Hurwitz Interconnect Delay Evaluation - HIDE

User's Manual

Xiao-Dong Yang Zhanhai Qin Chung-Kuan Cheng

VLSI Lab, Computer Science & Engineering Department University of California San Diego Nov 18, 2000

1. Introduction

The purpose of HIDE is to evaluate delays of an RLC interconnect tree very accurately and scale the original tree structure down to a set of equivalent, connected, and realizable π models.

The program features:

- Delay evaluation with user-defined threshold;
- Rise time evaluation with user-defined starting and end thresholds;
- Waveform evaluation for user-defined test node(s);
- Equivalent load generation for gate delay evaluation;
- Hspice-formatted netlist generation for delay result verification;
- Moment generation for each node.

These features and their useage will be introduced in detail in sec. 4.

2. Supported Input Signals

Three input signals are supported in the program: exponential, ramp, and step functions. Users can specify the input signal type and the corresponding control parameters in an *input command file* (see sec. 4).

• Exponential function:

$$V(t) = \left(1 - e^{-\frac{t}{tr}}\right)U(t) \qquad t \ge 0 \tag{1}$$

• Ramp function:

$$V(t) = \begin{cases} \frac{t}{tr} & 0 \le t \le tr \\ 1 & t > tr \end{cases}$$
 (2)

• Step function:

$$V(t) = 1 \qquad t \ge 0 \tag{3}$$

where tr is the rise time of the input signal, which is defined in an input command file (see sec. 4), and U(t) is the unit step function.

3. Supported Delay Evaluation

For delay evaluation, presently we provide three delay models:

- Elmore delay model;
- D2M delay model:
- HIDE delay model.

The first two are provided for comparisons with our HIDE model. So features such as waveform evaluation, delay metrics for user-defined threshold(0% \sim 100% of V_{DD}), and rise time for user-

defined starting and ending delay threshold (0% \sim 100% of v_{DD}) are provided only for HIDE delay model. As for Elmore delay model and D2M delay model, we only provide general delay metrics.

4. Format of Input Command File

*keyword are highlighted.

InputFile: < input file name >

InputFile specifies a spice or dspf formatted input netlist file. Note that HIDE as Interconnect Delay Evaluation package, can only handle tree structured RLC circuits.

OutputFile: < output file name >

OutputFile specifies the output file in which all the evaluation results are going to be saved.

InputFileFormat[dspf/spice]: < dspf / spice >

InputFileFormat defines the input netlist file format. This file is the one specified in InputFile entry.

IsGenHspiceNetlist[Yes/No]: < Yes | No >

IsGenHspiceNetlist tells HIDE if the input netlist file needs to be translated into an Hspice-formatted file. This entry should be checked as *<yes>* and the next entry **Fspice** should also be specified if you want to compare HIDE with Hspice.

Fspice: < hspice-formatted input netlist file name>

Fspice specifies the hspice-formatted input netlist file name. This file is translated from the file indicated in **InputFile** entry. **Fspice** should be checked correctly if **IsGenHspiceNetlist** is checked as *<yes>*. But **Fspice** will be ignored if **IsGenHspiceNetlist** is checked as *<No>*.

InputSignalType[exp/ramp/step]: < exp | ramp | step >

InputSignalType defines the input signal type. $\langle exp \rangle$ denotes the input signal as an exponential function, $\langle ramp \rangle$ as a ramp function, and $\langle step \rangle$ as a step function. Presently only these three types are supported.

InputSignalRiseTime: <*tr>*

InputSignalRiseTime is the parameter defined in equation (1) and (2) above.

DelayThreshold[0-1.0]:
$$\langle Delay_{th} \rangle$$

DelayThreshold defines the delay observation point at which the output signal is $(Delay_{th} \times 100)$ percentage of V_{DD} . It is effective to HIDE delay model only.

IsRiseTime[Yes/No]:
$$\langle Yes \mid No \rangle$$

IsRiseTime tells HIDE if the rise time of the output signal needs to be printed out. It is effective to HIDE delay model only.

RiseTimeStart[0-0.5]:
$$\langle Delay_{start} \rangle$$

RiseTimeStart defines the starting delay observation point at which the output signal is ($Delay_{start} \times 100$) percentage of V_{DD} . It is used with **RiseTimeEnd** together. And it is effective to HIDE delay model only.

RiseTimeEnd[0.5-1.0]:
$$\langle Delay_{end} \rangle$$

RiseTimeEnd defines the end delay observation point at which the output signal is $(Delay_{end} \times 100)$ percentage of V_{DD} . It is used with **RiseTimeStart** together to specify the output voltage range that users are interested in. It is effective to HIDE delay model only.

IsOutputWaveform tells HIDE if the output waveform needs to be printed out. This entry is optional. It is effective to HIDE delay model only.

BeginWaveFormParameters

Vdd < power supply voltage >

 tstep
 < step size > /

 tstop
 < stop time >

EndWaveFormParameters

This option is optional and will be ignored if **IsOutputWaveform** is checked as <*No>*. The starting time is assumed to be zero.

IsGenMoment[Yes/No]:

IsGenMoment is optional and if it is checked as < Yes>, HIDE will calculate the moments up to the third order and print them out.

IsElmore[Yes/No]:

IsElmore is optional and if it is checked as <*Yes>*, HIDE will calculate Elmore delay and print it out. Note that presently, Elmore delay is calculated without considering input signal, i.e., it is independent from input signal

IsD2M[Yes/No]:

IsD2M is optional and if it is checked as < *Yes* >, the program will calculate D2M delay metrics and print it out. Note that presently, D2M delay is calculated without considering input signal, i.e., it is independent from input signal

IsDebug[Yes/No]:

IsDebug is optional and only useful for programmers. When it is checked as < Yes>, more detailed runtime information will be printed out.

IsOutputAll[Yes/No]:

IsOutputAll is optional and if it is checked as < Yes >, all the nodes in the input netlist file will be printed out.

IsUseDefaultTestNode[Yes/No]:

IsUseDefaultTestNode is optional and if it is checked as < *Yes* >, **TestNodeList** entry will be read in and HIDE will only print out delays for listed test nodes.

TestNodeList:

<Node Name >

EndTestNodeList

This entry specifies the test nodes that users are interested in. If a test node defined by user is not found in the netlist, this node will be ignored and a warming message may be printed out. See IsUseDefaultTestNode for details.

Bug report

Please feel free to contact Zhanhai Qin via zqin@cs.ucsd.edu or 1-858-534-8174 if you found any bugs in the program or if you have any idea to help us improve it.