1.6] [0.67, 1.5]

Test case dead-space % / runtime (s)
apte 0.76% / 0.07s 0.88% / 0.09s 0.97% / 0.08s 1.07% / 0.09s 1.18% / 0.10s
xerox 0.00% / 0.10s 0.00% / 0.10s 0.00% / 0.10s 0.00% / 0.11s 0.00% / 0.10s

hp 0.00% / 0.09s 0.00% / 0.05s 0.00% / 0.04s 0.00% / 0.05s 0.00% / 0.05s
ami33 0.00% / 2.38s 0.00% / 2.73s 0.00% / 2.79s 0.00% / 2.93s 0.00% / 2.85s
ami49 0.00% / 4.64s 0.00% / 3.46s 0.01% / 2.53s 0.04% / 2.91s 0.20% / 4.53s
n100 0.00% / 17.6s 0.00% / 20.76s 0.00% / 20.7s 0.01% / 24.0s 0.00% / 31.7s

n100b 0.00% / 13.2s 0.00% / 15.7s 0.00% / 20.2s 0.00% / 22.6s 0.00% / 28.3s
n200 0.00% / 43.4s 0.00% / 43.3s 0.00% / 50.4s 0.00% / 65.1s 0.02% / 95.9s

n200b 0.00% / 41.8s 0.00% / 40.2s 0.00% / 43.2s 0.00% / 54.7s 0.05% / 48.3s
n300 0.00% / 104s 0.00% / 146s 0.00% / 137s 0.01% / 137s 0.03% / 158s

In each test case, except for apte, boldfaced column corresponds to the strictest aspect ratio bound under which CompaSS is able to
pack with 0.00% dead-space. Parameters in each case can be found in [20].
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Figure 13: Optimal packings for apte, xerox and hp produced by BloBB.

(a) n100: BloBB, CompaSS. (b) n200: BloBB, CompaSS. (c) n300: BloBB, CompaSS.
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Figure 14: Sample packings produced by BloBB and CompaSS.
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and more blocks are present. This size increases dominates the growth of runtime of CompaSS.
In fact, when there are many points on a shape-curve, many of them can be ignored since its
neighboring points are close approximations. Dropping unnecessary points of shape-curves
keep CompaSS efficient when the number of blocks increases.

• Among different levels, the lowest levels and the highest two levels of packing dominate run-
time. For small instances (up to 1000), the highest levels take about 70% of the total runtime
on average, while for large instances (more than 20K blocks), the lowest levels take more than
half of the runtime.

• More post-processing techniques, such as packing compaction, can be developed. We observe
that NPE can be easily converted to a B*-Tree that compacts the packing horizontally.

• CompaSS groups lower-level blocks/supermodules into clusters considering only their areas.
The shape-curve may facilitate more sophisticated notions of similarity among blocks/supermodules
(such as the correlations between pairs of curves). These notions may lead to easier instances
that can be packed tighter and more quickly.

• In Fig.14, most of the dead space results from higher-level floorplans. While our fast branch-
and-bound is applied to lower-level floorplans, one may improve higher-level floorplans by sim-
ulated annealing. Another potentially useful optimization is the incremental cluster refinement
algorithm from [16].

Besides chip design, the rectangle packing problem has applications in factory layout, con-
tainer shipment optimization, scheduling and other areas. In particular, it is closely related to the
2D bin-packing problem, which also has a wide range of applications such as multi-project reticle
floorplanning [10]. In reticle floorplanning, slicing packings are often preferred in each reticle
image, because wafers must be cut into chips by slicing lines. In BloBB, we traverse the space of
slicing packings by maintaining a series of clusters. It means that any partial solution with all n
blocks is a full slicing solution of the 2D bin-packing problem and vice versa! To better handle
the 2D bin-packing problem, BloBB’s pruning can be extended with heuristics specific to bin-
packing. Handling reticle floorplanning as a 2D bin-packing problem allows each reticle image to
be different, and holds a potential to improve the yield.

Acknowledgments. This work was supported by the Gigascale Silicon Research Center
(GSRC), an Undergraduate Summer Research Fellowship (UGSR) at the Univ. of Michigan, and
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A Proofs

In this section, we prove the soundness of our minimum min-edge estimation, redundant packing
detection and the dominance-breaking mechanism in Section 2. We will consider a partial packing
(t,σ,δ) and an arbitrary extended packing (T,π,θ).

Minimum Min-Edge Estimation

If t has j 0’s and σ has i blocks, then j ≥ i. If j > i, then we can locate the next ( j− i) unused
blocks in T . We define the minimum square of σ as a square with side mink/∈σ {mk}. A lower bound
for area can be computed by placing ( j− i) minimum squares onto the partial packing according
the locations specified by t (Fig.15).

d1 d2
d3

d4 D1 D2

D3

D4

Figure 15: Minimum Min-Edge Estimation.
If the locations of next 4 blocks in t are known, we place minimum squares d i according to t; di
occupies the same position in t as Di.

Proposition A.1. Let {dk} be the minimum squares added according to t, and {Dk} be the blocks
occupying the same position as dk in T . The x-coordinate of minimum square dk is at most that of
Dk.

Proof. For each minimum square dk, we consider a chain of minimum squares dl1 . . .dlk where dl1
is adjacent to a block in σ, dls is adjacent to the left of dls+1 , and dlp = dk. For example d1, d2 and
d3 in Fig.15. Similarly, we consider Dl1 . . .Dlp where Dls and dls occupies the same position in t.
For example D1, D2 and D3 in Fig.15. Note that the x-coordinate of dl1 equals that of Dl1 , and call
it x. Then since dk = x + ∑p−1

i=1 width(dli) and Dk = x + ∑p−1
i=1 width(Dli), the x-coordinate of dk is

at most that of Dk, as width(dli) ≤ width(Dli) by the definition of minimum squares.

Proposition A.2. There exists some Dl such that the y-coordinate of Dl is at least that of dk.

Proof. From the proof of Proposition A.1, the interval from the x-coordinate of dk to right-end of
dk, is fully contained in the interval from the x-coordinate of Dl1 , and the right-end of Dk. By the
O-Tree realization algorithm in [5], there exists some Dls which has y-coordinate at least that of
dk.

From Propositions A.1, the width of the partial packing with di is at most that of any of its
extended packings, since di’s are the minimum squares. Similarly, the partial packing with di never
overestimates the height of each of its extended packings.

LB-Compactness and O-Tree Redundancy

Some packings represented by O-Trees are not L-compact, and some of them can be specified by
multiple O-Trees. To prune such O-trees we require that the y-span of each block overlap with that
of its parent.
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Moreover, if B has overlapping y-span with multiple adjacent blocks in the left, then we require
the parent of B to be the lowest of these. For example in Fig.1b, we require B7 to have parent B6
instead of B1.

To show the soundness of this criterion, it suffices to show the following proposition.

Proposition A.3. If a block B does not have an overlapping y-span with its parent, then every
extended packing is either non L-compact or identified by an alternative O-Tree in which the block
does.

Proof. Consider an extended packing P. If B has an overlapping y-span with another block B ′in
P, then P is specified by another O-Tree, in which B has parent B′. Otherwise, P is not L-compact.

Dominance

The bounding rectangle of a packing can be in one of eight orientations. It suffices to analyze
only one of those orientations. We formalize the notions of corner as follows. In the packing U ,
a block is lower-left iff (i) no blocks lying below have an overlapping x-span, and (ii) no blocks
lying on the left have an overlapping y-span. Similarly for lower-right, upper-left and upper-right.
A block is a corner block if it is one of the above. In Fig.1b, B5 is lower-left, B1 is upper-left, B4
is lower-right, B4 and B7 are upper-right.

To facilitate pruning, observe that an LB-compact packing always contains unique lower-left,
lower-right and upper-left blocks, and at least one upper-right block. We declare the rightmost
upper-right block to be the upper-right block. In Fig.1b, B4 is the upper-right block. To avoid
dominated packings, we impose dominance-breaking constraints:
(1) the lower-left block Blower−le f t has orientation 0,
(2) Blower−le f t � R for every corner block R.

Given an arbitrary complete packing P, we can flip it across the diagonal, preserving the lower-
left block, to make it satisfy constraint (1). We call this flipping α-transformation. If the packing
P already satisfies constraint (1), then its α-transformation leaves it unchanged. Similarly, we can
flip it horizontal, vertically or across the diagonal to make it satisfy constraint (2). We call this
the β-transformation. Again, if the packing P already satisfies constraint (2), its β-transformation
leaves it unchanged.
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(b) P’

1

2
3

4

5

(c) P’’
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3
4
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(d) P’’’

Figure 16: Dominance-Breaking: α and β-transformations.
The packing P satisfies (2) but not (1). When we apply an α-transformation to get P ′, P′ does not
satisfy (2) anymore. Thus we apply a β-transformation to get P′′′ by flipping P′ to P′′ and then
compacting to P′′′, which satisfies both constraints.

It is obvious that both α and β-transformations do not increase the area of the packing. We now
show that given a packing P, we can apply a finite number of α and β-transformations, horizontal
and vertical compactions, to make it satisfy both constraints (1) and (2). We define a cycle of
transformations on the packing P to be:
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• its α-transformation.
• horizontal and/or vertical compactions until P is LB-compact.
• its β-transformation.
• horizontal and/or vertical compactions until P is LB-compact.

Starting with P, we apply a cycle of transformations to get P(1), and then apply another cycle
to get P(2). The process must stop after at most n rounds, where P contains n blocks. In other
words, P(i) are identical for all i ≥ n. It is because the index of the lower-left block decreases or
remains unchanged when a cycle of transformations is applied. Moreover, the resultant packing
is not greater than P in area. Therefore, given an arbitrary packing P, we can transform it in at
most n rounds of transformations described above. As a result, we can safely ignore the dominated
packings.

Shape-Curve Arithmetic

In Section 5.1, we claim that if CA and CB are the shape-curves of block/supermodules A and B
respectively, then CA+B, the shape-curve of A+B equals the vertical sum of CA and CB. We prove
this relation by considering the sets of points above the shape-curves. The case for A∗B is omitted
by symmetry. Let SA+B be the set of points above the shape-curve of CA+B, and TA+B be the set of
points above DA+B, the vertical sum of CA and CB. It suffices to show that SA+B = TA+B.

Proof. First, we observe that a shape-curve C has the property that (x,y) lies above it implies
(x + ε1,y + ε2) lies above it for all ε1,ε2 ≥ 0. The horizontal and vertical sums of shape-curves
also have this property.
To show SA+B ⊆ TA+B. Let (x,y) be a point above CA+B. By definition of shape-curve, a bounding
box of width x and height y contains A + B, and hence y ≥ hA + hB where (x,hA) is a bounding
box of A, and (x,hB) is a bounding box of B. Hence, (x,hA + hB) lies above DA+B, and hence
(x,y) ∈ TA+B.
To show TA+B ⊆ SA+B. Let (x,y) be a point above DA+B. Then, there is a point (x,hA) on CA and a
point (x,hB) on CB such that y ≥ hA +hB. Since (x,hA) and (x,hB) are bounding boxes of A and B
respectively, (x,hA +hB) is a bounding box of A+B. Therefore, (x,hA +hB) lies above CA+B and
hence (x,y) ∈ SA+B.

B Realizing a Slicing Packing

To realize a slicing packing specified by a Polish expression P, we construct its slicing tree T from
P, compute the dimensions or shape-curves of all block/supermodules by a post-order traversal
and then assign the locations of the blocks (which appear in the leaves) by a pre-order traversal.

Constructing Slicing Trees from Polish Expressions

We recall that a Polish expression P is the post-order traversal of a (unique) slicing tree T . To
reconstruct the slicing tree T back from the Polish expression P, we only have to scan through P
once from back to front. Since P is the post-order traversal of T , the sequence of nodes from the
back to the front of P, results from a “pre-order traversal”of T , except that the right subtrees are
explored before the left subtrees. When we scan a symbol of P starting from the back, we add a
node to the T as follows. We add the last symbol of P as the root of tree. It must be an operator,
if the packing has more than one block. We set the next-empty-spot to be its right child. If the
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Figure 17: Converting a Polish Expression to its Slicing Tree.
Constructing the slicing tree for the Polish expression 12 + 3∗. X shows the next-empty-spot of
each step. We start by adding * as the root of the tree, and set its right child as the root. Then we
add 3 as its right child, traverse up and find ∗ has an empty left child. The next-empty-spot X is set
as shown in (a). Then we add + in that position. Since + is an operator, we set the next-empty-
spot X to be its right child, as shown in (b). We then add 2 in that position, traverse up and find
that + has an empty left child, where we set the next-empty-spot to be (c). In (d), we add 1 in that
position, traverse up, and fail to find any ancestor with empty left child, and hence we are done.

next symbol is an operator, we add it to the next-empty-spot and update the next-empty-spot to be
its right child. Otherwise, if the next symbol is an operand, we add it to the next-empty-spot, and
traverse up until we find a node without left child. We set the next-empty-spot to be the left child
of that node. Fig.17 illustrates an example. In BloBB and CompaSS, we use this slicing tree to
realize the final packing.

BloBB — with Hard Blocks only

Suppose we are given a packing of n blocks that is specified a slicing tree T . Firstly, we com-
pute the dimension for each block/supermodule. The dimensions of the blocks are given, while
the dimensions of the supermodules can be deduced from the sign (+ or ∗) and the dimensions
of its children. The dimensions of all n blocks/supermodules can be deduced in O(n) time by a
post-order traversal (Fig.18). Since the packing is slicing, we can treat it as a packing of 2 su-
permodules, and easily find the locations of them by pre-order traversal. The root has location
(0,0), a left child has the same location as its parent and the location of a right child can be easily
deduced from the location and dimensions of its sibling, and the sign of the parent (either + or ∗).
This recurrence relation naturally allows an efficient recursive algorithm for realizing the packing.
Fig.19 illustrates an example.

CompaSS — with Shape-Curves

CompaSS evaluates the packing in a similar way, except that it uses shape-curves, instead of di-
mensions, to describe a block/supermodule. Suppose we are given a packing of n blocks, specified
by a slicing tree T . For simplicity, we only consider solutions with + and ∗’s only, but not t for
now.

Firstly, we compute the shape-curves for each block/supermodule in the slicing tree T , in a
bottom-up manner. For each leave, the shape-curve is given as input, and for each internal node,
its shape-curve is formed by adding those of its children vertically or horizontally (Fig.21). Once
we have the shape-curves for all nodes of the tree, we search for the min-box (or other shapes of
the packing that meets the user-defined constraints such as aspect ratios or outline) of the overall
shape-curve. Then, we compute the location and dimensions of each supermodule by a pre-order
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Figure 18: Determining the Dimensions of the Supermodules.
(a) shows a packing 12 + 3∗, and for blocks B1 : (2× 2), B2 : (3× 2) and B3 : (4× 1), and their
shape-curves respectively. We first construct the slicing tree for 12+3∗ as in Fig.17. We traverse
the tree to solve for the dimensions of all blocks/supermodules. (b) We start from ∗ to + and then
arrive at 1, whose dimensions are given; (c) we arrive 2 next, whose dimensions are also given;
(d) we then arrive +, which has width max{2,3} = 3 and height 2 + 2 = 4, since it is formed by
merging blocks B1 and B2 vertically; (e) we arrive at B3 next, whose dimensions are given; (f) we
arrive at the root, which has width 3+4 = 7 and height max{4,1} = 4.
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Figure 19: Determining the Locations of all Block/Supermodules from Fig.18.
Once the dimensions of all blocks/supermodules are computed, we can compute the locations of
all blocks/supermodules. We follow the example from Fig.18. (a) The root always has location
(0,0) since it represents the whole packing; (b) next, we arrive at +, which has the same location
(0,0) as its parent since it is a left child; (c) similarly, the left child of +, B1 has location (0,0);
(d) we arrive at B2 next; it has location (0,2) since it is placed on top of B1, and B1 has height 2;
(e) we arrive at B3 next, which has location (3,0) since it is placed on the right of the supermodule
12+, that has width 3.

traversal. Similar to BloBB, the location of a left child is the same as its parent. If the parent of
node α is a + (∗), we search for a point on the shape-curve of α whose x-coordinate (y-coordinate)
is the width (height) of its parent, and the shape the α is determined. For a right child β, its
dimensions and location depend on those of the dimensions of its sibling and the operator of its
parents, similar to BloBB. Fig.22 illustrates an example.
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The realization algorithm can be generalized to optimize area by introducing the operator t.
Consider a Polish expression 12 + 3∗, we first replace the operators + and ∗ by t, and then de-
termine which operator (+ or ∗) should go to each t. Theoretically, this algorithm may need
exponential time, but is very efficient in practice. It takes no more than 10s to optimize the opera-
tors for ami49 800, that consists of 39200 blocks. Similar to the evaluation algorithm, we compute
the shape-curves for each block/supermodule in T through a post-order traversal, except that the
shape-curve of each internal node is formed by CA tCB, where CA and CB are the shape-curves
of its children (Fig.23). After determining the shape-curves, we compute the following for each
block/supermodule:
• its location (x,y),
• its width and height,
• if it is a supermodule (an internal node), we determine whether it is a + or ∗.
These can be determined during the pre-order traversal, we determine whether we should which
operator to substitute for t by trying both ways, and pick the one that works (the resultant module
completely lies inside its bounding box). Fig.24 illustrates an example.

Consider shape-curves CA and CB that has dA and dB points respectively. Then, the shape-
curves CA +CB and CA ∗CB can have (dA +dB) points, but CAtCB can have 2(dA +dB) points. For
a Polish expression with only + and ∗ as operators, the shape-curve of the packing can have as
many as O(nd) points, where d is the maximum number of line segments among all shape-curves
of the n blocks. On the other hand, for a Polish expression of n blocks where all operators are t,
the shape-curve of the resultant packing can have O(4nd) points. However, in practice, there are
much fewer points in the final shape-curve since substantial overlap often (almost always) occurs
when we compute the curve CA tCB from CA and CB.

Fig.20 compares the packing realized by the three algorithms above. BloBB realizes the pack-
ing without any optimization (Fig.20a). Without operator-optimization, CompaSS optimizes only
the aspect ratios of the blocks (Fig.20b). In cases when the blocks are hard, it essentially optimizes
the orientations of the hard blocks. Coupled with operator-optimization, CompaSS allows the fi-
nal packing to have a very different structure (Fig.20c). The operators and the aspect ratios (or
orientations) of the blocks can all be different. The effect of orientation and operator-optimization
becomes more and more significant when there are more and more blocks.
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(a) 12+3∗

1
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3

(b) 12+3∗

1 2

3

(c) 12t3t

Figure 20: The Packings Produced by Different Algorithms.
The packing for (a) 12+3∗ realized by BloBB in Fig.18-19, (b) 12+3∗ realized by CompaSS in
Fig.21-22, and (c) 12t3t realized by CompaSS with operator-optimization in Fig.23-24.
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Figure 21: Determining the Shape-Curves of all Supermodules.
Given the Polish expression 12+3∗, we first construct the slicing tree for 12+3∗ as in Fig.17; We
perform a post-order traversal of the tree to solve for the shape-curves of all blocks/supermodules;
(a) we first arrive at B1, whose shape-curve is given; (b) we arrive at B2 next, whose shape-curve
is also given; (c) we arrive at + next,whose shape-curve is given by adding the shapes curves
of B1 and B2 vertically; (d)-(e) then we arrive at B3 and back to the root, whose shape-curve is
given by adding the shape curves of 12+ and B3 horizontally. The shape-curve of the root is the
shape-curve of the whole packing.
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Figure 22: Determining the Locations of all Blocks/Supermodules from Fig.21.
Once the shape-curves of all blocks/supermodules are computed, we can compute the dimensions
and locations of all blocks/supermodules. We follow the example from Fig.21. (a) The root always
has location (0,0) since it represents the whole packing; moreover, we choose the packing to have
width 3 and height 5, since it is the smallest possible; (b) next, we arrive at +, which has the same
location (0,0) as its parent since it is a left child; it must have height at most 5 since it merges with
B3 horizontally to give the root; its dimensions are determined to be 2× 5; (c) similarly, the left
child of +, B1 has location (0,0); its width is at most 2 since it merges with B2 to give its parent;
B1 is determined to have dimensions 2× 2; (d) we arrive at B2 next; it has location (0,2) since it
is placed on top of B1, and B1 has height 2; its width is at most 2 since it merges with B1 to form
its parent; it is determined to be 2× 3; (e) we arrive at B3 next, which has location (3,0) since it
is placed on the right of the supermodule 12+, that has width 3; its height is at most 5 and it is
determined to be 1×4.
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Figure 23: Determining the Shape-Curves of all Supermodules when Optimizing Operators.
(a)-(c) Similar to Fig.21, we compute the shape-curves for each block/supermodules by a post-
order traversal. From the shape-curves of B1, B2, we compute the shape-curve of the supermodule
B1tB3 by first computing those of B1 +B2 and B1 ∗B2, and then that of (B1 +B2)∨ (B1 ∗B2); (d)-
(e) we proceed similarly to get the shape-curves of B3 and (B1 tB2)tB3 (or in post-fix notation
B1B2 tB3t).

t
(0,0)

t
(?,?)

������
3

(?,?)

222222

1
(?,?)

������
2

(?,?)

222222
2
3
4
5

9

0 2 3 4 5 9

1 2 --- 3 ---

(a)

2
3
4
5

0 2 3 4 5

1 2 ---

1

4

0 1 4 5

3

(b)

2
3
4
5

0 2 3 4 5

1 2 ---

1

4

0 1 4

3

(c)
+

(0,0)

t
(0,0)

������
3

(?,?)

222222

1
(?,?)

������
2

(?,?)

333333
2
3
4
5

0 2 3 4 5

1 2 ---

(d)

2

0 2 5

1
2
3

0 2 3 5

2

(e)

2

0 2

1
2
3

0 2 3

2

(f)

Figure 24: Determining the Locations of all Blocks/Supermodules from Fig.23.
We follow the example from Fig.23. (a) We determine the whole packing to have width 3 and
height 5, and set the root to locate at (0,0); next we have to determine whether we should replace
t by + or ∗ by trying both cases; (b) suppose we replace t in the root by +, then both children
must have width at most 5; therefore the supermodule B1tB2 has height 2 and B3 has height 1; (c)
on the other hand, if the operator is ∗, then B1 tB2 and B3 has height at most 3, but then B1 tB2
needs to have width 4 and B3 needs to have width 4 as well; hence the bounding box needs to have
width at least 8, which is impossible; therefore the operator in the root must be +; (d)-(f) we first
compute the dimensions and location of B1 tB2 as usual and then determine its operator similarly
and it has to be ∗. Since B1, B2 and B3 are leaves, we can use the ordinary shape-curve realization
method to determine their locations and dimensions as in Fig.22. We find that B1 locates at (0,0),
B2 at (2,0) and B3 at (0,2).
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